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Abstract

This paper investigates how the choice of stochastic approaches and distribution assumptions

impacts strategic investment decisions in energy planning problems. We formulate a two-stage

stochastic programming model assuming different distributions for the input parameters and show

that there is significant discrepancy among the associated stochastic solutions and other robust

solutions published in the literature. To remedy this sensitivity issue, we propose a combined

machine learning and distributionally robust optimization (DRO) approach which produces more

robust and stable strategic investment decisions with respect to uncertainty assumptions. DRO is

applied to deal with ambiguous probability distributions and Machine Learning is used to restrict

the DRO model to a subset of important uncertain parameters ensuring computational tractability.

Finally, we perform an out-of-sample simulation process to evaluate solutions performances. The

Swiss energy system is used as a case study all along the paper to validate the approach.
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1 Introduction

Long-term energy planning for large-scale energy systems identifies strategic capacity investment decisions

in energy conversion technologies to guarantee our future energy supply. The planning horizon is generally

long enough, i.e., 20-50 years, to offer a possibility for the energy system to have a complete technology mix

turnover. Optimization models, in particular, aim at finding an optimal strategy that minimizes the total

investment and operations cost on the whole planning horizon. Based on a recent review work [Limpens

et al., 2019], the most commonly used optimization energy models are MARKAL/TIMES [Krzemień,

2013], OSeMOSYS [Howells et al., 2011], ETEM [Babonneau et al., 2017], MESSAGE [Sullivan et al.,

2013], SMART [Powell et al., 2012], while more recent and promising options are oemof [Hilpert et al.,

2018], Calliope [Pfenninger and Pickering, 2018] and EnergyScope [Limpens et al., 2019]. Usually, these

large-scale models are multi-sector (e.g., electricity, heating, mobility) and consider multiple investment

periods and few typical days for each period. An inherent characteristic of these models, as shown in

Moret et al. [2017], is the lack of reliable data (due to errors in long-term forecasts) and, more generally,

the presence of many uncertain input parameters. Such features lead to difficulties in analyzing the

solutions and expose the identified strategies to a high risk of sub-optimality when the future deviates

from the forecast expectations.

Both Stochastic Programming (SP) and, more recently, Robust Optimization (RO) have been widely

used to deal with uncertainty in optimization energy models. In short, SP finds the decision that optimizes

the expected value (or a more general risk function) of the objective, where the expectation is computed

with respect to the probability distribution of the random variables representing the uncertainty in the

problem. Because such probability distributions are often defined over a very large or even infinite number

of possible realizations, sampling and/or decomposition approaches are typically applied in order to solve

such problems numerically. Comprehensive discussions of theoretical and algorithmic aspects of SP can

be found in Birge and Louveaux [2011], Shapiro et al. [2014]. A well-known limitation of SP, however,

is the difficulty in defining the probability distribution functions (PDF) and the high sensitivity of the

computed solutions to the assumed PDFs.

The RO method can be regarded as a min-max approach to consider uncertainty in optimization

models. Unlike SP, it does not require the definition of specific PDFs. Instead, RO defines first an

uncertainty set of possible realizations in an explicit way as, e.g., ranges of variation, based on partial

known information on the uncertain parameters. Then, it looks for solutions that remain feasible for all

realizations of the uncertain parameters within the uncertainty set. A drawback of such formulation is that

it typically generates very conservative solutions, thereby increasing the investment cost of the solutions.

Some approaches to circumvent that problem have been proposed—for instance, the definition of an

uncertainty budget so that not all variables are allowed to take on their worst-case values simultaneously

[Bertsimas and Sim, 2004]. A comprehensive discussion of RO can be found in Ben-Tal et al. [2009].

As a direct consequence of the aforementioned limitations, in the literature the use of both SP and RO

in long-term energy planning models has been restricted to few uncertain parameters. In Babonneau et al.

[2012], the authors address the issue of uncertain energy supplies in a robust formulation of the TIMES

model. Gabrielli et al. [2019] focus on an urban (decentralized) energy system in which the weather

conditions, the demand for energy (electricity and heat) and the price of the energy are considered
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uncertain. Powell et al. [2012] apply SP to cope with different sources of uncertainty, such as the

energy of wind, energy demands and resource prices. In a more recent contribution, Moret et al. [2020a]

propose a robust optimization framework that allows for the consideration of all uncertain parameters

in the long-term energy planning EnergyScope model [Limpens et al., 2019]. This robust optimization

framework is also used in Moret et al. [2020b] to analyze the issue of overcapacity in Europe. However,

the dynamics of recourse actions is not modelled, essentially to keep their formulation tractable, which

according to the authors may lead to conservative solutions.

The present paper proposes alternative approaches to address these modelling and computational

issues. More precisely, its contribution is twofold. First, we implement a SP formulation of the

EnergyScope model considering, as in Moret et al. [2020a], all sources of uncertainty and assuming

different PDFs to highlight their potential impact on the strategic decisions of investment in such

long-term models. We compare these solutions with the robust ones published in Moret et al. [2020a].

Second, we propose a novel combined Machine Learning (ML) and Distributionally Robust Optimization

(DRO) approach which allows us to obtain a numerically tractable, recourse-based robust formulation of

the EnergyScope model that is far less sensitive to the choice of PDFs.

DRO has been introduced in the literature to compute robust solutions for stochastic problems

assuming ambiguous probability distributions, i.e, when the true PDF of the uncertain parameters is

unknown. DRO is based on the design of a set of distributions —called an ambiguity set—and it aims

at providing the model with protection against the worst distribution within that set; see, for instance,

Wiesemann et al. [2014]. The ambiguity set is calibrated assuming a distance measure (e.g., Wasserstein,

[Gibbs and Su, 2002]) that differs according to the different DRO approaches.

DRO has been recently applied to energy problems, mainly to unit commitment (UC). In Xiong

et al. [2017], the authors consider a UC model with uncertain wind power generation which is captured

by an ambiguity set describing a family of wind energy distributions. They show that DRO generally

outperforms the conventional RO method yielding lower expected costs. In Duan et al. [2018], where

uncertainty on the forecasting of renewable generation and load is considered, similar results are obtained;

the DRO operating costs appear to be lower than the ones associated to the standard RO solution and

higher than the cost of the SP solution. However, DRO solutions vary less with respect to the underlying

distributions, thus producing more robust decisions. Recently, DRO has been applied to a generation

expansion planning (GEP) model [Han and Hug, 2019] where the goal is to minimize investment and

operating cost, with uncertain demand, wind and PV generation forecasts. The work of Han and Hug

[2019] focuses on investment of decentralized energy resources (DERs) at the distribution level and does

not consider strategic centralized investments. DRO has also been applied to deal with uncertainty in

problems of economic dispatch [Chen et al., 2016], day ahead scheduling of energy and reserve [Xiong

and Singh, 2017], optimal power flow [Guo et al., 2019] and transmission expansion planning [Pozo et al.,

2018, Velloso et al., 2018].

In our work, we build an ambiguity set in which we assume that the true PDFs are close (using a

Wasserstein distance) to a given reference distribution. To the best of our knowledge, ours is the first

work to use DRO tools in the context of strategic long-term energy planning. A distinguishable feature of

our model, compared to the aforementioned works that apply DRO in other energy settings, is the large

dimension of the underlying uncertainty—there are more than 70 uncertainty parameters in the model.
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Such large dimension creates enormous computational challenges for the DRO approach. To circumvent

this issue, we use machine learning tools (henceforth denoted ML for short) to rank and select the most

important uncertain parameters to be included in the definition of the ambiguity set. In short, ML

is a branch of artificial intelligence devoted to developing intelligent systems that learn from data. In

the context of supervised learning, the modeler gives the machine/algorithm information about a set of

characteristics and responses called labels, in order to learn how to make predictions or classifications.

On the other hand, not all information that can be given to the machine/algorithm will provide better

learning, which leads to the issue of choosing the most relevant variables to the model, a process called

variable selection. Doing so reduces considerably the number of variables used, which produces several

benefits: ease to visualize and understand the data, elimination of irrelevant or redundant variables,

reduction of storage requirements, and reduction of computational times, to name a few.

By combining the ML-based selection and the DRO approach in this novel way, we are able to select the

important variables of the problem in a more systematic fashion than what is accomplished with classical

sensitivity analysis techniques. Such an approach yields a tractable robust version of the EnergyScope

model that uses probability distributions for the uncertainty but is not very sensitive to variations in

those PDFs. Finally, the DRO solutions are compared to previously computed RO and SP solutions. To

the best of our knowledge, it is the first implementation of a DRO strategic energy planning model that

considers an entire national energy system.

