
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2021.3066529

Auto-tuned event-based perception
scheme for intrusion monitoring with
UAS
JUAN PABLO RODRíGUEZ-GÓMEZ1, AUGUSTO GÓMEZ EGUíLUZ1, JOSÉ RAMIRO
MARTíNEZ-DE DIOS1, ANIBAL OLLERO1, (Fellow, IEEE)
1GRVC Robotics laboratory, University of Seville, Seville 41092, Spain (e-mail:{jrodriguezg, ageguiluz, jdedios, aollero}@us.es)

Corresponding author: Juan Pablo Rodríguez-Gómez (e-mail: jrodriguezg@us.es).

This work was supported by the European Research Council as part of GRIFFIN ERC Advanced Grant 2017 (Action 788247), the
European Commission as part of AERIAL-CORE project (Grant H2020-2019-871479). Partial funding has been received from project
ARM-EXTEND funded by the Spanish RETOS R&D Program by the Ministry of Science and Innovation under Grant DPI2017-89790-R.

ABSTRACT This paper presents an asynchronous event-based scheme for automatic intrusion monitoring
using Unmanned Aerial Systems (UAS). Event cameras are neuromorphic sensors that capture the
illumination changes in the camera pixels with high temporal resolution and dynamic range. In contrast
to conventional frame-based cameras, they are naturally robust against motion blur and lighting conditions,
which make them ideal for outdoor aerial robot applications. The presented scheme includes two main
perception components. First, an asynchronous event-based processing system efficiently detects intrusions
by combining several asynchronous event-based algorithms that exploit the advantages of the sequential
nature of the event stream. The second is an off-line training mechanism that adjusts the parameters of the
event-based algorithms to a particular surveillance scenario and mission. The proposed perception system
was implemented in ROS for on-line execution on board UAS, integrated in an autonomous aerial robot
architecture, and extensively validated in challenging scenarios with a wide variety of lighting conditions,
including day and night experiments in pitch dark conditions.

INDEX TERMS Event-based vision, intrusion detection, surveillance, UAV.

I. INTRODUCTION

UNMANNED Aerial Systems (UAS) have attracted high
interest in large-area surveillance and monitoring ap-

plications. Although visual cameras are the most commonly
adopted sensors for automatic vision-based surveillance and
intrusion detection using UAS, they face relevant problems
in large, complex, and unstructured scenarios. Robustness
to lighting conditions is a critical issue in automatic vision
systems. It is often addressed by combining images from
different onboard cameras (e.g., visual and infrared cameras),
which affects the UAS payload, electrical consumption, and
computational needs, reducing the UAS flight time. Motion
blur is also a severe problem in highly dynamic or poorly-
illuminated scenarios.

This paper uses event cameras for UAS-based surveillance.
Event cameras capture visual information in the form of
events representing changes of intensity in the camera pixels,
which are triggered asynchronously with a high temporal res-
olution (order of µs). Event cameras have very wide dynamic

range, suitable for robust operation under a wide variety
of lighting conditions. They are insensitive to motion blur,
and have low power consumption. Several commercial event
camera models can also provide visual images, enabling
combined event-visual processing, see e.g., [1], [2], [3], or
[4], among others. A good number of successful event-based
techniques have been proposed in the last years, [5]. Most
of them group the received events in frames called event im-
ages. Event images enable designing elaborated frame-based
processing schemes, but they cannot always fully exploit the
sequential and asynchronous capabilities of the event cam-
eras. Besides, event images could lead to an overestimation
of the scene representation, a similar phenomenon to motion
blur in traditional images [6].

Similarly to visual-based processing, event-based tech-
niques require adapting its parameters to the conditions of
the addressed problem. Most existing event-based techniques
adopt empirical or manual parameter selection, which often
leads to inefficient long trial-and-error iterative processes. To

VOLUME 4, 2016 1



Juan Pablo Rodríguez-Gómez et al.: Preparation of Papers for IEEE ACCESS

FIGURE 1: Results of the proposed event-based intrusion
monitoring system in UAS-based experiments: visual images
(left) and events (right).

the best of the author’s knowledge no technique to automatize
the selection/tuning of the parameters of event-based vision
system has still been reported.

This paper presents an asynchronous event-based process-
ing scheme for intrusion monitoring with UAS. It includes
two main perception components. First, an asynchronous
event-based processing system detects intrusions on-line us-
ing only the events. It performs event-by-event processing
in all the algorithms involved resulting in a fully asyn-
chronous processing system that exploits the advantages of
event cameras. It was carefully designed and endowed with
mechanisms to reduce the computational cost in order to
enable on-line onboard execution. The second block is an
off-line training mechanism that adjusts the event-processing
parameters to a particular surveillance scenario and mission
exploiting the combined processing of the event stream and
visual images, both provided by a DAVIS346 event camera.
The proposed scheme and techniques have been implemented
in ROS, integrated within an autonomous UAS waypoint-
based navigation system, and validated in UAS surveillance
missions in challenging scenarios, see Figure 1.

This paper is inspired by some ideas sketched in [7].
The main improvements over [7] are: (i) a new auto-tuning
system for adapting the parameters of the intrusion moni-
toring scheme to a particular surveillance scenario; (ii) ro-
bustness improvement in the event-based corner detection,
tracking, and clustering algorithms of the intrusion monitor-
ing scheme; (iii) development, integration, and validation of
the proposed scheme in an aerial robot architecture for au-
tonomous surveillance; and (iv) new experimental validation
in challenging scenarios and robustness evaluation against
lighting conditions.

The rest of the paper is organized as follows. Section
II briefly summarizes the main works directly related to
the addressed topics. The proposed scheme is presented in
Section III. The asynchronous event-based processing system
is described in Section IV. The functionality for adapting the
event-based processing to the particular surveillance scenario
and mission is summarized in Section V. Section VI presents
the experimental validation and robustness analyses. Section
VII concludes the paper and highlights future research steps.

II. STATE OF THE ART
Automatic UAS-based surveillance and intrusion monitoring
using visual sensors are intensely-researched topics where
many methods and systems have been developed focusing
on perception, planning, or multi-robot coordination, among
others. Many of them adopt visual cameras as main sensors
and suffer from the limitations of traditional cameras, such as
lighting conditions and motion blur, which significantly con-
strain their applicability. To address the sensitivity to lighting
conditions, other methods use combinations of several cam-
eras, such as visual and infrared cameras. Besides increasing
the payload, energy consumption, and computational power,
some of these additional cameras (e.g., infrared cameras)
are particularly sensitive to motion blur, which hamper their
effectiveness in dynamic environments.

Event cameras have attracted increasing interest in the
robotics and computer vision communities [5]. Recently,
event cameras have been proposed for intrusion monitoring
and detection of humans. The work in [8] detected pedes-
trians with a static DAVIS camera by fusing the confidence
maps of two YOLO V3 classifiers, one for image frames
and, the other, for event images. Their method improved
processing rate and detection precision over using only visual
images. Two methods for face detection using event cameras
were presented in [9]. The authors compared the performance
when using the image frames from a visual camera, image
frames reconstructed from events, and event images captured
every 20 ms. Although the best precision was obtained with
the visual camera, the results show the viability of using only
events for face detection.

Using event cameras on board robots requires the develop-
ment of methods to deal with the additional event generation
due to the camera motion. In [10], camera rotation was
estimated through a contrast maximization process using
as reference event images with polarity. A clustering-based
method was proposed in [11] to produce event-compensated
images by estimating the motion parameters of each clus-
ter using an alignment maximization approach. Work [12]
used neural networks for independent motion detection by
estimating camera ego-motion. Recently, the work in [13]
aligned curves described by event trajectories with time-
varying motion parameters to perform motion compensation.
However, none of the above methods were evaluated on
board mobile robots and, therefore, they did not deal with
the issues caused by the vibrations and movement of the
robot. Event cameras have been recently employed on board

2 VOLUME 4, 2016



Juan Pablo Rodríguez-Gómez et al.: Preparation of Papers for IEEE ACCESS

UAS for different perception problems. A model of the
affine transformation between two consecutive event images
was used in [14] to compensate for the global motion of a
Micro Aerial Vehicle (MAV), and thus, the resulting events
were assumed to represent the moving objects. The method
described in [6] included both downward-facing and front-
facing event cameras to perform obstacle avoidance on board
UAS. The events were accumulated in event images for ob-
stacle detection using shallow deep neural networks for event
noise removal, homography computation, and segmentation
through flow estimation. Then, a controller guided the UAS
towards a safe direction opposite to the motion of the incom-
ing obstacle. Recently, the work in [15] employed batches of
events collected each 10 ms to perform ego-motion compen-
sation for obstacle detection using a stereo event camera set-
up mounted in a quadrotor. The UAS performed a reactive
avoidance strategy based on potential fields describing ob-
stacles as geometric primitives. Additional progress has been
done towards the use of event cameras for UAS control. In
[16] an autonomous MAV landing approach based on the
optical flow of event images obtained from a downwards-
pointing DVS sensor was presented exhibiting high accuracy
at high landing speeds. Further, the work in [17] exploited
the µs resolution of event cameras to control the attitude of a
dual-copter platform.

