
Assessing and Improving the Suitability of
Model-Based Design for GPU-Accelerated

Railway Control Systems

Alejandro J. Calderón1,3[0000−0003−2426−306X], Leonidas
Kosmidis1,2[0000−0001−9751−1058], Carlos F. Nicolás3[0000−0002−2117−913X], Javier

de Lasala4[0000−0001−7052−553X], and Ion Larrañaga5[0000−0003−2399−7168]

1 Universitat Politècnica de Catalunya, Barcelona, Spain
2 Barcelona Supercomputing Center (BSC), Barcelona, Spain

3 Ikerlan Technology Research Centre, Arrasate-Mondragón, Spain
4 CAF Research Department, Beasain, Spain

5 CAF Power & Automation, San Sebastián, Spain

Abstract. Model-Based Design (MBD) is widely used for the design
and simulation of electric traction control systems in the railway indus-
try. Moreover, similar to other transportation industries, railway is mov-
ing towards the consolidation of multiple computing systems on fewer
and more powerful ones, aiming for the reduction of Size, Weight and
Power (SWaP). In that regard, Graphics Processing Units (GPUs) are
increasingly considered by critical systems engineers, seeking to satisfy
their ever increasing performance requirements. Recently, MBD tools
have been enhanced with GPU code generation capabilities for machine
learning acceleration, however, there is no indication whether these tools
are ready for the design of time-sensitive systems. In this paper we anal-
yse the suitability of commercial MBD toolsets by designing and de-
ploying a model-based parallel control case study on embedded GPU
platforms. While our results show promising feasibility evidence, they
also reveal shortcomings which should be addressed before these toolsets
become fit for developing critical systems. We propose certain improve-
ments that have to be incorporated in these tools to achieve this goal.
By implementing our proposals in the generated code, we experimentally
show their effectiveness on two NVIDIA-based embedded GPUs.

Keywords: Model-Based Design · GPU · Control Systems · Railway.

1 Motivation and Introduction

The control of railway electric traction systems requires reading different types of
sensors to feed the control algorithms, executing these algorithms and applying
their results with precision to guarantee optimal and safe operation. For this
purpose, CAF group’s traction control electronics use a combination of boards
with microprocessors, Digital Signal Processors (DSPs) and Field Programmable
Logic Arrays (FPGAs) in a modular way, to adjust costs and space to the needs
of each client.



2 A. J. Calderón et al.

MBD tools have been used in the railway industry for many years to design
electric traction control systems, allowing the suitability of the design to be ver-
ified by simulation at an early stage. It has also been possible for a long time
to transfer the models into code that will be executed by the control electron-
ics, thus facilitating validation through Hardware-in-the-Loop (HIL) simulation
and also avoiding the introduction of possible errors inherent to manual inter-
vention. CAF group employs MATLAB-Simulink capabilities to generate, from
the model, C code for DSPs and Hardware Description Language (HDL) code
for FPGAs. Thus, engineers can work at a higher level focusing on the control
algorithms instead of their implementation in the target platforms.

Given the interest of the automotive industry in GPUs for Advanced Driver-
Assistance Systems (ADAS) and autonomous driving, several GPU manufactur-
ers are launching products that may be interesting for other functional safety
sectors such as railways, especially if they facilitate reductions in costs and SWaP
requirements, while allowing the code to still be generated from the models.
There are already on the market boards based on System on Chips (SoCs) that
integrate a microprocessor and a GPU, which in our railway traction system
could replace a microprocessor board and many DSP boards, if real-time be-
haviour of the code generated from a model could be guaranteed. To validate
this, we assess the state-of-the-art of MBD tools for the implementation of GPU-
accelerated parallel control systems using a case study. We identify shortcomings
which can be addressed to achieve this goal. In this direction, we propose concrete
improvements, which we implement and experimentally show their effectiveness
on two NVIDIA embedded GPUs.

2 Background and Related Work

2.1 Model-Based Design

A key attractor for adopting MBD to develop industrial applications is the sep-
aration of concerns, where the desired functionality can be described by a pure
mathematical representation, i.e. the model. Afterwards, this will be step-wise
refined until achieving a description that will be partitioned and allocated to the
computing platform.

Equipment manufacturers relying on third-party embedded computing plat-
forms expect MBD to isolate their own intellectual property, related to the func-
tionality of the embedded software, from the particular features of a given hard-
ware, which could jeopardise portability and make platform replacement costly.
This expectation typically sacrifices optimal performance when compared to a
hand-written implementation tailored to a specific platform.