The rest of this paper is organized as follows. In Section 2, we present a compact formulation of the

EnergyScope model and we establish our focus of analysis. Also, we introduce the two-stage stochastic

programming formulation. Then, we present the novel combination of DRO with ML that we implement

to produce a tractable robust dynamic planning energy model. In Section 3, we describe the uncertainty

of the model parameters and define different PDFs for the most important uncertain parameters. The

stochastic solutions obtained by using different PDFs are then compared to robust solutions obtained

from the literature. Then, we discuss the experimental results and main findings using the ML-DRO

framework. We show that our approach produces robust and stable strategic solutions in relation to

the assumptions of the reference probability distributions of uncertain parameters. Finally, concluding

remarks are presented in Section 4.

2 Methodologies

2.1 Strategic energy model

In this section, we first describe the strategic energy model introduced in Moret et al. [2020a], Moret [2017]

that we use in the present paper. For the sake of simpler notations throughout the paper, we present a

compact mathematical formulation and report the complete model in Appendix A for interested readers.
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2.1.1 Compact mathematical formulation

A mixed-integer linear programming (MILP) formulation for strategic planning of energy systems was

first introduced by Moret et al. [2016] and used in Moret [2017], Moret et al. [2020a]1. It is a multi-sector

multi-energy model calibrated on the national energy system of Switzerland. Due to a decision of the

Swiss government of phase out nuclear power plants at the end of their useful life, the country is defining

its future energy strategy. Therefore, the model considers the long-term planning of the energy system

until 2035 with a monthly time resolution and a single period “snapshot” formulation (optimization over

one target year) which takes into account the seasonality of the year by months. The investment strategy

is decided under the “here and now” paradigm, considering the demands and operations constraints in

last year of planning. It incorporates information on the demand for end-use (electricity, heating and

transportation), the efficiency and cost of technologies, the cost of resources (imported and local) and

their availability as well as storage units characteristics. The demand for heating is divided into industrial,

centralized and decentralized; the demand for transport is divided into the passengers and freight sectors.

The compact MILP formulation of the energy planning model is given as follows:

minimize cTx + eTy (1a)

subject to Ax ≤ b, (1b)

Tx +Wy ≥ d, (1c)

x ∈ X, (1d)

y ∈ Y, (1e)

where x represents the strategic investment decisions, and the set X ⊆ Rn1−q1
+ ×Zq1+ imposes constraints

related to the nature of the variables (continuous and integer). The variables y represent the operation

decisions, where the set Y is a subset of Rn2
+ .

The objective of the problem is to minimize the total discounted cost of investment and operation

over the planning horizon. The first term of the objective function defines annualized investment and

maintenance costs for each technology and the second term defines the annualized operations cost.

Constraints (1b) represent in a simplified way several system constraints that do not depend on the

operation variables, such as: the existing capacity, the potential for each technology and additional

system specifications on for example electricity and decentralized heating networks. Constraints (1c)

are related to system operations, defining the annual and monthly capacity availability for technologies,

imported and local resources bounds, supply-demand balance and the constraints on operation of storage

units. It can be said that system operations depend on both investment (x) and operation (y) decisions,

in the sense that investment decisions alter the available capacity configurations and thus the operations

of the system.

Although the model has a multi-sector description (i.e., electricity, heating and transportation), we

1The version of the EnergyScope model used in this paper is an exact reproduction of the Swiss energy system model
presented by Moret [2017]: the model is described in detail in chapter 1 of that thesis, while the data are documented in
detail in Appendix A of the same thesis. The code is publicly available at https://github.com/energyscope/EnergyScope/
tree/v1.0
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focus our analysis in the rest of the paper on the electricity sector to assess the impact of uncertainty

on strategic investment decisions in power generation. On the other hand, taxes and subsidies are

not accounted for in the objective function; in fact, being internal exchanges within the energy system

boundaries, they do not contribute to the total cost.

2.2 The classical two-stage stochastic approach

Problem (1) under uncertainty can be formulated as a two-stage SP model. One chooses the first-stage

investment decision variables x before the realization of uncertain parameters minimizing the associated

investment cost plus the expected second-stage cost that depends on the recourse operation variables y.

The second-stage variables y adapt optimally to the revealed uncertainty. A standard formulation of the

two-stage stochastic model is as follows:

minimize
x ∈ X

cTx + E[Q(x, ξ)]

subject to Ax ≥ b,
(2)

where Q(x, ξ) is the recourse function

Q(x, ξ) := min
y
{eTy : Wy ≥ d− Tx, y ∈ Y }

and ξ := (e, T,W, d) indicates that the uncertainty can be present in any of the coefficients of the

second-stage problem. In the two-stage model formulation, the corresponding variables and constraints

are allocated into the first-stage problem, as shown in constraints (A.2)-(A.12) in Appendix A.1. The

operating variables and their corresponding constraints are placed in the second-stage, as shown in

constraints (A.14)-(A.32) in Appendix A.1. In this formulation, we minimize the total expected value

assuming nominal values for the first-stage uncertainties (e.g., investment costs) and a probability

distribution function for the second-stage uncertain parameters ξ. The recourse function Q(x, ξ) depends

on the first-stage decision x and the parameters ξ.

Problem (2) involves the expectation of Q(x, ξ) with respect to ξ. In general, such an expectation

corresponds to a multi-dimensional integral and as such is virtually impossible to compute. Even when ξ

has only a finite number of possible outcomes (also called scenarios), the number of scenarios may grow

quickly with the number of uncertain parameters, so that the recourse function becomes intractable. For

example, for m independent uncertain parameters, with three possible values each one, it gives a total of

3m scenarios.

To overcome this difficulty, the Sample Average Approximation (SAA) approach is used. Let (ξi)
N
i=1

be a set of N samples generated from the distribution of ξ. Then, the expected value of Q in Problem

(2) is approximated by the average of the realizations:

E[Q(x, ξ)] ≈ 1

N

N∑
i=1

Q(x, ξi).

Note that the number N of samples yields a trade-off between accuracy and computational tractability
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needed to solve the problem. Discussions on related issues in the SAA approach can be found in Shapiro

et al. [2014] and Homem-de-Mello and Bayraksan [2014]. We explain in Appendix B.1 the approach we

implement to generate a reduced set of 1,500 samples that yields an acceptable optimality gap and thus

an acceptable approximation of the expected value.

2.3 A Machine Learning and Distributionally Robust Optimization

Framework

In this section, we introduce a Distributionally Robust Optimization (DRO) approach and the challenges

presented by the model when considering a large number of uncertain parameters. DRO is based on the

design of a set of probability distributions (called ambiguity set) so that the model protects against the

worst-case distribution within that set. Then, we introduce Machine Learning (ML) tools to identify a

reduced subset of the most significant uncertain parameters that will be considered in the construction

of the ambiguity set, and thus alleviate the computational time of the DRO models.

2.3.1 Distributionally robust optimization for two-stage models

The DRO formulation of the Problem (2) can be written as follows:

minimize
x ∈ X

cTx + max
P∈D

EP[Q(x, ξ)], (3)

The objective function of DRO optimizes the worst-case expectation of the recourse function Q(x, ξ) over

the ambiguity set D that includes all possible distributions P of the random vector variable ξ that have

a certainty property, as discussed below. The set X is the feasibility region of the decision variable x.

An important element in DRO is the design of the ambiguity set D. There are multiple ways to

define the ambiguity set, which must be appropriate for the application at hand [Gao and Kleywegt,

2016]. Moment-based ambiguity sets are utilized to model known structural properties such as symmetry

[Roald et al., 2015], unimodality [Li et al., 2016], multimodality, independence patterns, among others,

or moment constraints such as mean [Goh and Sim, 2010], variance, covariances, higher order moments,

mean-absolute deviation, etc. Another ambiguity set is metric-based, which is constructed by using

a function to measure the distance between two distributions in the probability space. Typically,

this ambiguity set corresponds to a ball that is centered on a reference distribution and measures the

distance between this reference distribution to the worst distribution within the ambiguity set. There

are several ways to measure such distance; for instance, φ-divergence2 [Ben-Tal et al., 2013], Wasserstein

distance [Mohajerin Esfahani and Kuhn, 2018] and total variation distance [Rahimian et al., 2019a]. A

comprehensive review of DRO models and methods can be found in Rahimian and Mehrotra [2019]. It is

also worthwhile mentioning that, via a dual representation, Problem (3) can be written as a risk-averse

version of Problem (2) whereby the expectation is replaced by a coherent risk function; in that context,

the size of the ambiguity set is directly related to the level of risk aversion—the larger the ambiguity set,

the more risk-averse the model is. We refer to Shapiro et al. [2014] and references therein for details.