All the aforementioned works process event images gener-
ated by accumulating events. In general, event images enable
designing elaborated processing schemes similar to those
from traditional computer vision, although on the other hand,
sacrifice some of the advantages of event camera µs resolu-
tion. In fact, some works, e.g., [6], include extra mechanisms
for reducing motion blur originated in event images. Due to
its higher computational demands, asynchronous event-by-
event processing has been mainly used for low-level process-
ing techniques. The work in [18] proposed a Harris-inspired
asynchronous corner detection based on events. The authors
in [19] presented an asynchronous method to detect corners
by checking the values of a Surface of Active Events (SAE)
[20] for the coordinates corresponding to two circles around
the last event coordinate. A variation of this method was
proposed [21] to consider arcs greater than 180°, enhance
detection speed, and track the corners using graph trees.
Their tracking method was extended in [22] to deal with
jittery effects from multiple corner detection. A mean shift
method adaptation for event clustering was presented in [23].
Additionally, the authors proposed a cluster tracker using
Bayesian filtering. Despite their proposed approach being
robust to different cluster shapes and velocities, it was only
suitable for static backgrounds (i.e., fixed camera). An asyn-
chronous visual inertial odometry solution was presented
in [24]. Although asynchronous event processing methods
provide reliable solutions to localization, feature detection,
tracking, and clustering, their employment in robots navigat-
ing in realistic, complex, and unstructured scenarios is still
an under-researched area. In a recent work [25], a hybrid
approach (i.e., event-by-event and event images) was devel-

oped for asynchronous line tracking that was used in a visual
servoing scheme to perform time-to-contact maneuvers using
a multirotor aerial platform.

The performance of some of the previous event-based
methods, such as [18], [21], and [15], depend on fine-
tuning their algorithm parameters. Meta-heuristic optimiza-
tion strategies such as Simulated Annealing (SA) have been
used for parameter tuning in computer vision and robotic
applications, such as image segmentation [26], motion blur
removal [27], feature selection [28], and robot path planning
[29]. However, the parameter tuning of event-based vision
algorithms is typically performed empirically. In this work,
SA is used in a semi-supervised training system for off-
line tuning the parameters of the event-based processing
algorithms. To the best of the author’s knowledge, it is the
first fine-tuning system for an event-based vision method.

This paper presents an asynchronous event-based process-
ing scheme for UAS-based intrusion monitoring. Its main
contributions are:

• a fully asynchronous event-based intrusion detection
system for on-line execution on board a UAS;

• an off-line training system for fine-tuning the event-
processing parameters to a particular surveillance sce-
nario and mission;

• the proposed scheme has been integrated within an
autonomous UAS navigation architecture and validated
in realistic challenging scenarios.

III. INTRUSION MONITORING SYSTEM FOR UAS
The objective of this work is to develop a full scheme for
autonomous surveillance and intruder monitoring in realistic,
complex, and unstructured outdoor scenarios using UAS
equipped with event cameras. The UAS performs periodic
or on-demand surveillance tours. The scenario can change
from one tour to another, but in the same tour it is assumed
mostly static. This is the case in many security and inspection
applications, e.g., industry, building perimeter, or frontier
surveillance, among others. The intrusion monitoring scheme
should be robust to lighting conditions and be operative
during day and night. Besides, it should be robust to motion
blur effects, which can be particularly severe in dark light-
ing conditions. Also, it should be easily particularized and
adapted to the conditions of the specific scenario.

The proposed scheme relies on event cameras, which
provide high dynamic range and temporal resolution –hence,
high robustness against lighting conditions and motion blur.
They have low power consumption and are small. Hence,
they are suitable for integration on board small UAS. Besides,
their high dynamic range make them suitable for day/night
operation, enabling the use of only one camera instead of
configurations with one camera for day vision and another
for night vision. Also, their insensitivity to motion blur make
event cameras robust to the potential mechanical vibrations
occurring during UAS flight.

The main functional modules of the proposed scheme are
summarized in Figure 2. The Navigation system includes

VOLUME 4, 2016 3



Juan Pablo Rodríguez-Gómez et al.: Preparation of Papers for IEEE ACCESS

FIGURE 2: Main functional modules of the proposed asynchronous event-based scheme.

modules for trajectory planning, waypoint following, and 6-
DoF localization. The trajectory planning was performed us-
ing the Lazy Theta* planner described in [30]. 6-DOF local-
ization was performed fusing RTK GPS and IMU measure-
ments. This navigation system is not a main contribution of
the paper, and for brevity, its detailed description is omitted.
The UAS is assumed to be equipped with a DAVIS camera,
which includes an event-based dynamic vision sensor (DVS)
and an image-based active pixel sensor (APS). During the
surveillance mission execution, the events from the DVS
sensor are processed on-line and on board by the Intrusion
Monitoring (IM), which implements an asynchronous event-
based processing scheme for intrusion detection. The events
generated by the DVS sensor are packaged using ASAP [31],
which synchronizes event packaging and event processing by
adjusting the number of events sent for processing such that
the provided events are processed as soon as possible while
avoiding processing overflow. During the training stage, the
parameters of IM are off-line adapted for a given surveillance
scenario by the Auto-tuning system, which implements an
optimization method based on Simulated Annealing. The
method maximizes the similarity between the results pro-
vided by IM and a ground truth reference obtained by an
automatic object detector (YOLO V3 [32] in the reported ex-
periments) fed with the visual images from the DAVIS APS
sensor. Of course, the proposed scheme could be extended
to event cameras with no APS sensor by using an additional
onboard visual camera.

The proposed system operates similarly to a “robotic se-
curity guard”’. The UAS, periodically or on demand, au-
tonomously executes surveillance tours performing on-line
intrusion monitoring, reporting, and logging. The robot tra-
jectories are defined by sequences of waypoints selected for
their good visibility of the scenario. When the robot reaches
one waypoint it stays in steady flight (hovering) while per-
forming intrusion monitoring using IM. Even during hov-
ering, the static scenario background originates events due

to residual UAS motions and vibrations, requiring specific
mechanisms to distinguish between events created by moving
targets and those created by the static background. If no intru-
sion is detected at that waypoint, the robot keeps its trajectory
to the next waypoint. If an intrusion is detected, it is reported
to the Ground Station. Depending on the surveillance poli-
cies adopted, the robot can continue the surveillance tour
to avoid compromising the rest of the scenario or, it can
keep monitoring the zone with the detected intrusion. The
surveillance missions are performed fully autonomously and
are executed on-line and on board. The adopted architecture
could also support coordination within multi-robot schemes
through module Communications.

The setting of IM is dependent on the complexity, type,
and object-density of the scenario, which in a dynamic en-
vironment can be different from one surveillance mission
to another. To cope with this, all data (events and images)
gathered in each tour are logged and off-line processed after
the tour: the images are processed by Object Detector and,
the events, by IM. The cases where Object Detector and IM
disagree are submitted to a human operator for decision. This
procedure enables estimating the performance of IM with the
current parameters and, if necessary, a new Auto-tuning is
triggered updating the training data set with the data obtained
in the last tour. The execution of the training stage is off-line,
on the Ground Station, and autonomous except for the cases
in which the processing of the training data with the image-
based Object Detector and event-based IM disagree.

IV. ASYNCHRONOUS EVENT-BASED INTRUSION
MONITORING SYSTEM
Event cameras asynchronously generate events with µs res-
olution. Each event is described by e = (t, u, v, p), where
(u, v) are the pixel coordinates, p is the event polarity (i.e.,
either 1 or 0), and t is the timestamp in which the event
was triggered. Events are triggered by changes of intensity
in the scene, which in general are caused by: (i) camera

4 VOLUME 4, 2016



Juan Pablo Rodríguez-Gómez et al.: Preparation of Papers for IEEE ACCESS

motion producing changes of intensity from static objects
in the scene, (ii) sensor inherent noise or due to manufac-
turing irregularities, and (iii) intensity changes from moving
objects. Intruders in motion originate nearby corners in the
event stream, e.g., caused by limbs in human and animal in-
truders, or by other robots. Hence, intruders create groups of
events close to corners with globally consistent motion in the
scenario. Intrusion Monitoring (IM) includes asynchronous
event-by-event processing techniques for: corner detection,
feature tracking, clustering, and also mechanisms to distin-
guish events corresponding to moving objects from those
originated by the scene background. IM receives as input
the adjusted event stream from ASAP [31], and provides as
output the centroid of the detected intruders.