MBD product development yields many additional advantages: MBD enables
the validation of specifications by analysis and simulation, and allows designers
to unveil potential design pitfalls at early project stages, which in turn cuts
the overall development cost by lowering the time and effort required to fix
undesirable behaviour. Moreover, when provided with trustworthy models of the



Assessing and Improving MBD for GPU Railway Control Systems 3

system environment, MBD enables the systematic exploration of a multiplicity
of what-if scenarios under unlikely conditions, which could be hard or completely
impossible to fully reproduce in real-world tests.

A typical MBD development process starts with a pure simulation model,
known as Model-in-the-Loop (MIL), which is refined and analysed in relevant
simulated scenarios until an acceptable behaviour is achieved. Then an initial
model-to-code transformation yields a second executable implementation. De-
pending on whether this implementation could be (cross-)compiled and run on
the same host platform or has to be executed on the final target, the configura-
tion is named Software-in-the-Loop (SIL) or X-in-the-Loop (XIL). In addition,
depending on the target used in XIL it can be specialised as Processor-in-the-
Loop (PIL), FPGA-in-the-Loop (FIL) or in this paper GPU-in-the-loop (GIL).

Recently, GPUs started attracting a strong interest for developing embed-
ded control applications, particularly for real-time controllers involving non-
conventional computations –e.g., Deep Neural Networks (DNNs) or Convolu-
tional Neural Networks (CNNs). This also motivated the introduction of MBD
toolsets intending to ease the development of GPU applications using the same
modelling environments already in use for the other types of computing plat-
forms mentioned before. The novelty of these GPU toolsets, coupled with the
special programming patterns required by them, pose several challenges and face
many limitations. For example, ensuring the suitability of the languages to de-
scribe functionality in a way that can be unambiguously translated to a parallel
programming language adequate for coding a GPU, such as CUDA.

2.2 Control Systems

Control systems regulate the behaviour of devices or equipment using feedback
control loops. Most of modern control systems implementations involve digital
embedded microprocessors. Such embedded microprocessors provide interfaces
to sensors and actuators, and hard real-time scheduling to guarantee the timely
execution of synchronous feedback algorithms. Embedded controllers for real-
world applications typically execute multiple cascaded control loops. This control
structure tends to require multiple sampling rates; the inner the loop in the code
control structure, the higher its required sampling rate is.

An unexpectedly long execution time could delay the action of the controller
on the system under control, eventually bringing the system to an inconvenient
or risky situation. Therefore, determining the worst-case execution time of the
control loop is of uttermost importance for controllers operating critical or pro-
tection systems.

Scenarios involving the parallel control of multiple systems can be found in
industrial controllers in applications demanding high computational throughput
and scalability –e.g., as required by power converters for distributed propulsion
systems comprising tens of motors, as proposed for electrification of airborne ve-
hicles [10][12], or power-related applications such as distributed power converters
for charging stations or distributed power generation.



4 A. J. Calderón et al.

2.3 GPUs in Critical Systems

GPUs have been initially introduced as special purpose accelerators, in par-
ticular for the production of visual content. However, their massively parallel
architecture and the introduction of general purpose programmability allowed
their use for computationally intensive tasks, including the extremely demanding
AI processing, enabled with deep learning.

Autonomy is becoming an important aspect of future critical systems for
sectors such as the automotive with the introduction of autonomous driving
vehicles, avionics with Unmanned Aerial Vehicles (UAVs), space and planetary
exploration with autonomous navigation as well as in industrial automation in
industry 4.0 applications to name a few. For this reason, GPU manufacturers
started addressing these sectors with the introduction of embedded GPU designs
incorporating functional safety features. However, this is still in its infancy with
several open challenges currently addressed by the research community.

Several works in the literature address the real-time behaviour of GPUs. As
a complex hardware design with a black box non-preemptive behaviour, GPU
requires novel approaches for scheduling of real-time tasks [5][8], reduction of
offloading overheads [7], characterisation of contention [6] as well as the compu-
tation of worst case execution times [3]. Other works analyse necessary properties
which need to be taken into account when GPUs are used in the context of crit-
ical systems. For example, [14][2] reverse engineered non-obvious aspects of the
GPU behaviour which need to be taken into account when GPUs are used in
real-time systems, while [4] reverse engineered the memory allocation of GPUs
in order to achieve predictable resource consumption with regard to memory
and timing. Other authors address the compliance of GPUs with regard to func-
tional safety certification [13][1][11] by proposing the use of language subsets or
the adaptation of safety standards. In this work we explore another dimension
in this aspect, by using MBD to facilitate certification.