2The φ-divergence is not actually a distance since it is not symmetric; however, it has the property that it is equal to
zero if and only if the two distributions coincide.
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Solving Problem (3) exactly is in general very challenging and its tractable reformulation will depend

on the ambiguity set chosen. Using the Wasserstein distance, different reformulations of the Problem (3)

have been proposed in the literature to obtain computationally tractable problems. Mohajerin Esfahani

and Kuhn [2018] show that the two-stage DRO is reduced to a linear program if 1-norm or ∞-norm

is used in the definition of the Wasserstein distance and the objective function belongs to a class of

loss functions. Xu and Burer [2018] reformulate the maximum expected optimal value of uncertain

mixed binary linear programming problem as a copositive program under standard assumptions, using a

ambiguity set based on Wasserstein distance. They also show the effectiveness of their approach compared

to the moment-based ambiguity set through numerical results. Hanasusanto and Kuhn [2018] consider

a two-stage distributionally optimization with uncertainty in the cost vector e and in the technology

matrix T . They show that, under proper assumptions and with a 2-norm Wassertein distance centered

on a discrete reference distribution, the two-stage DRO problem is equivalent to a copositive program

of polynomial size. Bansal et al. [2018] study a two-stage DRO problem using Wasserstein distance,

where each probability distribution P ∈ D has finite support. They propose decomposition algorithms

(TSDR-LPs and TSDR-MBPs) that use a distribution separation procedure to solve, respectively,

two-stage DRO linear programming and two-stage DRO mixed binary programming, under necessary

conditions ensuring finite convergence.

In this paper, we use the TSDR-LPs algorithm described by Bansal et al. [2018] along with Benders

decomposition to solve the strategic energy planning problem where the ambiguity set is defined by the

Wasserstein distance, since it has following desirable characteristics: 1) Its formulation as an LP allows

for the use of existing solvers and for the decomposition of the original problem; 2) The uncertainty in the

second stage can be considered in any element of the model, that is, not only in the vectors e and d but

also in the matrices W and T . Since in our model the randomness can be present in all of those elements,

this method is the most suitable for our DRO model. In the next section we give more details about our

approach. We present the Wasserstein distance in the discrete setting and discuss some challenges of this

metric.

2.3.2 Wasserstein-based ambiguity set

LetMm(Ω) be the set of all probability distributions P with support on Ω ⊆ Rm, (where m is the number

of uncertain parameters) and which satisfy EP[‖ξ‖p] <∞, with p ≥ 1. The Wasserstein distance of order

p between two distributions P1 and P2 ∈ Mm(Ω) is defined as

Wp(P1,P2) :=

(
inf

Π∈Γm(P1,P2)
EΠ[‖ξ − ξ′‖p]

)1/p

, (4)

where ξ ∼ P1, ξ′ ∼ P2, and Γm(P1,P2) represent the set of all distributions with support on Ω× Ω with

marginals P1 and P2. The Wasserstein distance transports the probability mass from one distribution

to another at a minimum cost. Indeed, the Wasserstein distance between two discrete distributions

with a finite number of positive masses corresponds to a transportation planning problem, which can be

formulated as a linear program.

The distance Wp(·, ·) is well-defined regardless of whether the distributions are continuous or discrete.
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We thus define the Wasserstein ambiguity set Dε as a ball of radius ε ≥ 0 with respect to the Wasserstein

distance of order 1, centered at a prescribed reference distribution P0 as:

Dε := {P ∈Mm(Ω) : W1(P,P0) ≤ ε} . (5)

That is, the ambiguity set Dε contains all probability distributions whose Wasserstein distances to the

reference distribution P0 are no more than ε. The radius ε explicitly controls the conservativeness of

the resulting strategic decision; large ε will produce decisions that depend less on the assumed reference

distribution, but in turn are more conservative. Note that the case of ε = 0 corresponds to using the

(non-DRO) expected value Problem (2), whereas a value of ε = ∞ (in practice, a large value of ε)

corresponds to solving a robust version of Problem (2) that minimizes the cost of the worst-case scenario

instead of the expected cost. We can see then that the DRO formulation provides a continuum between

those two extremes.

2.3.3 Model formulation and algorithm

In this section, we review the algorithm presented in Bansal et al. [2018] to solve Problem (3), which

we enhance through the addition of feasibility cuts. The algorithm is a Benders decomposition method

which uses a distribution separation algorithm. An important assumption we make is that (i) the support

Ω has a finite number L of points, and (ii) the reference distribution P0 also has finite support. Part (i)

of this assumption is enforced by restricting the distributions P in (5) to those with finite number L of

points, whereas for part (ii) we replace the original reference distribution P0 with an empirical distribution

corresponding to N samples drawn from P0. Consequently, the ambiguity set Dε is defined by a polytope

with a finite number of extreme points. Notice initially that the Problem (3) cannot be solved directly by

a general purpose optimization solver, since this is a “min-max-min” problem. Therefore, Problem (3) is

divided into three subproblems: a first-stage Master problem, a second-stage subproblem and distribution

separation problem. The methodological details are described below. Problem (3) can be formulated as:

minimize
x ∈ X

cTx + θ

subject to max
P∈Dε

{EP[Q(x, ξ)]} ≤ θ.
(6)

Since the probability distribution P supported in Ω is finite, the constraint of the above problem can be

expressed as:
L∑
l=1

P(ξl)Q(x, ξl) ≤ θ ∀P ∈ Dε. (7)

Through this formulation, Bansal et al. [2018] propose an cutting-plane approach whereby the constraints

(7) are generated sequentially. More specifically, given a particular solution x̄, the following separation

problem is solved

max

{
L∑
l=1

P(ξl)Q(x̄, ξl) : P ∈ Dε

}
. (8)
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To simplify the notation, hereinafter we shall write pl to denote P(ξl). The cuts for the Master problem

are given by the following inequality constraint:

L∑
l=1

p̄l
{

(µ̄l)
t(dl − Tlx)

}
≤ θ,

where the p̄l for l = 1, ..., L are obtained by solving the distribution separation problem (8) and µ̄l for

l = 1, ..., L are optimal dual multipliers corresponding to constraint set Wly = dl−Tlx̄. Before obtaining

{p̄l}Ll=1 from the distribution separation problem, the first stage decision variable x̄ is required to be

feasible for all second-stage problems Q(x̄, ξ). In case that x̄ is infeasible for some l, with l = 1, ..., L, we

add the following cut (also called “feasibility cut” in the Benders decomposition method):

(νl)
t(dl − Tlx) ≤ 0

to the Master problem to restrict movements in that direction, where νl is an extreme ray associated

with the dual formulation of the second-stage problem.

To summarize, the Master problem has the following structure:

(Master) minimize
x ∈ X

cTx + θ

subject to Optimality Cuts :

L∑
l=1

p̄j,l
{

(µ̄j,l)
t(dl − Tlx)

}
≤ θ ∀j = 1, ..., c1,

Feasibility Cuts : (ν̄i)
t(d̄i − T̄ix) ≤ 0 ∀i = 1, ..., c2

(9)

The formulation of the second stage problem is given by

(second-stage) Q(x, ξl) = minimize
y ∈ Y

eTy (10)

and the distribution separation problem for a given x ∈ X is formulated as

9



(Distribution separation) maximize
π, p

L∑
l=1

plQ(x, ξl)

subject to

L∑
i=1

N∑
j=1

||ξi − ξ∗j ||1πij ≤ ε,

N∑
j=1

πij = pi i = 1, .., L,

L∑
i=1

πij = p∗j j = 1, .., N,

L∑
i=1

pi = 1 ,

π ≥ 0,

(11)

where ξ ∈ Ω, ξ∗ ∈ Ω0, L = |Ω| > 0, N = |Ω0| > 0 and
∑L
i=1 pi =

∑N
j=1 p

∗
j = 1. The pseudocode of the

algorithm that solves the Problem (3) is presented in Algorithm (1). For a better understanding of the

estimation of the upper and lower bounds, we refer the reader to Bansal et al. [2018].