The operation of IM is as follows. The Corner Detector
module implements the FA-Harris asynchronous event-based
corner detector [33], selected due to its good performance in
terms of false positive rate and computational cost when com-
pared to others such as [19] and [21]. Both capabilities are
crucial for real time applications in cluttered environments.
Next, the corners with consistent motion are asynchronously
tracked by the Feature Tracking module. Although some
asynchronous corner trackers have been proposed [22], we
preferred to develop a method adapted to the intrusion mon-
itoring problem with improved candidate search and evalu-
ation that trades between computational cost and accuracy,
see Section IV-A. Even though corner tracks are useful to
detect the intruder, they do not always provide enough infor-
mation. The proposed Clustering algorithm creates clusters
with the tracked features and nearby events with consistent
motion, see Section IV-B. Besides, IM includes mechanisms
to prevent processing events of static background caused
by the camera motion. The proposed method models the
spatio-temporal information in the event stream through the
Attention Priority Map (APM), see Section IV-C, to define
regions on the scene that trigger more events within a variable
time window. Hence, regions with moving objects cause
higher values in APM. Only the events which value in APM
are higher than threshold ω are processed by the clustering
algorithm. Only the clusters with sufficient number of events
and corners are considered to be caused by an intruder. The
rest are discarded. Finally, the bounding boxes and centroids
of the resulting clusters are extracted and tracked. Algorithm

Algorithm 1 Asynchronous event-based intrusion monitor-
ing

1: procedure ASYNCHRONOUS EVENT-BASED INTRUSION MONITORING(e)
2: isCorner ←− CornerDetection(e) � Asynchronous corner detection.
3: if isCorner then
4: FeatureTracking(e) � Asynchronous feature tracking.
5: end if
6: if not APMFiltered(e) then
7: µc ←−Clustering(e) � Asynchornous clustering.
8: CentroidTracking(µc) � Cluster centroid tracking.
9: end if

10: PackageProcessingAnalysis() � Feedback to ASAP.
11: return µc � Return tracked centroids.
12: end procedure

(a) (b)

(c) (d)

FIGURE 3: Results in different steps in the execution of IM:
a) Feature Tracking, b) APM, c) Clustering, and d) Centroid
Tracking. To facilitate visualization in a), c), and d), the
obtained results are shown in green on the visual image
provided by the APS, also showing in red and blue the events
provided by the DVS during an equivalent time frame

1 summarizes the operation of IM. Figure 3 shows experi-
mental results from the execution of the above modules.

Besides, IM includes several mechanisms to reduce its
computational cost. One of them is the ASAP module [31],
which adjusts the number of events provided to IM such
that events are processed as soon as possible but avoiding
processing overflow. The output of IM is continuously ana-
lyzed by ASAP (see line 10 in Algorithm 1) to enable on-
line event-by-event processing. Besides, only events which
priority in the APM is higher than a threshold ω are processed
by the clustering algorithm. These mechanisms enable a large
reduction of the computational cost without significantly
reducing accuracy as is shown in Section VI.

The notation adopted in the IM modules is summarized
in Table 1. Feature Tracking, Clustering, and APM employ
similar symbols to represent buffers, lists, and timestamps,
using different superindexes to distinguish between modules.

A. ASYNCHRONOUS EVENT-BASED FEATURE
TRACKING
Algorithm 2 summarizes the asynchronous event-based fea-
ture tracker used in IM. The proposed method tracks features
adopting an event-by-event asynchronous approach. Each
event feature f = {t, u, v} is represented by its image
coordinates x = (u, v) and the timestamp t of the event
that generated the feature. In general events are sparsely
distributed on the image, which hampers their tracking. To
cope with this, our method makes use of a Surface of Active

VOLUME 4, 2016 5



Juan Pablo Rodríguez-Gómez et al.: Preparation of Papers for IEEE ACCESS

Feature Tracking Clustering
Symbol Description Symbol Description
S SAeF. c Cluster.
ΘT List of features. ΘC List of clusters.
f Feature. µc Centroid of cluster c.
f̂i Feature track i. µ̂ Cluster moving average.
LT
f Feature track candidate list of feature f. LC

e Cluster candidate list for event e.
ν Tracker proximity threshold. r Clustering proximity threshold.
BT Event tracking buffer of size nT . BC Event clustering buffer of size nC .
τT Oldest timestamp in BT . τC Oldest timestamp in BC .

LE
c List of events associated to cluster c.

APM κ Cluster proximity sampling number.
Ω Attention Priority Map.
BA Event buffer for APM of size nA.
τA Oldest timestamp in BA.
l Update window size.
ω Filtering threshold.

TABLE 1: Notation used in Feature Tracking, Clustering, and APM.

event Features (SAeF) that describes the spatio-temporal evo-
lution of features over time. The SAeF, denoted as S ∈ R2,
is generated by spatially accumulating the last nT detected
features instead of using a fixed time window. The list of
features represented on S is buffered in BT . Hence, the
detection of a new feature triggers the update of S and BT

–adding the new feature and removing the oldest. As a result,
S keeps a time-varying representation that adapts to the scene
and camera motion. For instance, with fast camera motions
the resulting S contains features detected in smaller time
windows than with slow camera motions.

The input features are filtered to cancel noisy samples. A
feature is considered as candidate for tracking if the number
of neighboring features in S is greater than a threshold ν.
Feature candidates are later used to either update or create
new feature tracks. Hence, only features with frequent spatial
occurrence are tracked. The set of feature tracks is stored in
the list ΘT = [̂f1, . . . f̂n], where f̂i is the i-th feature track.
The association between a new feature candidate f and exist-
ing feature tracks is as follows. Each feature candidate creates
a list LT

f with the tracks it can be potentially associated to. f̂i
is added to LT

f if its distance to f , D(f̂i, f), is lower than
a threshold d, which is typically small (d = 5 pixels in
all the performed experiments) to avoid wrong associations
with nearby objects in the scene. IfLT

f has one only element
f , that track is updated with f . If LT

f has more than one
element, there exist several very close tracks –very likely
redundant due to the low value of d adopted. In this case older

Algorithm 2 Asynchronous event-based feature tracking
1: procedure ASYNCHRONOUS EVENT-BASED TRACKING(f , ν)
2: τT ←− UpdateSurfaceOfActiveFeatures(f ,BT ,S)
3: if isCandidate(f ,S, ν) then
4: LT

f ←− SearchMatch(ΘT ,D,f ) � Find matches in ΘT .
5: if LT

f = ∅ then
6: ΘT ←− Append(f ) � Add a new feature to ΘT .
7: else
8: f̂o ←− GetOldestTrack(LT

f )
9: ΘT ←− Update(f ,̂fo) � Update f̂o by f in ΘT .

10: end if
11: end if
12: ΘT ←−CleanTracker(LT

f , τT ) � Remove old features.
13: return ΘT � Return list of tracks.
14: end procedure

tracks are prioritized since they represent more temporally
consistent –and relevant for tracking– features over time.
Hence, f is associated to the oldest track inLT

f , denoted as f̂o.
The remaining tracks in LT

f are removed. Finally, if LT
f = ∅,

a new track is created and initialized with f . Each time a
feature track is updated, its timestamp is also updated. If
the timestamp of a feature track is older than τT , the track
is removed. τT is selected as the timestamp of the oldest
feature in BT , enabling a time-varying forgetting reference
that adapts to the scene and camera motion. It is preferred
over a constant forgetting reference, which effectiveness is
compromised by the camera motion, as reported in [34].

All the parameters of the tracker are set with fixed val-
ues except nT , the size of buffer BT . As said above, d,
the minimum feature-track association distance, is set to 5
as a trade-off between avoiding wrong associations from
close tracks and dealing with the lack of continuity in the
occurrence of the input features. Differently, the size of BT

should be chosen according to the camera, scenario camera
motion and complexity. Static scenarios with few objects and
slow camera motion can be represented with small buffers
as few events are triggered under these conditions. However,
cluttered scenes with dynamic objects require larger buffers.
The setting of nT is performed by the auto-tuning method
described in Section V.

B. INTRUDER SEGMENTATION USING
ASYNCHRONOUS EVENT-BASED CLUSTERING
An asynchronous event-based clustering is used to group
the features and events caused by intruders. It employs the
spatio-temporal proximity between events as grouping crite-
ria, not requiring a-priori knowledge of the scene geometry
or the number of objects in the scene. The computational
capabilities on board an aerial robot is often limited. Unlike
other clustering methods that aim for accuracy over effi-
ciency, such as [23], our method includes a mechanism to
balance efficiency and accuracy in order to avoid processing
bottlenecks while keeping accuracy as high as possible.