In brief, so far GPUs are mainly employed for high throughput computations
but not latency sensitive ones. However, embedded GPUs targeting particularly
the automotive and other critical domains are constantly improving in that mat-
ter. For example, in the keynote of the GPU Technology Conference 2020 a new
GPU architecture and software infrastructure was presented, which will allow
to deliver low-latency conversational AI for use in the automotive sector. This
is an indication that the latency capabilities of embedded GPUs will be soon
competing with other architectures, which were preferred so far for the imple-
mentation of such tasks. For this reason, in this work we propose an even more
ambitious latency-sensitive parallel case study from the control domain. We as-
sess whether such an application is feasible with the existing technology (both
MBD tools and hardware capabilities) or if it will be likely available in the near
future according to the current technology trends. In fact, we show that even
though existing MBD tools are not yet there, with our proposals this could be
achieved even with existing embedded GPUs.



Assessing and Improving MBD for GPU Railway Control Systems 5

3 Case Study: Design and Implementation of a
GPU-Accelerated Parallel Control System

3.1 Preliminaries

The primary objective of this work is to assess the capabilities of MBD tools
regarding GPU code support for the implementation of real-time parallel control
systems. To carry out a comprehensive assessment we opted to implement a case
study from the control domain, which is representative of such systems and in
addition has not been considered so far for GPU acceleration.

More specifically, we are interested in the evaluation of parallel code genera-
tion capabilities and the integration with GPU hardware for PIL or HIL testing.
After researching the state-of-the-art in these tools, we concluded that currently,
there are only two MBD tools which provide that kind of support: MathWork’s
MATLAB-Simulink through its GPU Coder toolbox and LabView with its GPU
Analysis Toolbox. However, the GPU support in the latter is very limited. It only
uses the GPU for the acceleration of some computations such as matrix opera-
tions and Fast Fourier Transform (FFT) through the CUDA provided libraries,
but does not support custom code generation for GPUs. For this reason, we focus
our analysis exclusively on MATLAB-Simulink, which is the only industry-ready
MBD tool to support this functionality. However, if in the future any additional
existing or new MBD tool includes GPU code generation, our methodology and
proposed case study can be applied in order to benchmark its capabilities.

GPU Coder is a MATLAB-Simulink toolbox oriented to the generation of
optimised CUDA code for NVIDIA GPUs, with special focus on tasks related
to deep learning, embedded vision and autonomous systems. However, to the
best of our knowledge, there is no previous analysis on the application of GPU
Coder – or any other industrial or academic GPU-capable MBD tool – towards
the development of a real-time application, such as a control system.

3.2 The Model

To evaluate the capabilities of GPU Coder and the integration with MATLAB-
Simulink, we created an initial model to simulate the control of 8 parallel Per-
manent Magnet Synchronous Motors (PMSMs), as shown in Figure 1a. We see
suitable to start with controlling 8 motors in order to justify the use of the GPU
in the system, since a lower number of cores can already be accelerated with
existing platforms, such as the TI Delfino platform which supports control of 2
motors. Note however that while our initial model which is described next uses
8 motors, in Section 4.5 we perform a full scalability study for the control of up
to 1024 motors. This is a reasonable upper bound of the number of potential
motors which can realistically be present in a cyber-physical railway system and
controlled together. Moreover, this is the maximum number of threads supported
by a single Streaming Multiprocessor (SM) in a GPU and it is the number of
threads supported by our embedded GPU platforms, since the embedded GPU
of the smaller of them contains a single SM.



6 A. J. Calderón et al.

Embedded GPU Model

Discrete GPU Model

MATLAB Code Model

b) Parallel controller models

c) PMSM model

a) Top model

Fig. 1: Simulink model of a parallel PMSM FOC controller

Algorithm 1: Velocity control algorithm
Input : reference speed, measured speed
Output : reference iq
InOut : accum error
Parameter : kp, ki, dt

1 speed error ← reference speed−measured speed
2 accum error ← accum error + speed error ∗ dt
3 reference iq ← kp ∗ speed error + ki ∗ accum error

In our implementation we follow the classic model-based development pro-
cess with gradual refinement as introduced in Section 2.1. First we start with a
mathematical model validating its correct behaviour through a MIL simulation.
Then we refine the model by generating code executed in the discrete GPU of
the host computer where MATLAB-Simulink is installed. This way we perform
a HIL / GIL validation, ensuring that its behaviour is identical to the model. Fi-
nally, we create the final model which is executed on our target embedded GPU
platforms, where the actual evaluation is performed. In that model in particular,
we assess not only its identical functionality with the previous models, but also
analyse its memory and timing properties.