As discussed in Section 2.2, the number L of possible outcomes can grow exponentially with the

number m of uncertain parameters of the model. Moreover, since we use an empirical distribution

to approximate the original reference distribution, it follows from well-known results in probability

theory (see, e.g., Dudley 1969) that the number of samples required to obtain a given precision grows

exponentially with m. Hence, it is impractical to have random vectors ξ even of moderate dimension,

especially considering that the separation problem (8) is solved multiple times. To circumvent this

problem, we propose to use machine learning techniques to select the most important parameters, as we

will explain in the next section.

2.3.4 A Machine Learning approach for variable selection

To identify the most important parameters of the optimization model and thus reduce the computational

time of the DRO algorithm, we rely on variable selection tools from machine learning. For this purpose, we

use the Extreme Gradient Boosting (XGBoost) method, which is a predictive model based on a regression

tree model [Friedman, 2001]. XGBoost is focused on computational speed and model performance, and

can be used for supervised learning tasks such as Regression, Classification, and Ranking. In a nutshell,

the XGBoost algorithm builds trees sequentially, where each new tree is created according to the margin of

error left by the predictive variables of the previous tree, until the algorithm stabilizes and the performance

of all trees combined reaches a maximum threshold of adjustment [Chen and Guestrin, 2016]. XGBoost

also has some advantages over other ML algorithms, since it is able to parallelize the computation to

construct trees, and handle missing data efficiently. Moreover, it is shown in the literature that XGBoost

has the maximal performance among all algorithms within the category boosting [Memon et al., 2019].
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Algorithm 1: Two-stage distributionally robust method from Bansal et al. [2018], enhanced
with feasibility cuts

1 Initialization: k = 0, LB = -∞, UB= ∞, ε = ε∗, δ = δ∗, c1 = c2 = 0

2 while |UB−LB|UB ≥ δ∗ or k ≤ maxIter do
3 feasible ← TRUE

4 Get (xk, θk) solving MILP Master problem (9)
5 for l = 1 : L do
6 Solve LP Q(xk, ξl), (second-stage (10))
7 if second-stage “l” is infeasible (i.e. its dual is unbounded3) then
8 Get νl ← extreme ray of second-stage (10)
9 Derive Feasibility Cut: ν̄c2+1 = νl, d̄c2+1 = dl, T̄c2+1 = Tl

10 Add Feasibility Cut: c2 = c2 + 1
11 feasible ← FALSE

12 Q(xk, ξl)← optimal solution value

13 LB ← ctxk + θk

14 if feasible then
15 Solve distribution separation problem (11) using Q(xk, ξl), to get pl, l = 1, . . . , L

16 if UB > ctxk +
∑L
l=1 plQ(xk, ξl) then

17 UB ← ctxk +
∑L
l=1 plQ(xk, ξl)

18 if |UB−LB|UB ≤ δ∗ then
19 x∗ ← xk

20 Go to line (26)

21 µl ← optimal dual multipliers obtained by solving Q(xk, ξl) ∀l = 1, .., L
22 Derive Optimality Cut: p̄c1+1,l = pl, µ̄c1+1,l = µl, ∀l = 1, .., L
23 Add Optimality Cut: c1 = c1 + 1

24 x∗ ← xk

25 k ← k + 1

26 return x∗,LB
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To further confirm these results from the literature, we have compared the performance of the random

forest, regression trees, gradient boosting machines and leaps (regression subset selection) methods with

XGBoost and found that the latter was the best algorithm based on the metrics discussed below.

The first step consists in generating a large sample of random parameter scenarios and in solving a large

number of deterministic Problems (1) (one per scenario) independently. This produces a dataset whose

columns are the random values of the uncertain parameters and the values of the target output variables

(installed capacity size). Once the observations are obtained, the dataset is divided into two groups.

The first one is the training sample, containing 70% of the data, on which the XGBoost algorithm is

trained to obtain the impact of the predictors on target variables; then, the validation/prediction process

is performed on the remaining data (30%), with the purpose of comparing real values with predicted ones

and so to evaluate the precision of the ML models — one model per target variable. In addition, we use

the information gain metric of XGBoost as a measure to rank each parameter.

To evaluate the quality of the XGBoost models, three indices of performance were used, including

root-mean-squared error (RMSE), determination coefficient (R2) and mean absolute error (MAE).

Although these are standard measures of error, we include their expressions below for completeness:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ỹi)2 (12)

R2 = 1−
∑n
i (yi − ỹi)2∑n
i (yi − ȳi)2

(13)

MAE =
1

n

n∑
i=1

|yi − ỹi| (14)

where n is the number of instances, ỹi is the predicted value of yi, and ȳi is the mean value of yi.

3 Results and Discussion

3.1 Model uncertainty

As discussed in Moret et al. [2017], uncertain parameters in Problem (1) appear everywhere in the

model, both in the objective and the constraints. The authors classified these parameters according to

their similarities, with a total of 240 important uncertain parameters. In the objective function, there are

160 uncertain parameters broken down into: discount rate (1 parameter), resources costs (8 parameters),

investment costs of technologies (52 parameters), maintenance costs of technologies (48 parameters) and

lifetimes of technologies (51 parameters). In the constraints, there are 80 uncertain parameters broken

down into: technology efficiencies (65 parameters) and end-use energy demands (15 parameters). In

Table 1 we summarize the main uncertain parameters, with their range of variation relative to their

nominal values (corresponding to the median) estimated in Moret et al. [2017] and their localization in

the compact model formulation of Problem (1).

Here and throughout the paper, the uncertainty ranges have been defined based on values in the
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Parameters Min % Max % Element in Problem (1)
Investment Cost

PV -39.6% 39.6% c
Wind -21.6% 22.9% c
Nuclear -21.6% 119.3% c
Hydro Dam -21.6% 73.8% c
Hydro River -21.6% 21.6% c
Geothermal -39.7% 62.1% c
Thermal power plant -21.6% 25.0% c
District Heating Network -39.3% 39.3% c
Decentralized NG Boilers -21.6% 21.6% c

Resources Cost
Local -2.9% 2.9% e
Import -47.3% 89.9% e

End-Uses Demand
Transportation -3.4% 3.4% d
Services -7.4% 4.1% d
Industry -10.5% 5.9% d
Households -6.9% 4.3% d

Technologies efficiency
Boilers -5.7% 5.7% W
Gasoline car -20.6% 20.6% W
PV -20.8% 20.8% W
Fuel Cell Car -28.7% 28.7% W

Others
Discount rate -46.2% 46.2% c
Maintenance Cost -48.2% 35.7% c
Technology lifetime -26.5% 26.5% c
Monthly capacity factor -11.1% 11.1% T

Table 1: Ranges of variations relative to the nominal values for the main uncertain parameters, taken
from Moret et al. [2017]. The parameters are identified in Problem (1) through the elements c, e, d, T
and W.
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literature, forecasts, historical data, etc., following the methodology and data presented in previous work

[Moret et al., 2017].

3.2 Assessing the impact of distribution assumptions in stochastic solutions

In this section, we evaluate the potential effect of uncertainty assumptions onto strategic decisions in

the context of stochastic modeling. To do so, we consider a two-stage SP formulation of the energy

model described in Section 2.2 and generate scenarios assuming different probability distributions. Then,

we analyze the resulting stochastic solutions and compare them with robust solutions reported in the

literature.

3.2.1 Uncertainty assumptions

To illustrate the potential impact of uncertainty assumptions on strategic investment decisions, we

perform a numerical experiment considering different PDFs for the uncertain parameters in Problem

(2). We compute two stochastic solutions and compare them with solutions reported in Moret et al.

[2020a] which rely on the robust optimization paradigm which is discussed in the Section 1. The two

stochastic solutions are defined as follows:

• Stochastic-U : The first stochastic solution is obtained by solving Problem (2) and assuming, as in

Moret et al. [2020a], uniform distributions for all uncertain second-stage parameters with variation

ranges as reported in Table 1.

• Stochastic-L: The second stochastic solution is obtained by solving Problem (2) and assuming

uniform distributions for uncertain second-stage parameters with symmetrical variation ranges

and truncated lognormal distributions for uncertain second-stage parameters with asymmetrical

variation ranges. Note that we choose the truncated lognormal distribution to satisfy the median

property of the nominal value and ranges.