The proposed clustering method is shown in Algorithm 3.
Similarly to the tracker in Section IV-A, it keeps a buffer BC

with the nC most recent events. BC is updated with each new

6 VOLUME 4, 2016



Juan Pablo Rodríguez-Gómez et al.: Preparation of Papers for IEEE ACCESS

event, adding the new event and removing the oldest. Also,
τC is the timestamp of the oldest event in BC . It is used
as a dynamic time horizon enhancing robustness to camera
or scene motion. A cluster c is defined by: its centroid µc,
a weighted moving average µ̂c that is used for event-cluster
association, and a list LE

c of the events in BC assigned to
the cluster, i.e., the events assigned to c which timestamp is
greater than τC . LE

c is periodically updated by removing the
events with timestamp lower that τC . Cluster c is deleted if
all its assigned events are removed, i.e., if LE

c = ∅.
Event-cluster assignation is performed using proximity

criteria. In general, events caused by an object are consis-
tently triggered during shorts periods of time at specific parts
of its contour. To capture this, µ̂c is a weighted moving
average that represents the centroid of the object contour.
Every time a new event e is assigned to c, µ̂c is updated
with µ̂c =

�
αx + (1 − α)µ̂c

�
/2, where x = (u, v) are the

coordinates of e and α ∈ [0, 1] is the weighting parameter
typically selected as α > 0.5 to give more weight to the new
events. Hence, the proximity of a new event e to cluster c is
evaluated using the distances from the event to the weighted
average µ̂c and to κ random samples drawn from LE

c . Cluster
c is considered close to e if any of these distances is below
a threshold r. The Manhattan distance was adopted as it is
more efficient than the Euclidean distance and both obtained
similar performance in the conducted experiments.

Each new event creates a list LC
e with the clusters it can be

potentially assigned to. After all clusters have been evaluated,
three cases are possible. If LC

e contains one only cluster, e is
added to the cluster. If LC

e contains more than one cluster,
the clusters are merged into one and e is added to the new
cluster. If LC

e = ∅, a new cluster is created with the event.
Adding event e to a cluster c with nc events involves: adding
e to LE

c , and updating µ̂c (as described above) and µc as
µc = (ncµc + x)/(nc + 1). Similarly, when an old event is
removed from BC , it should be removed from the cluster it
is assigned to.

The number of samples κ in the cluster contour used
to evaluate event-cluster proximity establishes a trade-off

Algorithm 3 Asynchronous event-based clustering
1: procedure ASYNCHRONOUS EVENT-BASED CLUSTERING(e, r,κ)
2: τC ←− Update(e,BC ) � Update Event Buffer

3: for each c ∈ ΘC do
4: LE

c ←− Forget(c, τC ) � Remove old points from cluster.
5: if Size(LE

c ) = 0 then
6: ΘC ←− Remove(c, ΘC ) � Remove empty cluster.
7: continue
8: end if
9: LC

e ←− GetProximity(e,c,r,κ)
10: end for
11: if Size(LC

e ) = 0 then
12: ΘC ←− CreateNew(e, ΘC ) � Create new cluster.
13: else if Size(LC

e ) = 1 then
14: ΘC ←− AddTo(ΘC , LC

e , e) � Add event to cluster.
15: else
16: ΘC ←− MergeAndAdd(e, LC

e ) � Merge clusters & add event.
17: end if
18: return µ � Return cluster centroid.
19: end procedure

between computational cost and clustering accuracy. Hence,
it should be chosen considering the limitations of the pro-
cessing platform. In all experiments, κ was set to 100, which
allowed on-line execution while providing good clustering
performance. On the other hand, the size of buffer BC and the
radius r in event-cluster proximity evaluation are dependent
on the scene and environment complexity. In dense scenes,
small values of r are required to prevent wrong associations.
In sparse scenes, high values of r will enhance the algorithm
performance as the proximity to the cluster is found without
evaluating all κ samples. Also, the size of BC should be
chosen according to the scene complexity. Simple scenes
containing only one object on a uniform background can be
represented with small buffers. Conversely, complex scenes
require large buffers to accumulate the events corresponding
to the scene details. The setting of r and size of BC for
the specific scenario is performed by the auto-tuning method
described in Section V.

C. ATTENTION FOCUS FOR ASYNCHRONOUS
EVENT-BASED VISION
State-of-the-art event-based surveillance methods use static
cameras [8], [9] assuming that the static background does
not generate events. Such simplification cannot be assumed
in case of event cameras on board UAS: even the residual
UAS motions and vibrations during hovering can originate
significant number of events. The proposed system requires
methods capable of differentiating the events caused by static
objects due to the robot motion from those originated by
moving objects. To deal with that, the proposed method
differentiates between regions with different event spatio-
temporal density, assuming that, even with non-static cam-
eras, moving objects cause significantly more events than
the scene background. It is based on building a map that
represents the regions on the scene that trigger more events
within a variable time window, i.e., regions more likely to
contain moving objects. Inspired by neuroscience, this map is
denoted Attention Priority Map (APM). The APM, Ω ∈ R2,
has the same resolution as the event camera, and is also
updated asynchronously event by event. With each incoming
event, Ω is updated by increasing the values in a l-sized
window centered at the event coordinates x = (u, v) as
follows:

Ωij = Ωij + l −D(x,y) + 1, (1)

where D(·) is the Manhattan distance, y = (i, j), i ∈ [u −
l−1
2 , u+ l−1

2 ], and j ∈ [v − l−1
2 , v + l−1

2 ].
Ω is computed only with the last nA events received. These

events are temporarily stored in a buffer BA, where τA de-
notes the oldest timestamp in BA. Ω is kept updated: events
that become old are removed from BA and from Ω similarly
as in Equation (1). Ω is kept normalized within the range
[0, 1]. An incoming event at coordinates (u, v) is considered
to attract attention for intruder detection if Ω(u, v) is greater
or equal than a threshold ω ∈ [0, 1]. Figure 4 shows an event

VOLUME 4, 2016 7



Juan Pablo Rodríguez-Gómez et al.: Preparation of Papers for IEEE ACCESS

FIGURE 4: Example of the operation of APM: left) resulting
Ω, center) events filtered by APM, and right) corresponding
visual image.

image and the corresponding Ω in an example with a person
moving in the scene. Figure 4-left shows the resulting Ω with
the areas of highest values represented in white.

The performance of APM depends on three parameters:
ω, which determines the sensitivity threshold in Ω to pay
attention to a moving object; l, the size of the window in
the building of Ω; and nA, the size of buffer BA. The
type and complexity of the scene impact on the spatio-
temporal density of the generated events and hence, on the
selection of values for ω, l, and nA. For instance, sparse
and simple scenes can be represented using a low-size buffer
BA (i.e., low values of nA), while complex scenes require
larger buffers to support the scene complexity. Besides, using
high-size buffers in sparse scenes can result in poor rep-
resentation of the scene dynamics and unrealistically-large
areas of attention. Similar dependencies with the scene type
and complexity can be found for ω and l. Manually tuning
these parameters for a given problem is not straightforward:
they are adjusted automatically by the proposed auto-tuning
system presented in Section V.

V. INTRUSION MONITORING AUTO-TUNING
A suitable tuning of parameters of Machine Learning (ML)
and computer vision algorithms is crucial to ensure the de-
sired performance, and in some cases, to the reduce compu-
tational cost. Empirical or manual parameter selection leads
to long inefficient trial-and-error iterative processes that be-
come more complex as the number of parameters increases.

This section proposes a method to tune the parameters of
IM. Only the parameters that are dependent on the surveil-
lance scenario and mission conditions, such as the scene
complexity and sparseness/density, or the size of the objects
in the scene, are tuned. Non-scene-dependent parameters,
such as κ, ν, d, or α, were set with the same values in
all the conducted experiments as described in previous sec-
tions. Automatically tuning non-scene-dependent parameters
would unnecessarily increase the size of the search space,
hampering and adding computational cost to the optimization
process. The parameters that are tuned are: nT , ω, l, nA, r,
and nC . Their dependencies with the scenario were discussed
in Section IV. Additionally, the threshold λ is considered for
tuning. λ is defined as the minimum number of events per
cluster to consider it as an intrusion detection. Event rate
increases with faster camera motions and with lower object-

camera distances. Hence, choosing an adequate value of λ
depends on the surveillance scenario and mission. The pa-
rameters to be automatically tuned are grouped in parameter
set v = [nT ,ω, l, nA, r, nC ,λ], see Table 2. The search space
of each parameter is also shown in Table 2.

Parameter Module Description Search
space

nT Feature
tracking

Size of buffer BT [50, 200]

ω APM Sensitivity threshold to pay
attention to a moving object

[0, 1]

l APM Size of the window used in
the building of Ω

[5, 40]

nA APM Size of buffer BA [50, 500]
r Clustering Radius in event-cluster

proximity evaluation
[1, 50]

nC Clustering Size of buffer BC [20, 200]
λ Clustering Minimum number of events

per cluster to consider it an
intrusion

[0, 100]

TABLE 2: Parameters of IM that are auto-tuned and their
search space.