Mathematical Description: A PMSM is a rotating electrical machine
which has phase windings in the stator and permanent magnets in the rotor.
To operate, it requires the interaction of the magnetic field created by the stator
coils and the magnetic field created by the permanent magnets. The three stator



Assessing and Improving MBD for GPU Railway Control Systems 7

Algorithm 2: Current control algorithm
Input : reference iq, ia, ib, angle
Output : va, vb, vc
InOut : accum error id, accum error iq
Parameter : kp, ki, dt

1 ialpha← ia;
2 ibeta← (1/sqrt(3)) ∗ (ia + (2 ∗ ib))
3 id← cos(angle) ∗ ialpha + sin(angle) ∗ ibeta
4 iq ← cos(angle) ∗ ibeta− sin(angle) ∗ ialpha
5 id error ← −id
6 accum error id← accum error id + id error ∗ dt
7 vd← kp ∗ id error + ki ∗ accum error id
8 iq error ← reference iq − iq
9 accum error iq ← accum error iq + iq error ∗ dt

10 vq ← kp ∗ iq error + ki ∗ accum error iq
11 valpha← cos(angle) ∗ vd− sin(angle) ∗ vq
12 vbeta← sin(angle) ∗ vd + cos(angle) ∗ vq
13 va← valpha
14 vb← (−valpha + (sqrt(3) ∗ vbeta))/2
15 vc← (−valpha− (sqrt(3) ∗ vbeta))/2

coils are permanently energised with a sinusoidal current which is 120 degrees
apart on each phase. This creates a rotating North / South magnetic field.

In our top model shown in Figure 1a, each one of the 8 PMSM plants has the
internal structure shown in Figure 1c. The core of this structure is a Simscape
PMSM block connected to a mechanical circuit which is necessary to simulate the
physical properties of the motor. The structure also includes a subsystem used
for the Pulse-Width Modulation (PWM) generation and a three-phase inverter
circuit to simulate the commutation needed to produce rotation in the motor.

To simplify the control of PMSMs a vector control technique known as Field
Oriented Control (FOC) is used. The FOC algorithm consists of two control
loops which execute at different frequencies. The first control loop is the slower
one and is a simple Proportional-Integral (PI) controller, which is used to control
the velocity of the motor. Algorithm 1 shows the steps executed in the velocity
control loop. The output of this control loop is used as reference value for the
quadrature current (reference iq) in the next control loop. The second control
loop is more complex and runs at a higher frequency. This control loop consists of
a series of coordinate transforms of the currents to determine the time invariant
values of torque and flux of the motor. These values can then be controlled using
PI controllers. Algorithm 2 shows the steps executed in the current control loop.

Based on these two control loops, we defined the structure of a field oriented
controller subsystem, as shown in Figure 1b. In this configuration, the output of
the speed controller is used as reference value in the current controller. However,
since both control loops are executed at different frequencies, a rate transition
buffer is used to hold the reference value.

In the model shown in Figure 1a, the Parallel Controller block is a Simulink
variant subsystem on which we implemented three different versions of the field
oriented control structure, as shown in Figure 1b.



8 A. J. Calderón et al.

MATLAB Code Model: In the first model, we implemented the velocity and
current control algorithms using MATLAB code. The reason for using MATLAB
code instead of Simulink blocks is that GPU Coder has the limitation that
it can only generate CUDA code from MATLAB code. To be able to control
multiple PMSMs in parallel, we created parallel versions of Algorithms 1 and 2
using vectors instead of scalar variables and replacing the scalar operators with
MATLAB element-wise operators. To integrate the parallel MATLAB code into
the Simulink model, we used MATLAB Function Simulink blocks. This first
version of the field oriented controller allowed us to validate the correctness of
our setup and to register the behaviour of the PMSM plants when interacting
with the controller, using a MIL simulation. For this task, we applied different
reference input signals for the 8 PMSM plants, as shown in Section 4.

Discrete GPU Model: For the second model, we used GPU Coder to gen-
erate CUDA code from the MATLAB version of the control algorithms. First,
we generated a dynamic-link library with the CUDA version of the velocity and
current controllers. Then, we invoked this external library from MATLAB. In
the Simulink model, we included two MATLAB Function blocks to invoke the
corresponding CUDA functions. This way, on each step of the Simulink simula-
tion, the velocity and current control calculations are executed in the GPU of the
host computer and their output is returned to Simulink to drive the simulated
motors. In the generated code, each thread in the GPU is in charge of driving a
different motor.