Note that, in these stochastic models, the uncertain first stage parameters that appear in the objective

function (e.g., investment costs) take their nominal value, since the expected value of a random variable

corresponds to its nominal value. As discussed in Section 2.2, we adopt a sample average approximation

approach to solve the problems, using 1,500 samples. The resulting stochastic solutions are compared

with:

• The Deterministic one which does not consider uncertainty and assumes the nominal value for all

parameters.

• The Worst-case solutions which assumes worst-case values for uncertain first- and second-stage

parameters, as in Soyster [1973].

• The Robust solution computed in Moret et al. [2020a] and based on the Robust Optimization

(RO) techniques [Bertsimas and Sim, 2004]. It adopts a min-max approach protecting against any

realization of uncertain first- and second-stage parameters within the controlled uncertainty set.

Based on the strong duality theorem, the equivalent robust counterpart of the uncertain constraints
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is formulated as a set of linear constraints. The resulting robust model belongs thus to the realm of

linear programming and can be solved directly with a linear solver without need of a decomposition

algorithm [Bertsimas and Sim, 2004]. We refer the reader to Moret et al. [2020a] for more details.

3.2.2 An empirical assessment

Figure 1 shows the investment decisions for the electricity sector proposed in five solutions, i.e.,

Deterministic, Robust, Worst-case, Stochastic-U and Stochastic-L. For each solution, the left bar

represents the installed capacities F and the right bar shows the available capacities Fcp for production,

i.e., taking into account the yearly available factor cp of the technologies.

Figure 1: Electricity capacity mix (Full capacity F and available capacity Fcp) for the five investment
strategies: Deterministic, Robust, Worst-case, Stochastic-U and Stochastic-L. (Acronyms: Photovoltaics
(PV), Combined Cycle Gas Turbine (CCGT), Cogeneration of Heat and Power (CHP), Integrated Coal
Gasification Combined Cycle (IGCC), Ultra-Supercritical Coal (U-S))

We observe the significant difference among the computed solutions depending on the chosen stochastic

approach and/or the underlying probabilistic assumptions. On the one hand, the Stochastic-U solution

invests only in renewable (Wind and Hydro dams) and fossil energy sources, while the Stochastic-L

solution consists mostly of investments in natural gas (NG) similarly to the strategy of the Deterministic

solution. This can be explained by the lognormal assumption which puts higher probability on low

costs for gas imports, thereby making gas more competitive. On the other hand, Robust and Worst-case

solutions are the only ones to invest significantly in PV and CHP capacities, respectively. These differences

in strategic investments make the design of an efficient and robust energy policy highly hazardous for

any decision maker.

The implementation and computational details of the Deterministic, Robust, Worst-case and

Stochastic (presented as a very large deterministic model) models used in this first experiments, are

shown in the Table 2. All the problems in the Table 2 are MILP and can be solved by CPLEX without
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using decomposition techniques, except for the stochastic models which require decomposition techniques.

The size of the problems Robust and the Worst-case are the same, the difference lies in the value of the

Γ parameter, which controls the number of parameters that take their worst value.

Deterministic Robustc Worst-casec Stochastic modelsa

Type MILP MILP MILP MILP

Variables (cont.) 1,469 19,646 19,646 2,071,500

Variables (bin.) 118 118 118 72,070

Variables (int.) 56 56 56 56

Constraints 2,236 4,868 4,868 3,031,500

Optimizer CPLEX-12.8 CPLEX-12.7 CPLEX-12.7 CPLEX-12.8

CPU (s) 0.17 5.00 1.97 2, 095.87/1, 907.99b

a We can express Problem (2) in a deterministic form by introducing a different second-stage y variable

for each scenario. This formulation is called the deterministic equivalent.
b There are two computational time obtained by the Benders decomposition method, corresponding to

the Stochastic-L and Stochastic-U solutions respectively.
c The robust and worst-case solutions have been computed in Moret et al. [2020b] on a different machine

using CPLEX-12.7. As the CPU times are quite low and solution times are not the focus of our paper,

we did not reproduce those results on our machine.

Table 2: Comparison of problem sizes and solution time for deterministic, robust and stochastic solutions.

3.2.3 ”Out-of-Sample” simulation process

To assess and compare the economic performance of the five solutions in Figure 1, we perform an

“Out-of-Sample” simulation process. We generate two sets of nsample = 10, 000 scenarios of first- and

second-stage uncertain parameters assuming the probability settings used in the optimization process,

i.e., in the first set, we assume uniform distributions for stochastic parameters whereas in the second set

we use truncated lognormal distributions (for parameters with asymmetric ranges). For completeness, we

perform an additional out-of-sample analysis using triangular distributions centered on nominal values

in order to assess the performance of the solutions on a different distribution setting. Then we solve

the optimization problem for each parameter scenario with fixed investment decision variables, x = F .

In other words, installed capacity of the technologies is fixed (first-stage decisions) and the operation

variables are determined by the second-stage optimization. Note that the electricity demand can always

be satisfied by relying when needed on electricity imports. For the heating sector, we introduce a slack

variable with a high penalty cost to ensure feasibility of the second-stage problem in each simulation

run. As the paper focuses on the electricity sector, these infeasibility-related costs are not included in

the reported computed cost results. infeasibilities are given in Table 4. In Table 3, we report some cost

statistics of the various strategies from simulations: the mean, the half-width of a 95% confidence interval

for the mean and the standard deviation. Note that the maintenance cost component is included in the

investment cost since it depends on the installed capacity.
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mean ± half-width/std

Distributions Investment cost Operations cost Total

Deterministic 1,406.4 ± 2.34/119.7 7,137.4 ± 30.00/1,530.5 8,543.8 ± 30.12/1,536.7

Robust 3,506.8 ± 5.80/296.3 5,451.7 ± 16.48/841.2 8,958.5 ± 17.34/885.0

Uniform Worst-case 2,254.7 ± 3.60/183.8 6,389.5 ± 26.08/1,330.8 8,644.2 ± 26.57/1,355.4

Stochastic-U 2,847.7 ± 4.85/247.8 5,598.5 ± 20.94/1,068.3 8,446.2 ± 21.56/1,100.0

Stochastic-L 1,446.7 ± 2.38/121.5 7,159.4 ± 29.09/1,484.1 8,606.1 ± 29.21/1,490.4

Deterministic 1,405.2 ± 2.32/118.4 6,048.3 ± 17.00/866.8 7,453.5 ± 17.18/876.7

Robust 3,473.5 ± 5.73/292.3 4,668.6 ± 8.87/452.0 8,142.1 ± 10.56/539.0

Lognormal Worst-case 2,241.5 ± 3.55/181.3 5,388.2 ± 14.57/743.5 7,629.7 ± 15.17/774.3

Stochastic-U 2,842.8 ± 4.88/249.0 4,789.9 ± 11.82/603.1 7,632.7 ± 12.81/654.0

Stochastic-L 1,445.6 ± 2.35/120.3 6,092.8 ± 16.35/834.4 7,538.4 ± 16.55/844.7

Deterministic 1,402.9 ± 1.63/83.2 6,740.2 ± 21.86/1,115.6 8,143.1 ± 21.94/1,119.3

Robust 3,479.3 ± 4.05/206.9 5,184.3 ± 11.42/583.0 8,663.6 ± 12.00/612.2

Triangular Worst-case 2,252.9 ± 2.47/126.4 6,005.0 ± 18.74/956.2 8,257.9 ± 19.11/975.3

Stochastic-U 2,836.4 ± 3.41/174.0 5,326.9 ± 15.15/773.3 8,163.3 ± 15.55/793.5

Stochastic-L 1,443.7 ± 1.65/65.6 6,783.9 ± 21.10/1,076.9 8,227.6 ± 21.18/1,080.6

Table 3: Comparing the mean, half-width and standard deviation of the investment, operation and
total costs obtained from stochastic, robust and deterministic models through different out-of-sample
distributions.

First, we observe in Table 3 that the estimates for the mean costs are are very precise in all cases

since they have half-widths always smaller than 0.3%. The simulations with the lognormal distribution

produce lower standard deviations of the output since that distribution corresponds to input parameters

with lower variance than the other two distributions. As expected, the Robust solution yields a high

average investment cost, but with the lowest standard deviation in operations costs as it protects the

energy system against extreme second-stage operations costs. The Worst-case strategy should lead in

theory to the most expensive investment solution to limit also operations costs but, given the worst-case

investment costs, the system privileges energy sources with small uncertainty on investment costs (e.g.,

CHP and Wind). As expected, Deterministic and Stochastic-L solutions, with similar investments, have

close performances with low average investment costs and high average yearly operating costs. However,

the Deterministic solution leads more frequently to infeasibility in the second stage as discussed shortly.