A. SIMULATED ANNEALING
Simulated Annealing (SA) [35] was adopted for parameter
auto-tuning. SA is a well-known probability-based meta-
heuristic algorithm that approximates the global optimum for
the set of parameters in a large search space. Unlike gradient-
based optimization methods, SA provides natural robustness
against local minima and is suitable for cases when the
function to be optimized is unknown but can be evaluated, see
e.g., [29], as in the described problem. Also, besides finding
a precise optimum if executed during enough time steps [36],
SA is suitable in cases where finding an approximation to the
global optimum in a limited time is preferable to finding a
very precise optimum in a larger possibly-unfeasible time.
This is the case since if necessary, IM parameters should
be re-trained between two consecutive surveillance tours.
Finally, it should be noted that the proposed scheme for
parameter auto-tuning is flexible and, although out of the
scope of the paper, other black-box optimization methods
could be used.

Along the iterations, SA uses the current solution v̂ as
reference to explore other solutions. In the early iterations,
it allows the exploration of distant points in the search space
by accepting high probability solutions that do not improve
the current solution. At later iterations, it explores at shorter
distances in the search space only accepting solutions that
improve the current solution. At each iteration i, SA adds a
perturbation Δv to the current solution v̂ and evaluates the
cost function J(·) of the candidate solution v, see Section
V-B. The perturbation is sampled from a Gaussian distribu-
tion N(0,σΥi), where σ is the perturbation standard devia-
tion, and Υi is the temperature parameter that decreases over
time controlling the annealing process. SA accepts candidate
solutions that improve the cost function and also implements

8 VOLUME 4, 2016



Juan Pablo Rodríguez-Gómez et al.: Preparation of Papers for IEEE ACCESS

a probabilistic mechanism to accept candidate solutions that
do not improve it in order to prevent local minima. A
candidate solution v is accepted according to a probability
obtained from the Boltzman distribution as p = e

−ΔJ
Υi , where

ΔJ = J(v̂)− J(v) is the cost difference between the candi-
date solution v and the current solution v̂. For great values of
Υi, p tends to 1, which favors the acceptance of candidates
with cost higher than J(v̂), enabling exploring distant points
in the search space. Differently, for small values of Υi, p
tends to 0, and the search is refined locally by accepting
only the candidate solutions that improve J(v̂). The adopted
annealing control followed a geometric model Υi = Υ0η

i,
where η ∈ [0.7, 0.96] defines the annealing relation. This
geometric model was preferred over other annealing control
schemes (e.g., linear) due its better experimental results in all
the experiments performed.

B. PARAMETER AUTO-TUNING

The SA optimization process aims at maximizing the sim-
ilarity of the result provided by the IM to a ground truth
reference. To minimize the involvement of human operators,
the ground truth is taken as the segmented objects classified
as person provided by an automatic detector fed with visual
images of the APS sensor of the DAVIS. YOLO V3 [32] was
employed due its well-known fast-response object detection
and prediction capabilities. Also, it can process the whole
image instead of sliding windows or regions, which is inter-
esting to consider the effect of the background. The scheme
of the proposed auto-tuning method is summarized in Figure
2. The Object Detector module receives visual images and
returns as output bounding boxes with the detected objects.
The IM receives as input the event stream and returns the
centroid of the detected intrusions. In the Synchronizer mod-
ule both outputs are compared to evaluate the performance of
IM leading to four possible outcomes: false positive, when
IM reports an intrusion that is not reported by the object
detector; true positive, when both object detector and IM
report an intrusion and the distance between both centroids
is lower than a threshold; true negative, when both IM and
object detector report no intrusion; and false negative, when
the object detection reports an intrusion and IM does not,
or when the distance between the centroids of both reported
intrusions is greater than the threshold.

The training set is composed of episodes, sequences of
images and events gathered by the DAVIS during UAS
flights in the intrusion monitoring scenario. Episodes were
preferred over single images and their equivalent batch of
events since they are more suitable to capture the scene
dynamics and complexity. The training episode set should
contain a sufficient number of episodes that cover the range
of conditions where IM should operate including lighting
conditions, object density and size, and presence of intruders,
among others. At each SA iteration, the Synchronizer esti-
mates the performance of IM configured with parameter set
v by employing its intrusion detection accuracy:

A(v) =
TP (v) + TN(v)

TP (v) + FP (v) + TN(v) + FN(v)
, (2)

where FP (v), TP (v), TN(v), and FN(v) are respec-
tively the number of false positives, true positives, true neg-
atives, and false negatives obtained by IM configured with
parameter set v in the training episode set.

Parameter Tuning implements the SA algorithm and evalu-
ates the parameter set v using cost function J(v) = 1−A(v).
At each iteration, IM and Object Detector processes the
episodes in the training set. Syncronizer computes A(v),
which is used by Parameter Tuning to obtain the updated
parameter set v̂.

VI. EXPERIMENTAL VALIDATION AND ANALYSIS
The proposed scheme was validated and evaluated in sets
of experiments conducted in realistic scenarios. The scheme
operation and its performance in daylight conditions is sum-
marized in Section VI-A. Section VI-B evaluates its per-
formance adopting different auto-tuning approaches. Finally,
its performance in dark conditions and robustness against
lighting conditions is analyzed in Section VI-C.

The aerial platform used in the conducted experiments,
see Figure 5, was a custom-made frame endowed with
a PixHawk 1 autopilot running PX4 position-based low-
level controller, a U-Blox GPS receiver, a DAVIS 346 event
camera mounted at −45o pitch rotation, and an INTEL®

NUC6i7KYK2 embedded computer for on-line onboard
computation and data logging. The navigation system was
implemented on top of the UAL abstraction layer [37]. The
proposed scheme was implemented in C++ using ROS Ki-
netic. The IM parameter auto-tuning system was performed
off-line in an external computer with an AMD Ryzen 5 2600
processor and an NVDIA GeForce GTX 1070 Ti GPU.

FIGURE 5: Aerial platform used in the experiments.

The experiments consisted in evaluating the presence of
intruders at different zones of the monitoring area, and were
conducted around the laboratories of the School of Engineer-
ing of the University of Seville. A set of surveillance missions
with different UAS trajectories and waypoints was defined.
The zones (each of them defined by a 6-DoF waypoint in the

VOLUME 4, 2016 9



Juan Pablo Rodríguez-Gómez et al.: Preparation of Papers for IEEE ACCESS

FIGURE 6: Example of surveillance mission used in the
system experimentation conducted at the laboratories of the
School of Engineering of the University of Seville. The
frames represent the 6 DoF waypoints in the surveillance
mission. The blue circular sectors represent the field of view
of the event camera at each waypoint.

UAS trajectories) were selected with no special care, only
determined by the intrusion monitoring application needs.
Figure 6 shows one of these surveillance missions where the
UAS transverses 420 m (go and back) approx. It includes 15
zones with high diversity in object density and type, object
size and camera distance to objects, or intrinsic movement
of some objects, such as trees, among others, and for this
reason this mission is taken to illustrate the performance of
the proposed scheme. The trajectory followed by the UAS in
the execution of one mission is shown in red, and the event
camera field of view in each waypoint, in blue.

First, prior flights were performed in different condi-
tions (different day and night times, lighting conditions,
and weather conditions, among others) to collect data for
parameter auto-tuning. The robot started the trajectory and,
when it reached one waypoint, it stayed in hovering and
recorded 5 sequences of 10s with the collected events and
images from the DAVIS sensor. To prevent bias in parameter
training, 50% of the flights were recorded with people acting
as intruders, and the rest, with no intruders.

After parameter set training, the scheme was evaluated
in surveillance missions where the robot autonomously fol-
lowed the trajectory. At each waypoint, the robot stayed
in hovering while it executed on-line and on-board the IM
event-based processing system configured with the trained
parameter set. Some results from different steps in the event-
based processing were shown, for brevity interleaved with the
algorithm description, in Figures 1, 3, and 4. A video with

some of the results is available as supplemental material. The
scheme performance was assessed using the following well-
known metrics [38]:

Accuracy =
TP + TN

P +N
, (3)

Precision =
TP

TP + FP
, (4)

TPR =
TP

TP + FN
, (5)

FPR =
FP

FP + TN
, (6)

where P is TP + FN , N is TN + FP , and TP , TN , FP ,
and FN stand respectively for the true positive, true negative,
false positive, and false negative rates. The above metrics are
expressed in percentages.