Embedded GPU Model: For the third model, we executed the generated
CUDA code in the target embedded GPUs, to evaluate the capabilities of GPU
Coder to interact with external hardware. GPU Coder includes a support pack-
age for the deployment of CUDA code in embedded NVIDIA GPUs such as
the Jetson and DRIVE platforms. Moreover, the support package provides the
functionality to create a PIL session between MATLAB-Simulink and a target
embedded GPU platform, which allows the remote execution of code. We imple-
mented this model using a similar approach to the previous one, but creating
a PIL session as opposed to creating a dynamic-link library. In addition to the
equivalence checking between the MATLAB-Simulink and the generated code
for all models, we also evaluate the performance and memory consumption of
this version of the application in a standalone setup instead of PIL, as described
in Section 4.4. Then, in Section 4.5 we propose improvements for the generated
code, which we implement and evaluate experimentally, showing their effective-
ness.

4 Evaluation

4.1 Experimental Setup

We used the MathWorks MATLAB-Simulink toolset release 2021a with GPU
Coder 2.1 to develop our parallel control case study, running on a computer



Assessing and Improving MBD for GPU Railway Control Systems 9

Table 1: Embedded GPU Platforms

Platform GPU Compute SMs CUDA Max. threads RAM
architecture capability cores per block

Jetson Nano Maxwell 5.3 1 128 1024 4GB
Jetson TX2 Pascal 6.2 2 256 1024 8GB

equipped with an NVIDIA GeForce GTX 1650Ti Max-Q discrete GPU. For the
final embedded GIL evaluation we used 2 different versions of the NVIDIA Jetson
family of embedded GPU single board computers. The details of each embedded
platform are provided in Table 1. For the performance evaluation on the em-
bedded platforms, we installed Linux for Tegra (L4T) 32.5 with the PREEMPT
RT patches. Moreover, to avoid external interference, all the experiments have
been executed with a real-time priority of 98, on an isolated CPU core and with
paging disabled. To guarantee the maximum performance, jetson clocks has
been enabled with the maximum nvpmodel profile for each embedded platform.

4.2 Validation of the Models

For the models validation task, we designed 8 different reference input signals for
the PMSM plants, which represent changes in the target speed of each motor, as
shown in Figure 2 with a continuous red line. We applied the reference signals
to the controller based on MATLAB code and registered the outputs of the
simulation. With this MIL simulation, we validated that the configuration was
correct and that the parallel controller was in fact capable of controlling different
plants with different set-points. Figure 2 shows also the response of the system
with a blue dashed line, trying to adapt the speed of each motor to the requested
speed. In Figure 3 we can see the changes in the phase-voltages of each motor
in response to the changes of the requested speed. As expected, identical results
have been obtained also with the GIL simulations of the discrete and embedded
GPUs of the target platforms, which are omitted for the sake of space, as well as
because they do not offer any additional value except confirming the equivalence
of the MATLAB model and the generated CUDA code.

4.3 Integration with External Hardware

In the third model, we used the GPU Coder support package for embedded
NVIDIA GPUs to establish a PIL session between MATLAB-Simulink and the
Jetson boards to run the simulation. In this setup, Simulink only simulates the
physical motors, while their parallel control algorithm is executed in the embed-
ded GPU. As stated in Section 4.2 this is functionally equivalent to the other
models. However, we identified two important limitations:

First, in the PIL simulation mode the system establishes a single communi-
cation channel at a time to execute a single CUDA kernel on the target. This



10 A. J. Calderón et al.

Fig. 2: Reference and actual speeds of parallel PMSMs

Fig. 3: Phase voltages of parallel PMSMs

means that in cases such as our application where multiple CUDA kernels are
used, their execution is serialised. Second, for this same reason, the execution
frequency of the target GPU is limited by the communication latency between
the host and the target which initiates each kernel execution, increasing the
physical execution time required for the simulation.

4.4 Evaluation of Generated CUDA Code

Performance of generated CUDA code: In order to evaluate the actual
performance of the generated code, we ran our case study directly on the target
platforms, without a Simulink PIL setup but as a standalone application. From
a control systems perspective, we are interested in measuring the execution time
of the instructions that will be executed on each iteration of the control loops:
copying values from CPU to GPU, launching the kernel, executing the kernel,
and copying the results back from GPU to CPU. On each experiment we execute
one million control iterations and we register the average execution time, the
maximum execution time and the standard deviation (appearing as Avg, Max
and S.D. respectively in the following Tables). To measure the execution time of
each iteration, we used the clock gettime function with the CLOCK MONOTONIC

clock, which has nanosecond resolution.
GPU Coder can generate CUDA code which uses either the discrete or the

unified memory modes. Unified memory allows the CPU and the GPU to share
the same address space, which matches the physical memory configuration of
the embedded Jetson boards. However, some researchers consider this feature



Assessing and Improving MBD for GPU Railway Control Systems 11

Table 2: Execution time of generated CUDA code (µs)

Platform Memory mode
Velocity Current

Avg Max S.D. Avg Max S.D.