We conclude from this simulation study that the best model in terms of average total cost depends

on the choice of the out-of-sample distribution. For example, the cost performance of the Stochastic-U

and Stochastic-L solutions depends on the assumed distribution in the simulations: Stochastic-L performs

better with the lognormal distribution while Stochastic-U gives lower cost estimates assuming the uniform

and triangular distributions. This is a clear illustration that the assumption on the distribution is very

impacting and one can generate solutions that are suboptimal in practice and possibly undesirable. This

motivates the use of Distributionally Robust Optimization (DRO) techniques to produce solutions that

will remain good whatever the true probability for uncertain parameters is.
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Infeasibility Elec. Imports

Distributions % of simulations Demand shortage in GWh/h

Deterministic 53.7% 0.84% 5.39

Robust 0.03% 0.22% 10.20

Uniform Worst-case 0% 0% 1.12

Stochastic-U 0.19% 0.12% 5.73

Stochastic-L 0.19% 0.14% 5.61

Deterministic 54.0% 0.86% 1.70

Robust 0.03% 0.05% 10.28

Lognormal Worst-case 0% 0% 0.28

Stochastic-U 0.19% 0.10% 1.80

Stochastic-L 0.18% 0.12% 1.78

Deterministic 55.2% 0.58% 3.07

Robust 0% 0% 10.42

Triangular Worst-case 0% 0% 0.56

Stochastic-U 0% 0% 3.29

Stochastic-L 0% 0% 3.18

Table 4: Simulation results in terms of infeasibility (% of simulations with unmet heating demand and
percentage of conditional unmet demand) and imported electricity (in GW) for Uniform, Lognormal and
Triangular distributions.

For the sake of completeness, we report in Table 4 additional simulation results, i.e, percentage

of simulations with unsatisfied heating demand, the associated percentage of conditional unmet heating

demand and the electricity imports that are needed to meet electricity demand. We can see that although

the Deterministic solution appeared to produce solutions with low total cost, it fails to deal with demand

variability within the heating sector.

All other models yield acceptable feasibility performances. By construction, the two min-max solutions

(Robust and Worst-case) are the ones with lowest infeasibility.

3.3 Numerical experiments with DRO

In this section, we solve the two-stage DRO model considering the most important uncertain parameters

identified through the ML-based analysis and assuming different reference PDFs. Then we perform

out-of-sample simulations to assess the performances of generated DRO solutions and compare them

with stochastic and robust solutions.

3.3.1 Variable selection

The idea of using XGBoost in our optimization model is to predict the installed capacity of different

technologies of the electricity sector, which are summarized in eight target variables: Wind, Photovoltaics

(PV), Combined Cycle Gas Turbine (CCGT), Combined Heat and Power (CHP), Integrated Coal
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Gasification Combined Cycle (IGCC), Ultra-Supercritical Coal (U-S), Hydro dam (new) and Hydro river

(new). We performed the ML analysis as described in Section 2.3.4 with predictor variables corresponding

to the second-stage uncertain parameters of Table 2 and 8 target variables as described above. To do so,

we used the xgboost R package by Chen et al. [2019].

In Table 5, we report the performance measures for each of the XGBoost models, introduced in Section

2.3.4, using the test samples (30% dataset).

Target variables

Indices CHP IGCC U-S Hydro dam (new) Hydro river (new) PV Wind CCGT

RMSE 0.308 0.587 0.356 0.038 0.087 0.639 0.473 0.433

R2 0.779 0.702 0.944 0.945 0.926 0.838 0.969 0.879

MAE 0.205 0.410 0.184 0.019 0.034 0.260 0.225 0.306

Table 5: Performances of the XGBoost models on the testing dataset through several statistical indices.

We observe in Table 5 that the R2 values are close to 1 for most models, indicating good fits. In

addition, the RMSE and MAE indices evaluate the errors between the observed and predicted values.

Both have values close to zero, which means that the predictions are very close to those observed.

Figure 2: Information gains to the improvement of the XGBoost models stacked by parameters.

Figure 2 displays the results of the XGBoost analysis for the most important parameters in term of

information gains, which are indices between 0 and 1 that indicate how well each uncertain parameter

can be used to predict the target variable. Each bar in the figure displays the information gains on

investments on each of the eight technologies corresponding to a given uncertain parameter—each color

is a different technology. As we can see, the three most influencing parameters for the investment decisions

are the importation costs of natural gas, electricity and coal, followed by three other parameters of smaller
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importance, i.e., for the efficiency of CCGT, U-S and IGCC.

In order to avoid over-fitting, ensuring these results are dataset independent, we carried out the same

process 50 times, with different training and test sets, for all target variables. For each experiment, we

obtain a ranking of the parameters in order of importance. The statistics of the rankings are summarized

on Figure 3 for the eight most important parameters.

Figure 3: Boxplot visualizes the ranking statistics for the most important parameters over 50 runs.

The results confirm that the most influencing parameters are the three import costs (i.e., gas,

electricity and coal) followed by two efficiency parameters (i.e., CCGT and U-S). The efficiency of the

IGCC technology is not anymore considered as an important uncertain parameter. We thus retain for

our DRO model these five cost and efficiency parameters which appear both in Figures 2 and 3.

3.3.2 Setting of DRO ambiguity sets

As discussed in Section 2.3.1, a key component of the Problem (3) is the ambiguity set (5). When

assuming a distance measure (e.g., the Wasserstein distance of norm 1 in our case), one has to define a

reference distribution P0 and a support for the worst possible distribution P within the ambiguity set.

We recall that the objective of the DRO formulation is to produce investment decisions that are not

sensitive to the assumed PDFs for the uncertain parameters as observed previously for the Stochastic-U

and Stochastic-L solutions when using the standard stochastic approach. So, in order to demonstrate

this desirable feature, we consider in our numerical experiments two ambiguity sets whose reference

distributions have similar uncertain assumptions as for the Stochastic-U and Stochastic-L solutions.

More concretely, we define the first ambiguity set as

DUε := {P ∈M5(Ω) : W1(P,PDRO-U) ≤ ε} (15)

where the reference distribution PDRO-U corresponds to uniform distributions for the five uncertain
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second-stage parameters with variation ranges as reported in Table 1. Similarly, the second ambiguity

set is given by

DLε := {P ∈M5(Ω) : W1(P,PDRO-L) ≤ ε} , (16)

where the reference distribution PDRO-L corresponds to uniform distributions for uncertain parameters

with symmetrical variation ranges, i.e., the two efficiency parameters, and truncated lognormal

distributions for uncertain parameters with asymmetrical variation ranges, i.e., the three cost parameters.

Note that in order to use the algorithm described in Section 2.3.3 we need to assume that the reference

distribution has finite support; thus, we approximate the uniform and lognormal distributions with

respective empirical distributions corresponding to 1,000 samples.

For the support of P in the ambiguity sets (15) and (16), we consider for each uncertain parameter

a discrete support of three parameter values, i.e., the nominal one and its two extreme values as given

in Table 1. Then we define Ω as the set of all combinations of the these values for all parameters, which

results in |Ω| = 35 = 243 possible outcomes. The set M5(Ω) is the set of all distributions with support

on Ω.

In the following, we refer to DRO-U and DRO-L for DRO models with ambiguity sets (15) and (16),

respectively. Each model is solved for different radius ε to compute DRO solutions with different levels

of conservatism. We present and compare the most representative solutions, i.e, for εmin, 0.084, 0.092,

0.108, 0.136 and 1. The value ε = εmin refers to the minimum distance value for which the ambiguity

set in (5) is non-empty in both models. For ε > 1 the solutions do not change, which means that the

corresponding solutions are obtained with the worst-case distributions among those with support Ω.

3.3.3 DRO strategic investment decisions

In this section, we present the DRO strategic investment decisions using the DRO-L and DRO-U models

for different radius ε. The two-stage DRO algorithm was implemented in Julia 1.0.3, using the libraries

of JuMP.jl and StructJuMP.jl. All solutions were obtained using a Intel Core i7-8750H CPU 2.20 GHz

× 12 with 8 GB RAM.

In Table 6, the scale and computational time of the DRO-L and DRO-U problems are presented,

applying Algorithm 1. The Master problem is formulated as a MILP problem, while the subproblem and

the distribution separation problem are formulated as a Linear Programming (LP). Ds is associated with

the distribution separation problem. Note that CPU times of DRO problems increase exponentially with

the number of uncertain parameters. With more than seven uncertain parameters, the problems become

intractable. This confirms the importance of the variable selection procedure.