In the performed experiments IM required an average of
2.71µs to process every event. Besides, as described above,
the different modules in IM include filtering effects. For
example, APM discarded 59% of the events as originated
by the background; these events were not processed by
Clustering, which represents ∼70% of the processing time of
IM. Moreover, IM processes the events sent by ASAP, which
dynamically adjusts the number of events that are processed
by IM to avoid processing overflow. In the experiments,
the average event rate was ∼ 625, 000 events per second.
The combined filtering effect of the different implemented
modules and the fact that the corner detector used can be
executed in real-time [33], allowed the processing hardware
to execute the proposed scheme on-line and on-board.

A. PERFORMANCE EVALUATION
The zones considered were very diverse in object density,
size of objects, or intrinsic movement of some objects (e.g.,
trees), see for instance Figure 7. The first analyzed approach
was to capture the particularities of each zone in a specific
parameter set trained only with data from that zone. This
approach uses zone-dependent auto-tuned parameters where
the robot changes its IM parameter set from one zone to
another.

For all zones, the SA optimization was set withΥ0 = 1.0,
η = 0.955, and σ = 0.35, which were chosen empirically to
bring Υi close to zero in a fixed number of epochs. Iterating
through too many epochs might require an unreasonable
amount of time, whereas too low iteration numbers might
cause inaccurate parameter tuning. We found that 150 epochs
were a suitable trade-off between training time and expected
accuracy for all the experiments. Each epoch corresponds to
the processing of a sequence of 10s.

The auto-tuning process started with an initial parameter
set, which values were randomly selected within their bounds
defined in Table 2. At each iteration, the cost function J(·)
was evaluated for the candidate parameter set v and used to
compute ΔJ . Then, a new parameter set v was generated in
order to further search for a configuration that reduced the

10 VOLUME 4, 2016



Juan Pablo Rodríguez-Gómez et al.: Preparation of Papers for IEEE ACCESS

FIGURE 7: Visual images of each of the 15 zones (ordered left to right and top to bottom) in the surveillance mission shown
in Figure 6.

cost function. Figure 8 shows the values of J(v̂) and J(v)
during parameter training for zone 7. J(v) describes the cost
obtained for each configuration of v along the exploration
of the search space. On the other hand, J(v̂) represents the
cost obtained with the current set of parameters v̂, which at

0 50 100 150
Epochs

0

0.1

0.2

0.3

0.4

0.5

C
o

s
t

FIGURE 8: Values of cost functions J(v̂) and J(v) dur-
ing the parameter training for zone 7. J(v) describes the
performance of the different solutions obtained along the
exploration of the search space

0 50 100 150
Epochs

0

0.2

0.4

0.6

0.8

1

C
o
s
t

Scene 1

Scene 2

Scene 3

Scene 4

Scene 5

Scene 6

Scene 7

Scene 8

Scene 9

Scene 10

Scene 11

Scene 12

Scene 13

Scene 14

Scene 15

FIGURE 9: Evolution of the values J(v̂) during the zone-
dependent training for each zone.

each iteration are used as prior to generate the next set of
candidates v. Figure 9 shows the evolution of J(v̂) during
the auto-tuning process for each zone of the monitoring area.
Due to the random initial parameter set and the different
characteristics in each zone, the cost obtained at the first
epoch varied among the different zones. As pointed out in
Section V-A, the cost J(v̂) could increase during the first
iterations of the training (when Υi is close to 1) to enlarge
the exploration of the search space and prevent local minima.
After 20 epochs the cost function was below 0.2 for all zones
considered, showing fast convergence. After 150 epochs,
when the training was completed, the cost function reached
values below 0.1 for all zones.

After training, more than 30 evaluation missions were
performed in different conditions including different day
hours, lighting, and meteorological conditions. Table 3.
shows the average performance metrics in each zone obtained
in the evaluation missions. The trained scheme provided high
Accuracy in all zones, with an average of 96%. Further,
the values of Accuracy and FPR showed a low number of
“false alarms”, evidencing high false positive rejection capa-
bility. Also, TPR showed reasonable capabilities regarding
missing detections.

B. ANALYSIS OF ZONE SENSITIVITY

This section evaluates the proposed scheme using the same
parameter set for all zones in the monitoring mission. The
naïve approach of using one parameter set v� computed as the
mean, median, or statistical fashion of all the independently-
tuned parameter sets (one for each zone) would work only
for those zones which parameters were close to v�. Hence,
we opted for training a single zone-independent parameter

VOLUME 4, 2016 11



Juan Pablo Rodríguez-Gómez et al.: Preparation of Papers for IEEE ACCESS

Zone Accuracy
(%)

Precision
(%)

TPR
(%)

FPR
(%)

1 95 97 87 1
2 98 97 96 1
3 96 90 90 5
4 92 94 85 3
5 96 96 91 2
6 91 92 83 4
7 98 98 97 1
8 98 98 98 1
9 95 92 94 3
10 97 94 97 3
11 95 96 92 2
12 95 96 90 1
13 99 98 98 1
14 98 98 95 1
15 97 98 95 1

TABLE 3: Performance evaluation in each zone using zone-
dependent auto-tuned parameters.

set using a training set that includes sequences taken from all
zones in the mission. At each epoch several randomly chosen
sequences from different zones were used for the evaluation
of the cost function. The SA optimization was set with Υ0 =
1.0, η = 0.955 and σ = 0.35, the same values as in Section
VI-A.

The performance results obtained are reported in Table
4. Two types of results are shown: left) evaluation using
the zone-independent approach, i.e., using one parameter set
trained for all zones; and right) evaluation using the parame-
ter set averaging approach, i.e., using for all zones the aver-
age of the parameter sets specifically trained for each zone. In
general, the Accuracy values obtained by zone-independent
training were 5% greater for all zones than those obtained
by parameter set averaging. The performance of parameter
set averaging was satisfactory for some zones, but, poor in
others, such as zones 3 and 4, which had high complexity and
differences w.r.t. the other zones. On the contrary, the zone-
independent approach reported Accuracy values higher than
80% for all zones and an average Accuracy of 91%. Although
the performance of the zone-independent approach was lower
than that of the zone-dependent approach, it was still satisfac-
tory and involved a significantly simpler and more efficient
training process, favoring scalability to larger surveillance
areas. It is worth considering that, finding a single parameter
set that results in high Accuracy for every zone might not be
possible in all problems, due to the diversity of the zones in
the surveillance mission. Hence, zone-independent training
is proposed as a trade-off solution when all the zones of
a surveillance mission are relatively homogeneous, whereas
zone-dependent training should be used otherwise.

C. PERFORMANCE UNDER LOW ILLUMINATION
CONDITIONS
The results in Sections VI-A and VI-B show the performance
of the proposed scheme in experiments performed during the
day with different lighting conditions. This section analyzes
its robustness in experiments conducted during the night with
low and pitch dark lighting conditions.

First, the scheme using the zone-independent parameter
set trained with daylight data (described in Section VI-B)
was evaluated in flights performed under dark lighting condi-
tions. Table 5-top shows the average performance obtained.
The resulting Accuracy values in the different zones ranged
between 73% and 84%. They were significantly lower than
those obtained in the daylight experiments. Also, TPR per-
formed worse than in daylight experiments due to the high
number of false negatives caused by the level noise increment
in event streams taken with dark lighting conditions. Besides,
although Precision and FPR performed well, these results do
not provide a complete measurement of performance as can
be seen in Eqs. (4) and (6), both of them are independent of
the number of false negatives. The obtained results suggest
that a different set of parameters are needed to satisfactorily
operate with dark lighting conditions.

To evaluate that hypothesis, a parameter set using only
data collected during the night was trained by adopting the
zone-independent approach. YOLO V3 did not provide suf-
ficient reliability for detecting the intruders in dark lighting
conditions, thus data were manually annotated. Table 5-
center shows the average performance metrics obtained in
evaluation surveillance missions also performed during the
night. The values of Precision, TPR, and FPR were close
to the values obtained during the day (Section VI-A), but
the average Accuracy value was slightly lower due to the
greater number of false alarms caused by the lower signal-
to-noise ratio in dark scenarios. The noise increment affected
the operation of the APM by reducing the priority of mov-
ing intruders. Although these results are acceptable, manual
annotation is a very time-demanding task.