Jetson Nano
Discrete 265.2 350.9 9.7 489.1 606.0 30.4
Unified 663.8 1086.7 13.5 1335.1 2045.5 37.3
Unified fixed 80.7 152.7 2.8 90.6 167.2 3.1

Jetson TX2
Discrete 154.2 273.4 5.7 296.6 383.6 9.5
Unified 395.1 574.3 14.3 816.5 1013.5 17.9
Unified fixed 49.7 92.1 2.0 65.6 111.9 8.0

not suitable for critical systems [4] due to its black-box behaviour. Regardless,
we perform our evaluation with both memory modes. In the evaluation, we
identified that GPU Coder generates cudaMemcpy calls to transfer data between
CPU and GPU when using the unified mode, which are unnecessary in this mode
and costly as we show, given that the CUDA system automatically migrates
data between CPU and GPU. This is the first shortcoming we identified. For
comparison purposes, we created a fixed version of the code generated for the
unified memory mode, removing these unnecessary cudaMemcpy calls.

Table 2 shows the execution times of the code generated for the discrete
and unified memory modes on the two target platforms. We also include the
execution times of the fixed version of the unified memory code. Note that the
execution times of the original unified memory code are significantly higher than
the execution times of the fixed version, due to the overhead caused by the extra
cudaMemcpy calls. Therefore, there is room for improvement in the GPU Coder
code generation in order to achieve the requirements of a control system.

In control systems, the maximum execution times of the control algorithms
will define the maximum sampling rates the controller will be able to achieve.
Unexpectedly long execution times could delay the action of the controller on
the system under control, which can cause a risky situation in the system. In the
case of FOC, the needed sampling rates depend on the physical characteristics
of the inverters and the motors. In general, the period of the velocity control
loop usually can be around a few milliseconds, while the current control loop
typically has a period inferior to 100 microseconds.

As shown in Table 2, while the maximum execution times of the velocity con-
troller are in an acceptable range, the maximum execution times of the current
controller are very high, limiting the maximum control frequency of the system.

To better understand the maximum execution times, we executed some it-
erations of the control loops using the NVIDIA nvprof profiler. Tables 3 and 4
show the results reported by nvprof for the discrete and unified memory modes.

In both versions, the maximum execution time for the actual kernel execution
is in the target range for both the velocity and current controllers. The rest
of the time is spent on cudaMemcpy and kernel launch / synchronisation calls.
Therefore, if the time spent on these calls is reduced or eliminated, it is feasible



12 A. J. Calderón et al.

Table 3: Profiling results for discrete memory mode (µs)

Platform Call name
Velocity Current

Avg Min Max Avg Min Max

Jetson Nano
Kernel execution 2.0 2.0 2.0 2.6 2.5 2.6
cudaLaunchKernel 50.3 45.5 60.0 56.0 47.2 69.8
cudaMemcpy 46.0 30.9 74.9 50.3 32.0 89.0

Jetson TX2
Kernel execution 1.5 1.4 1.6 2.0 1.9 2.1
cudaLaunchKernel 30.8 27.4 43.3 40.0 31.7 51.9
cudaMemcpy 29.1 20.6 52.9 31.0 19.7 84.7

Table 4: Profiling results for unified memory mode (µs)

Platform Call name
Velocity Current

Avg Min Max Avg Min Max

Jetson Nano

Kernel execution 2.8 2.7 3.1 3.9 3.7 4.1
cudaLaunchKernel 76.9 66.6 96.7 86.6 77.0 98.9
cudaMemcpy 101.4 83.3 142.6 116.1 93.5 173.7
cudaDeviceSynchronize 46.7 44.9 50.6 53.7 50.5 57.3

Jetson TX2

Kernel execution 2.4 2.4 2.5 3.5 3.4 3.7
cudaLaunchKernel 56.6 50.5 71.9 64.6 48.4 86.9
cudaMemcpy 64.6 50.0 114.0 73.2 57.0 120.4
cudaDeviceSynchronize 29.9 26.9 40.3 33.7 28.4 44.7

to achieve the timings required for the control system. Based on this analysis,
on Section 4.5 we propose some further improvements for the generated code.

Memory overhead of generated CUDA code: In addition to the perfor-
mance of the generated code, we also evaluated its memory consumption. For
this task we employ the open source GPU memory allocation inspector GMAI,
proposed by [4]. GMAI reports that the generated CUDA code performs 20 in-
dividual allocations and memory copies for each of the GPU variables, which is
inefficient. Although the allocations occur at the application startup and thus do
not affect timing, the individual memory copies significantly impact the timing,
since they are quite costly as shown in Table 3. On the other hand, in terms
of absolute memory consumption, this allocation strategy is beneficial, since all
individual memory allocations are quite small and of the same size, so they are
allocated from the same size class of the memory allocator, occupying a single
memory pool which has a size of 1 MB in the Nano and 2 MB size in the TX2.
Note that each of the generated GPU variables corresponds to an array with size
as many elements as the number of the motors which are controlled. In total, for
the 8 motor configuration, the total requested size for GPU memory from the
application is less than 1 KB.