We display in Figure 4 the DRO-L and DRO-U strategic investment decisions associated to the

different radius ε together and the Stochastic-L and Stochastic-U solutions computed with the two-stage

stochastic model.
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Mastera Second-stage Ds
Type MILP LP LP
Variables (cont.) 88 2,125 243,243
Variables (bin.) 11 0 0
Variables (int.) 44 0 0
Optimizer CPLEX-12.8 Gurobi-8.01 CPLEX-12.8

ε = εmin ε = 0.084 ε = 0.092 ε = 0.108 ε = 0.136 ε = 1
Constraints 3,960 4,027 5,303 6,421 5,453 5,811

DRO-L Total CPU (s) 346.62 425.58 497.14 715.50 677.97 526.65
Constraints 3,366 3,864 4,260 6,277 7,151 4,618

DRO-U Total CPU (s) 324.71 359.72 400.83 751.61 515.64 497.25
a The size of the Master problem corresponding to the last iteration.

Table 6: DRO problem sizes and comparison of solution statistics for DRO-L and DRO-U models with
different radios.

Figure 4: The effect of radius ε on the installed capacity of DRO-L and DRO-U solutions compared to
the installed capacity of stochastic solutions (Stochastic-L and Stochastic-U ).

By construction, the DRO-L and DRO-U investment solutions with εmin are close to the Stochastic-L

and Stochastic-U ones, respectively.

Then, as expected, the DRO-L and DRO-U solutions are less dependent on the assumed reference

distribution when ε increases. Except for ε = 0.108, DRO-L and DRO-U solutions have very similar

configurations. We also observe a diversification in the capacity mix as ε increases, which is a desirable

property to reduce risk exposure—recall from the discussion in Section 2.3.1 that higher values of ε

correspond to more risk-averse models. This desirable diversification effect is rather common when

dealing with uncertainty. In particular, Bertsimas and Sim [2004] and Nicolas [2016] observe similar
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results in their numerical experiments using robust optimization formulations. For increasing values of ε,

we observe an increasing decarbonization of the electrical system with a mix of and efficient technologies.

Indeed, the effect of high gas and coal costs makes the use of renewable and efficient technologies more

competitive in a risk-averse environment.

3.3.4 Comparison of out-of-sample performances

To assess the economic performances of the DRO-L and DRO-U investment solutions of Figure 4, similarly

to Section 3.2.3, we perform an “Out-of-Sample” simulation process assuming uniform, lognormal and

triangular distributions. The simulation results are summarized in Figures 5, 6 and 7, respectively.

For each solution, the figures display the boxplots for annual total cost, first-stage investment cost and

second-stage operations cost.

Figure 5: Boxplot of second-stage operations costs, first-stage investment costs and total cost. Simulations
performed on nsample = 10.000 scenarios generated with uniform distributions. The numbers indicate
the average costs.
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Figure 6: Boxplot of second-stage operations costs, first-stage investment costs and total cost. Simulations
performed on nsample = 10.000 scenarios generated with truncated lognormal distributions. The numbers
indicate the average costs.

Figure 7: Boxplot of second-stage operations costs, first-stage investment costs and total cost. Simulations
performed on nsample = 10.000 scenarios generated with triangular distributions. The numbers indicate
the average costs.
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The main conclusion from Figures 5, 6 and 7 is that the performances of DRO solutions for a given

ε radius are rather insensitive to the reference distribution in out-of-sample simulations. For example,

for ε = 0.084, the DRO-L and DRO-U yield very similar performances both in terms of investment and

operations costs. Total costs for both DRO-L and DRO-U solutions are about 8400, 7500 and 8100 k$
with uniform, truncated lognormal and triangular distributions, respectively.

In comparison, the performances of Stochastic-L and Stochastic-U solutions are highly impacted by

distribution assumptions in the three simulation processes in terms of average costs and cost dispersion,

producing the most extremes performances. The Stochastic-L solution has always a very low investment

cost (with reduced dispersion) but compensated with a high operations cost while the Stochastic-U

solution looks more balanced between the two cost components. The two stochastic solutions perform

correctly (but still producing the worst total costs) only when assuming truncated lognormal distributions

(Figure 6) which generates parameter scenarios with the lowest dispersion around the nominal value. In

other words, as expected Stochastic programming is not efficient to protect against extreme realizations.

We also see that the performances of Robust and Worst-case solutions are very different regardless the

choice of the out-of-sample distribution. The Robust solution leads to higher total costs (average and

extreme) than DRO solutions as already discussed in Section 3.2.3, while the Worst-case solutions have

higher variability.

Based on these simulation results, the DRO approach appears to provide a good trade-off between the

min-max approach adopted in Robust Optimization and the expected criterion of Stochastic Programming

that relies on a specific probability distribution. DRO permits to overcome the drawbacks of the two

alternatives while generating robust strategic investments decisions.

We also observe that more conservative DRO solutions corresponding to higher ε values are associated

to higher first-stage investment costs but, at the same time, come with a small decrease of second-stage

operations cost. Overall, The DRO solutions show a lower variation in the second-stage operations cost.

This is of particular importance in real-world applications, in which investments are done at the beginning

of the time horizon (here-and-now decisions); in this case, less exposure to significant variations in the

second-stage operations implies more stability, and hence a lower risk of generating overcapacity in the

power system, as recently showed by Moret et al. [2020b]. Total cost is quite constant among the DRO

solutions.

The goal is to find a good solution that provides a balance among several desirable criteria: low total

cost, low variability, independence from reference distribution and independence from the out-of-sample

distribution. We see that that the standard stochastic and robust solutions fail at least on one of these

criteria. On the other hand, the DRO solutions with ε = 0.084 seem to provide a good trade-off among

those criteria, therefore it is our recommended strategy for this particular problem instance.

4 Conclusions and future work

Investment models for long-term energy planning provide important tools for strategic decision making,

as they indicate which technologies are worth investing on, given the uncertainty in future costs and

demand. While such models can be formulated as two-stage stochastic programs, the corresponding

solutions are very sensitive to the choice of probability distributions for the uncertainty parameters in
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the problem, which is an enormous drawback considering that it is very difficult to assess the probability

distributions of quantities far in the future.

In this paper, we have proposed a computationally tractable Distributionally Robust Optimization

framework to deal with the high sensitivity of strategic investment solutions in energy planning to

probability assumptions. The DRO formulation is based on the design of an ambiguous set of probability

distributions (centered on a reference distribution) for a reduced number of important uncertain

parameters. The selection of the important parameters—a key component of our approach, given

the size of the model—is performed by solving single-scenario problems multiple times and applying

machine-learning methods. Such an approach is, to the best of our knowledge, novel not only in the

applied energy literature but also more generally in the stochastic optimization literature; indeed, we

believe this is one of the contributions of our work.

Our numerical results, obtained from experiments for a Swiss case study, show that the

DRO investment strategies are quite stable regarding to variations in the underlying probability

distributions—that is, the performance of the solution does not change much when different distributions

are used in the out-of-sample evaluation procedure—yielding in addition more diversified investments

as we allow for larger ambiguity sets. As a consequence, the DRO model shows better performance in

out-of-sample simulations than the standard stochastic programming and robust models.

We believe that the framework we propose in this paper can be helpful to other energy models,

in several aspects: first, our results show that uncertainty should be considered in energy planning

models, something that today happens very rarely. As seen in our results, the inclusion of uncertainty

dramatically impacts/changes the deterministic solution. Thus, energy modelers should account for

uncertainty from the early stages of the model development. A major challenge to include uncertainty

factors in optimization models, of course, is the requirement of estimating the corresponding probability

distributions. Our framework can also be very helpful in that regard, as we have demonstrated that the

use of DRO tools can mitigate the effect of sensitivity of solutions with respect to the chosen distributions,

even when the model involve a large number of uncertainty parameters.

We view our work as a first step in the use of DRO and machine learning tools for strategic energy

planning. Thus, there is room to improve upon the limitations of our models. For instance, it would be

helpful to have a method that could guide an a priori choice of the size of the ambiguity set. Some methods

for that purpose have been proposed in the literature in the context of data-driven problems, whereby

the level of ambiguity is determined based on the number of data points (see, e.g., Mohajerin Esfahani

and Kuhn [2018] and Blanchet et al. [2019]); however, such techniques do not apply to our context, where

the distributions are not necessarily obtained from data. One possibility, left for future work, could be

to adopt the approach proposed by Rahimian et al. [2019b], who relate the size of the ambiguity set to

a region of scenarios that are critical to the problem in a well-defined sense.