To cope with these issues, we analyzed the option of
establishing a parameter set for dark lighting conditions by
adapting the values of the parameter set trained for day-
light conditions. To understand the intuition of the problem,
datasets of different zones taken in daylight and dark lighting
conditions were extensively analyzed. First, in all zones the
number of events generated in dark lighting conditions were
at least twice greater than those generated with daylight
conditions. Many of them resulted from the event over-
generation caused by edges, whereas others resulted from
the noise level increment due to the low lighting conditions.
This phenomenon was also reported in [14]. Furthermore,
the parameter sets trained for daylight and dark lighting
conditions in different zones were also analyzed. The main
changes occurred in only three parameters: ω, nC , and nA.
The values of ω, the thresholds in the APM, ∼30% from
daylight to dark lighting conditions. Due to the higher noise
level, the APM enhanced its filtering effect and imposed

12 VOLUME 4, 2016



Juan Pablo Rodríguez-Gómez et al.: Preparation of Papers for IEEE ACCESS

Zone-independent Parameter set averaging
Scene Accuracy

(%)
Precision
(%)

TPR
(%)

FPR
(%)

Accuracy
(%)

Precision
(%)

TPR
(%)

FPR
(%)

1 91 99 72 1 91 97 74 1
2 95 96 84 1 92 76 95 9
3 80 84 60 7 67 54 62 30
4 86 96 66 2 73 60 83 32
5 88 98 74 1 86 89 73 6
6 87 96 68 2 81 71 81 19
7 96 96 94 2 90 79 98 14
8 97 99 93 1 95 90 97 7
9 93 92 88 4 94 88 97 7
10 92 96 84 3 86 80 89 15
11 88 96 75 2 86 88 74 6
12 93 98 85 1 82 97 60 1
13 99 98 98 1 98 97 97 1
14 93 98 81 1 89 98 70 1
15 92 96 85 1 91 96 81 1

TABLE 4: Evaluation in each zone of IM trained with the zone-independent (left) and with the parameter set averaging (right)
approaches.

Parameter set Accuracy
(%)

Precision
(%)

TPR
(%)

FPR
(%)

Parameters trained with day-
light data

82 98 62 2

Parameters trained with dark
lighting data

94 94 92 5

Parameters trained with day-
light data adapted to night con-
ditions

92 93 89 5

TABLE 5: Performance of the proposed scheme in night
experiments using parameters trained with: top) only daylight
data, center) only dark lighting data, and bottom) daylight
parameters adapted to dark conditions.

more restrictions to consider an event as originated by an
intruder. Also, the values of nA, the sizes of theAPM buffers
in dark lighting conditions, were four times greater than in
daylight conditions. The increment in the events triggered in
dark lighting conditions required greater buffers to represent
the scene. Finally, nC , the sizes of clustering buffers in
dark lighting conditions, were 50% smaller than in daylight
conditions. The higher noise level in dark lighting can cause
clustering large regions in the image. Low values of nC limit
the size of these clusters.

Table 5-bottom shows the performance obtained using
the parameter set trained with daylight data but adapting
the values of ω, nC , and nA to dark lighting conditions.
Although its performance is slightly worse than that obtained
by training with dark lighting data, parameter adaptation
provides a trade-off solution that keeps high performance in
both daylight and dark lighting without requiring training for
dark lighting conditions.

VII. CONCLUSIONS AND FUTURE WORK
This paper proposes an event-based processing scheme for
intrusion monitoring with UAS. Event cameras are very
interesting sensors for outdoor aerial robot applications. They
provide high dynamic range, being highly robust to lighting
conditions, and enabling day/night operation with the same
event camera. Also, they provide very high temporal resolu-
tion, being insensitive to motion blur. Finally, they are small
and have low power consumption.

The proposed scheme includes two main perception
blocks. First, an asynchronous event-based processing sys-
tem detects intrusions on-line using only the events. It in-
cludes several event-based algorithms: namely, corner de-
tection, tracking, clustering, and event filtering through the
attention priority map. All of them process the events one-
by-one, resulting in a fully asynchronous processing system
that exploits the advantages of the sequential nature of event
cameras. The algorithms were endowed with mechanisms to
reduce their computational cost in order to enable on-line
onboard execution. The second block is an off-line semi-
supervised training mechanism that adjusts the parameters of
the event-based processing algorithms to a particular scenario
and problem. It is based on an optimization process that
maximizes the similarity between the output of the event-
based processing and ground truth results obtained applying
an object detector to the visual images provided by the
APS sensor of the DAVIS camera. The proposed perception
scheme was implemented in ROS, integrated in a fully au-
tonomous aerial robot architecture, and extensively validated
in challenging scenarios with a wide variety of lighting
conditions, including day and night experiments in pitch dark
conditions.

A limitation of the proposed scheme is that it does not
identify the type of intruder (e.g., person, car, or a bike).

VOLUME 4, 2016 13



Juan Pablo Rodríguez-Gómez et al.: Preparation of Papers for IEEE ACCESS

Intruder identification using event-based deep learning tech-
niques is object of current research. In this work, the different
signal-to-noise ratios of events triggered at day and night
were addressed by scaling some parameters of the event-
based processing system based on empirical evidence. Cur-
rent work focuses on modeling the event generation under
different lighting conditions from an analytical point-of-
view. Furthermore, the proposed method assumes intruders
moving at higher velocities than the UAS. Additional ex-
perimental evaluation where both UAS and intruder move at
similar speeds is subject of further analysis. Finally, this work
was developed in the context of the GRIFFIN ERC Advanced
Grant, which objective is to develop autonomous flapping-
wing robotic systems capable of navigating, perching, and
manipulating objects. The advantages of event cameras over-
come some of the limitations of flapping-wing robot percep-
tion caused by agile maneuvers and abrupt movements [39].
Future work will also extend the proposed scheme to be used
on board a flapping-wing robot to detect and track moving
targets during perching and flight.

ACKNOWLEDGMENT
The authors would like to thank Rafael Salmoral for his
support in the hardware integration and helping with the
hexarotor experiments.

REFERENCES
[1] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck, “A 240× 180

130 db 3 µs latency global shutter spatiotemporal vision sensor,” IEEE
Journal of Solid-State Circuits, vol. 49, no. 10, pp. 2333–2341, 2014.

[2] C. Posch, D. Matolin, and R. Wohlgenannt, “A QVGA 143 db dynamic
range frame-free PWM image sensor with lossless pixel-level video com-
pression and time-domain CDS,” IEEE Journal of Solid-State Circuits,
vol. 46, no. 1, pp. 259–275, 2010.

[3] S. Chen and M. Guo, “Live demonstration: CeleX-V: a 1M pixel multi-
mode event-based sensor,” in IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), 2019, pp. 1682–1683.

[4] R. Berner, “Event-based vision sensor,” May 14 2020, uS Patent App.
16/682,505.

[5] G. Gallego, T. Delbruck, G. M. Orchard, C. Bartolozzi, B. Taba, A. Censi,
S. Leutenegger, A. Davison, J. Conradt, K. Daniilidis, and D. Scaramuzza,
“Event-based vision: A survey,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, pp. 1–1, 2020.

[6] N. J. Sanket, C. M. Parameshwara, C. D. Singh, A. V. Kuruttukulam,
C. Fermuller, D. Scaramuzza, and Y. Aloimonos, “EVDodgeNet: Deep
dynamic obstacle dodging with event cameras,” in IEEE International
Conference on Robotics and Automation (ICRA), 2020, pp. 1651–1657.

[7] J. P. Rodríguez-Gomez, A. G. Eguíluz, J. R. Martínez-de Dios, and
A. Ollero, “Asynchronous event-based clustering and tracking for intrusion
monitoring in uas,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA), 2020, pp. 8518–8524.

[8] Z. Jiang, P. Xia, K. Huang, W. Stechele, G. Chen, Z. Bing, and
A. Knoll, “Mixed frame-/event-driven fast pedestrian detection,” in 2019
International Conference on Robotics and Automation (ICRA), 2019, pp.
8332–8338.

[9] S. Barua, Y. Miyatani, and A. Veeraraghavan, “Direct face detection
and video reconstruction from event cameras,” in 2016 IEEE Winter
Conference on Applications of Computer Vision (WACV), 2016, pp. 1–
9.

[10] G. Gallego and D. Scaramuzza, “Accurate angular velocity estimation with
an event camera,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp.
632–639, 2017.

[11] T. Stoffregen, G. Gallego, T. Drummond, L. Kleeman, and D. Scaramuzza,
“Event-based motion segmentation by motion compensation,” in Proc.
IEEE International Conference on Computer Vision, 2019, pp. 7244–7253.

[12] A. Mitrokhin, C. Ye, C. Fermüller, Y. Aloimonos, and T. Delbruck, “Ev-
imo: Motion segmentation dataset and learning pipeline for event cam-
eras,” in 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2019, pp. 6105–6112.

[13] J. Xu, M. Jiang, L. Yu, W. Yang, and W. Wang, “Robust motion compen-
sation for event cameras with smooth constraint,” IEEE Transactions on
Computational Imaging, vol. 6, pp. 604–614, 2020.

[14] A. Mitrokhin, C. Fermüller, C. Parameshwara, and Y. Aloimonos,
“Event-based moving object detection and tracking,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2018,
pp. 1–9.