Assessing and Improving MBD for GPU Railway Control Systems 13

Table 5: Execution time of improved CUDA code versions (µs)

Platform Improvement
Velocity Current

Avg Max S.D. Avg Max S.D.

Jetson Nano
Zero-copy memory 32.7 74.1 3.0 34.4 81.2 2.9
Persistent kernel 2.9 8.8 0.2 4.0 9.8 0.3

Jetson TX2
Zero-copy memory 20.3 55.5 1.3 31.5 61.9 7.3
Persistent kernel 3.0 8.8 0.2 4.1 9.8 0.2

Velocity Current
0

250

500

750

1000

1250

1500

1750

2000

M
ax

im
um

 E
xe

cu
tio

n 
Ti

m
e 

(
s)

Discrete
Unified
Unified fixed
Zero-copy
Persistent

(a) Jetson Nano

Velocity Current
0

200

400

600

800

1000

M
ax

im
um

 E
xe

cu
tio

n 
Ti

m
e 

(
s)

Discrete
Unified
Unified fixed
Zero-copy
Persistent

(b) Jetson TX2

Fig. 4: Maximum execution times of generated code and proposed improvements.

4.5 Improvement of Generated CUDA Code and its Evaluation

In embedded platforms where CPU and GPU share the same physical mem-
ory, the memory copy overhead can be eliminated using an alternative memory
configuration known as zero-copy. This feature allows the allocation of memory
regions shared between CPU and GPU, eliminating redundant allocations as
well as the copying task itself.

Regarding the kernel launch overhead, it can be reduced using the persistent
threads model [9]. In this model, a persistent kernel is launched only once, which
iterates waiting for work. Then, the CPU can assign new work to the persistent
kernel by just changing values in memory, avoiding the kernel launch process.

Based on these two approaches we modified the generated code in two steps,
creating two versions in order to evaluate the benefit obtained from each one.
In the first step we replaced the traditional memory allocations with zero-copy
allocations to avoid using cudaMemcpy calls. In the second step, besides using
zero-copy memory, we replaced also the kernel launch / synchronisation with
a persistent kernel launch. Table 5 shows the resulting execution times of the
control algorithms with these improvements. Figure 4 shows a comparison of
the maximum execution times for the different versions of velocity and current
controllers on the target platforms.

Note that using zero-copy memory is enough to get maximum execution
times in the target range for both control algorithms. Furthermore, when this
solution is combined with a persistent kernel, the control loops can be executed



14 A. J. Calderón et al.

8 64 128 256 512 1024
Threads

0

5

10

15

20

25

30

Ex
ec

ut
io

n 
Ti

m
e 

(
s)

Velocity max
Current max
Velocity avg
Current avg

(a) Jetson Nano

8 64 128 256 512 1024
Threads

0

5

10

15

20

25

30

Ex
ec

ut
io

n 
Ti

m
e 

(
s)

Velocity max
Current max
Velocity avg
Current avg

(b) Jetson TX2

Fig. 5: Performance scalability of improved CUDA code

significantly faster on both platforms. This improvement by an order of magni-
tude can be beneficial for even tighter control scenarios. In terms of memory,
since we replace a host allocation and a GPU allocation with a single zero-copy
allocation, the memory consumption is reduced up to 50%.

Finally, to evaluate the scalability of the improved code, we executed the
control algorithms with different threads configurations, to control up to 1024
motors in parallel. Figure 5 shows the execution times on the target platforms.
Note that the most stable execution times are obtained with up to 128 threads,
which is the amount of CUDA cores per SM in both platforms. Even so, in all
the cases, the maximum execution times do not exceed 30 microseconds.

5 Conclusion and Outlook

In this paper we assessed for the first time the GPU code generation capabilities
of MATLAB-Simulink for the design of real-time parallel control systems. We
performed this evaluation by designing a novel GPU-accelerated parallel con-
trol case study, as a representative application of future railway parallel control
systems, which we evaluate in 2 embedded GPU platforms.

Our results show that existing embedded GPU hardware can already support
the timing requirements of such a case study, scaling up to 1024 motors, provided
that the generated code is optimised according to our proposals. However, due to
code generation inefficiencies, the original MBD generated code cannot meet the
performance required by the control application. In particular, while the actual
GPU generated code is functional, we noticed inefficiencies in the API calls
which control the interaction of the GPU with the CPU part of the application.
In terms of memory consumption the generated code is reasonable, however the
implementation of the memory allocations and transfers is the limiting factor of
the control loop frequency, together with the kernel launch overhead.

For these reasons, we conclude that to enable the use of the MathWorks
toolset for model-based designing GPU-accelerated real-time control applica-
tions, it yet requires to enhance its GPU code generation capabilities at least in



Assessing and Improving MBD for GPU Railway Control Systems 15

the following aspects: a) add support for zero-copy memory configuration which
can eliminate the overhead of memory copies, and b) add support for a method
to reduce or eliminate the kernel launch overhead, such as persistent threads.

Acknowledgments
This work was partially supported by the European Commission’s Horizon 2020
programme under the UP2DATE project (grant agreement 871465), by the Span-
ish Ministry of Economy and Competitiveness under grants PID2019-107255GB
and FJCI-2017-34095 and the HiPEAC Network of Excellence.

References

1. Alcaide, S., Kosmidis, L., Tabani, H., Hernandez, C., Abella, J., Cazorla, F.J.:
Safety-related Challenges and Opportunities for GPUs in the Automotive Domain.
IEEE Micro 38(6), 46–54 (2018)

2. Amert, T., Otterness, N., Yang, M., Anderson, J.H., Donelson Smith, F.: GPU
Scheduling on the NVIDIA TX2: Hidden Details Revealed. In: Real-Time Systems
Symposium, RTSS. vol. 2018-January, pp. 104–115 (2017)

3. Berezovskyi, K. et al.: Makespan computation for GPU threads running on a single
streaming multiprocessor. In: Euromicro Conference on Real-Time Systems (2012)

4. Calderón, A.J., Kosmidis, L., Nicolás, C.F., Cazorla, F.J., Onaindia, P.: GMAI:
Understanding and Exploiting the Internals of GPU Resource Allocation in Critical
Systems. ACM Transactions on Embedded Computing Systems 19(5) (2020)

5. Capodieci, N., Cavicchioli, R., Bertogna, M., Paramakuru, A.: Deadline-Based
Scheduling for GPU with Preemption Support. In: Proceedings - Real-Time Sys-
tems Symposium, RTSS. vol. 2018-December, pp. 119–130 (2019)

6. Cavicchioli, R. et al.: Memory Interference Characterization between CPU Cores
and Integrated GPUs in Mixed-criticality Platforms. In: IEEE International Con-
ference on Emerging Technologies and Factory Automation, ETFA. pp. 1–10 (2017)

7. Cavicchioli,R. et al.: Novel Methodologies for Predictable CPU-to-GPU Command
Offloading. In: Euromicro Conference on Real-Time Systems, ECRTS 2019 (2019)

8. Elliott, G.A., Ward, B.C., Anderson, J.H.: Gpusync: A framework for real-time gpu
management. In: Proceedings - Real-Time Systems Symposium. pp. 33–44 (2013)

9. Gupta, K. et al.: A Study of Persistent Threads Style GPU Programming for
GPGPU Workloads. In: 2012 Innovative Parallel Computing, InPar (2012)

10. Kim, H.D., Perry, A.T., Ansell, P.J.: A Review of Distributed Electric Propul-
sion Concepts for Air Vehicle Technology. In: 2018 AIAA/IEEE Electric Aircraft
Technologies Symposium, EATS 2018 (2018)

11. Saidi, S., Steinhorst, S., Hamann, A., Ziegenbein, D., Wolf, M.: Future Automotive
Systems Design: Research Challenges and Opportunities. In: International Confer-
ence on Hardware/Software Codesign and System Synthesis, CODES+ISSS (2018)

12. Schmollgruber, P., Döll, C., Hermetz, J., Liaboeuf, R., Ridel, M., Cafarelli, I.,
Atinault, O., François, C., Paluch, B.: Multidisciplinary Exploration of DRAGON:
an ONERA Hybrid Electric Distributed Propulsion Concept. In: AIAA Scitech
2019 Forum (2019)

13. Trompouki, M.M., Kosmidis, L.: BRASIL: A High-integrity GPGPU Toolchain
for Automotive Systems. In: Proceedings - 2019 IEEE International Conference on
Computer Design, ICCD 2019. pp. 660–663 (2019)

14. Yang, M., Otterness, N., Amert, T., Bakita, J., Anderson, J.H., Smith, F.D.: Avoid-
ing Pitfalls When Using NVIDIA GPUs for Real-time Tasks in Autonomous Sys-
tems. In: Euromicro Conference on Real-Time Systems, ECRTS (2018)