[15] D. Falanga, K. Kleber, and D. Scaramuzza, “Dynamic obstacle avoidance
for quadrotors with event cameras,” Science Robotics, vol. 5, no. 40, 2020.

[16] B. J. Pijnacker Hordijk, K. Y. Scheper, and G. C. De Croon, “Vertical
landing for micro air vehicles using event-based optical flow,” Journal of
Field Robotics, vol. 35, no. 1, pp. 69–90, 2018.

[17] R. S. Dimitrova, M. Gehrig, D. Brescianini, and D. Scaramuzza, “Towards
low-latency high-bandwidth control of quadrotors using event cameras,” in
2020 IEEE International Conference on Robotics and Automation (ICRA),
2020, pp. 4294–4300.

[18] V. Vasco, A. Glover, and C. Bartolozzi, “Fast event-based harris corner
detection exploiting the advantages of event-driven cameras,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2016,
pp. 4144–4149.

[19] E. Mueggler, C. Bartolozzi, and D. Scaramuzza, “Fast event-based corner
detection,” in Proceedings of the British Machine Vision Conference
(BMVC). BMVA Press, September 2017, pp. 33.1–33.11.

[20] R. Benosman, C. Clercq, X. Lagorce, S.-H. Ieng, and C. Bartolozzi,
“Event-based visual flow,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 25, no. 2, pp. 407–417, 2013.

[21] I. Alzugaray and M. Chli, “Asynchronous corner detection and tracking
for event cameras in real time,” IEEE Robotics and Automation Letters,
vol. 3, no. 4, pp. 3177–3184, 2018.

[22] ——, “ACE: An efficient asynchronous corner tracker for event cameras,”
in International Conference on 3D Vision (3DV), 2018, pp. 653–661.

[23] F. Barranco, C. Fermuller, and E. Ros, “Real-time clustering and multi-
target tracking using event-based sensors,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2018, pp. 5764–
5769.

[24] A. Z. Zhu, N. Atanasov, and K. Daniilidis, “Event-based visual inertial
odometry,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 5816–5824.

[25] A. Gómez Eguíluz, J. P. Rodríguez-Gómez, J. R. Martínez-de Dios, and
A. Ollero, “Asynchronous event-based line tracking for time-to-contact
manuevers in UAS,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), 2020, pp. 5978–5985.

[26] B. Karasulu and S. Korukoglu, “A simulated annealing-based optimal
threshold determining method in edge-based segmentation of grayscale
images,” Applied Soft Computing, vol. 11, no. 2, pp. 2246–2259, 2011.

[27] S. Yahyanejad and J. Ström, “Removing motion blur from barcode im-
ages,” in IEEE Computer Society Conference on Computer Vision and
Pattern Recognition-Workshops, 2010, pp. 41–46.

[28] A. Barbu, Y. She, L. Ding, and G. Gramajo, “Feature selection with
annealing for computer vision and big data learning,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 39, no. 2, pp. 272–286,
2016.

[29] R. S. Tavares, T. Martins, and M. d. S. G. Tsuzuki, “Simulated annealing
with adaptive neighborhood: A case study in off-line robot path planning,”
Expert Systems with Applications, vol. 38, no. 4, pp. 2951–2965, 2011.

[30] J. R. Martínez de-Dios, F. J. Pérez-Grau, A. Torres-González, J. J.
Acevedo, J. L. Paneque, A. Viguria, D. Fuego, J. R. Astorga, and A. Ollero,
“GRVC-CATEC: Aerial robot co-worker in plant servicing (ARCOW),”
in Bringing Innovative Robotic Technologies from Research Labs to
Industrial End-users. Springer, 2020, pp. 211–242.

[31] R. Tapia, A. Gómez Eguíluz, J. Martınez-de Dios, and A. Ollero, “ASAP:
Adaptive scheme for asynchronous processing of event-based vision algo-
rithms,” in IEEE ICRA Workshop on Unconventional Sensors in Robotics,
2020.

[32] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv
preprint arXiv:1804.02767, 2018.

[33] R. Li, D. Shi, Y. Zhang, K. Li, and R. Li, “Fa-harris: A fast and
asynchronous corner detector for event cameras,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2019,
pp. 6223–6229.

14 VOLUME 4, 2016



Juan Pablo Rodríguez-Gómez et al.: Preparation of Papers for IEEE ACCESS

[34] J. Wu, K. Zhang, Y. Zhang, X. Xie, and G. Shi, “High-speed object
tracking with dynamic vision sensor,” in China High Resolution Earth
Observation Conference. Springer, 2018, pp. 164–174.

[35] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated
annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.

[36] X.-S. Yang, Nature-inspired optimization algorithms. Elsevier, 2014.
[37] F. Real, A. Torres-González, P. Ramón-Soria, J. Capitán, and A. Ollero,

“Unmanned aerial vehicle abstraction layer: An abstraction layer to oper-
ate unmanned aerial vehicles,” International Journal of Advanced Robotic
Systems, vol. 17, no. 4, p. 1729881420925011, 2020.

[38] T. Fawcett, “An introduction to ROC analysis,” Pattern recognition letters,
vol. 27, no. 8, pp. 861–874, 2006.

[39] A. G. Eguíluz, J. Rodríguez-Gomez, J. Paneque, P. Grau, J. R. Martínez-
de Dios, and A. Ollero, “Towards flapping wing robot visual perception:
Opportunities and challenges,” in 2019 Workshop on Research, Education
and Development of Unmanned Aerial Systems (RED UAS). IEEE, 2019,
pp. 335–343.

JUAN PABLO RODRÍGUEZ-GÓMEZ received
his B.Sc. in Electronic Engineering from Pontifical
Javeriana University - Bogotá (Colombia), and a
MSE degree in Artificial Intelligence and Robotics
from Sapienza University of Rome (Italy). Cur-
rently he is pursuing a Ph.D in Robotics with
the GRVC Robotics Laboratory of the University
of Seville (Spain). His research interests include
event-based computer vision, robot perception,
robot navigation, and machine learning.

AUGUSTO GÓMEZ EGUÍLUZ is a postdoctoral
researcher with the GRVC Laboratory at the Uni-
versity of Seville (Spain). He received his BSc
in Computer Science at the Pontifical University
of Salamanca (Spain), and a MSc degree in the
University of Salamanca (Spain). In 2018, he ob-
tained his PhD with the Cognitive Robotics Team
at the Ulster University (UK). His thesis focused
on exploring tactile sensing as a continuous pro-
cess to enhance robot collaboration capabilities for

object manipulation. Nowadays, his research with the GRVC Laboratory
explores the use of event-based vision in Unmanned Aerial Systems. His
main research interests include robotic perception, machine learning, robotic
manipulation, tactile sensing, and event-based vision.

J. RAMIRO MARTÍNEZ-DE DIOS is Full Pro-
fessor at the University of Seville (Spain). His
R&D activities are focused mainly on aerial robot
perception, multi-robot cooperation, robot local-
ization and mapping, and sensor fusion. He has
authored or co-authored >130 publications on
these topics, including 4 full books. He has also
coordinated >14 R&D projects and has partici-
pated in other >60 R&D projects, including >18
projects funded by the European Commission in

FPIV, FPV, FPVI, FP7, and H2020. He leaded and participated in >15
technology transfer contracts to companies such as AIRBUS, BR&TE, or
IBERDROLA, among others. He has served as member of the Editorial
Board of >7 journals, and TPC member in >45 conferences and workshops.
He has received or co-received 5 international awards, including the "Best
Drone-based Solution" award in the 1st EU Drone Awards.

ANIBAL OLLERO is Full Professor, the Head
of GRVC, University of Seville, and a Scientific
Advisor of the Center for Advanced Aerospace
Technologies in Seville, Spain. He has been a Full
Professor with the Universities of Santiago and
Malaga, Spain, a Researcher with the Robotics In-
stitute of Carnegie Mellon University, Pittsburgh,
USA, and LAAS-CNRS, Toulouse, France. He
authored more than 750 publications, including
nine books and 200 journal articles and led about

160 projects, transferring results to many companies. He has participated
in 25 European Projects being coordinator of seven, including the H2020
AEROARMS and H2020 AERIAL-CORE, and the ERC Advanced Grant
GRIFFIN project. He has been a member of the Board of Directors of eu-
Robotics until March 2019. He was a recipient of 14 awards, has supervised
43 PhD Thesis and is IEEE Fellow for contributions to the development and
deployment of aerial robots. He is the Co-Chair of the IEEE Technical Com-
mittee on Aerial Robotics and Unmanned Aerial Vehicles, the Coordinator
of the Aerial Robotics Topic Group de euRobotics. He has been also Founder
and the President of the Spanish Society for the Research and Development
in Robotics (SEIDROB), until November 2017.

VOLUME 4, 2016 15