Other possibilities for future research work include extending the DRO formulation to a multi-stage

model, since in most real-world energy system problems the uncertain parameters are revealed sequentially

(more than two stages) and decisions must be adjusted to the uncertainty realizations. Another

work direction is to develop methodologies that allow for incorporating more uncertain parameters

in the ambiguity set but which are also computationally tractable and with low computational cost.

Interpretation of stochastic optimization results by non-expert users is also a well-known challenge in
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the field [Grossmann et al., 2015]. To address this challenge, a decision-support method - similar to the

“first feasibility, then optimality” approach proposed in Moret et al. [2020a] - could be developed to guide

decision-makers in the choice of the most appropriate protection level ε, and hence the energy strategy.

We also plan to apply the models studied in this paper to data from other countries; a study for the case

of Chile is underway.
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A Appendix

A.1 Mathematical model formulation

For interested readers, we report in this section the complete MILP model formulation as described in

Moret et al. [2020a]. For the sake of simpler notations, we shorten the name of some variables.

In the following, we use the indicator function of a subset A of a set X as a function 1A : X → {0, 1}
defined as:

1A =


1 if x ∈ A

0 if x /∈ A
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(I) Definition of sets.

T : Set of technologies Sto : Set of storage units

R : Set of resources EUC : Set of end-uses categories

P : Set of periods S : Set of sectors

BioFuels : Set of biofuels import (⊂ R) L : Set of layers

Export : Set of exported resources (⊂ R) EUI : Set of end-uses Input

I : Set of infrastructure EUT : Set of end-uses types

T-EUT{eut} : Set of technologies ∀eut ∈ EUT T-EUC{euc} : Set of technologies ∀euc ∈ EUC

(II) Definition of variables

Name Description Units

G%Public : Ratio [0; 1] public mobility over total passenger mobility

G%Rail : Ratio [0; 1] rail transport over total freight transport

G%Dhn : Ratio [0; 1] centralized over total low-temperature heat

Fi : Installed capacity with respect to main output i, ∀i ∈ T [GW]

Ysolar
i : If 1, technologies i is backup technology for decentralized solar else 0, ∀i ∈ T

Ni : Number integer of installed units i of size frefi , ∀i ∈ T
GWPconstr

i : Technology construction GHG emissions, ∀i ∈ T [ktCO2-eq.]

Table 7: Variables for the first-stage problem

Name Description Units

Fti,t : Operation the i in each period t, ∀i ∈ T ∪R, ∀ t ∈ P [GW]

Sto+
j,l,t : Input to storage units j ∈ Sto the l ∈ L in period t ∈ P [GW]

Sto−j,l,t : Output from storage units j ∈ Sto the l ∈ L in period t ∈ P [GW]

Dl,t : End-uses demand. Set to 0 if l /∈ EUT, ∀l ∈ L, ∀t ∈ P [GW]

GWPtot : Total yearly GHG emissions of the energy system [ktCO2-eq./y]

GWPop
r : Total GHG emissions of resources, ∀r ∈ R [ktCO2-eq./y]

Losseut,t : Losses in the networks (grid and DHN), ∀eut ∈ EUT , ∀t ∈ P [GW]

Table 8: Variables for the second-stage problem
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(III) Definition of parameters

Name Description Units

eUY eareui,s : Annual end-uses in energy services per sector s, ∀s ∈ S,∀eui ∈ EUI [GWh/y]

short name of endUsesyear

eUIeui : Total annual end-uses in energy services eui, ∀eui ∈ EUI [GWh/y]

eUIeui =
∑
s∈S eUY eareui,s

short name of endUsesInput

τi : Investment i cost annualization factor, ∀i ∈ T ; τi = irate(irate+1)ni

(irate+1)ni−1

irate : Real discount rate

g
k
, gk : Upper and lower limit to Gk, ∀k ∈ {%Public,%DHN,%Rail}

ht : Time periods t duration, ∀t ∈ P [h]

%lightingt : Yearly share (adding up to 1) of lighting end-uses, ∀t ∈ P
%sht : Yearly share (adding up to 1) of SH end-uses, ∀t ∈ P
fi,l : Input from (< 0) or output to (> 0) layers, ∀i ∈ R ∪ T \ Sto,∀l ∈ L [GW]

f refi : Reference size i with respect to main output, ∀i ∈ T [GW]

cInvi : Technology i specific investment cost, ∀i ∈ T [MCHF/GW]

cMaint
i : Technology i specific yearly O&M cost, ∀i ∈ T [MCHF/GW/y]

gwpconstri : Technology construction specific GHG emissions, ∀i ∈ T [ktCO2-eq./GW]

ni : Technology i lifetime, ∀i ∈ T [y]

fmin
i , fmax

i : Min./max. installed size of the technology i, ∀i ∈ T [GW]

fmin,%
i , fmax,%

i : Min./max. relative share of a technology in a layer i, ∀i ∈ T
availr : Resource r yearly total availability, ∀r ∈ R [GWh/y]

ki,t : Period capacity factor of technology i in period t, ∀i ∈ T, ∀t ∈ P (default 1)

k̂i : Yearly capacity i factor, ∀i ∈ T
copr,t : Specific cost of resources r in periods t, ∀r ∈ R, t ∈ P [MCHF/GWh]

gwpopr : Specific GHG emissions of resources, ∀r ∈ R [ktCO2-eq./GWh]

η+
j,l, η

−
j,l : Efficiency [0;1] of storage j input from/output to layer l. ∀j ∈ Sto,∀l ∈ L

%losseut : Losses [0;1] in the networks (grid and DHN), ∀eut ∈ EUT
%PeakDHN : Ratio peak/max. average DHN heat demand

(IV) Model formulation

Objective for the first-stage problem

min
∑
i∈T

τi · cInvi · Fi + cMaint
i · Fi (A.1)

The total investment cost of each technology results from the multiplication of its specific investment

cost (cInv) and installed size (F), which is then annualized with the factor (τ), calculated based

on the interest rate (irate) and the technology lifetime (n). The total O&M cost is calculated by

means of the product of maintenance cost (cMaint) and installed size (F).

Constraints for the first-stage problem

Constraints (A.2)-(A.12) define the constraints for the first-stage problem, where Constraints
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(A.7)-(A.12) are added to simplify the use of the model and adapt it to the specific case study

of Switzerland. Constraint (A.2) represents the total emissions related to the construction of

technologies and is equal to the product of the specific emissions (gwpconstr) and the installed

size (F).

GWPconstr
i = gwpconstri · Fi ∀i ∈ T (A.2)

Constraint (A.3) set the upper and lower limits to the installed capacity of each technology are

set by fmax and fmin, respectively. The latter allows accounting for old technologies still existing

in the target year. Constraint (A.4) forces the number of installed units of a technology to be an

integer multiple (N) of the reference size fref .

fmini ≤ Fi ≤ fmaxi ∀i ∈ T (A.3)

Ni · frefi = Fi ∀i ∈ T \ I (A.4)

Constraint (A.5) set the upper and lower limits to the share public vs private mobility, train vs

truck in freight transportation and DHN vs decentralized for low-Temperature heating demand.

g
k
≤ Gk ≤ gk ∀k ∈ {%Public,%Rail,%DHN} (A.5)

Constraint (A.6) is used to select only one technology as backup for solar in winter months, if

decentralized solar thermal (Decsolar) panels are installed.∑
i∈T

Y solari ≤ 1 (A.6)

Constraint (A.7) links linearly the storage capacity to the new installed power. Constraint (A.8)

associates the cost of investment the PowerToGas unit to the maximum size of two conversion

units.

FStoHydro ≤ fmaxStoHydro

FNewHydroDam − fminNewHydroDam

fmaxNewHydroDam − fminNewHydroDam

(A.7)

FPowerToGas = max {FPowerToGas; FGasToPower} (A.8)

Constraint (A.9) is used to calculate the energy efficiency as a fixed cost. Constraint (A.10) represent

an additional investment cost of 9.4 billion CHF2015 is linked proportionally to the deployment of

stochastic renewables. Constraint (A.11) links the DHN size to the total size of the installed
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centralized energy conversion technologies.

FEFFICIENCY =
1

1 + irate
(A.9)

FGrid ≥ 1 +
9400

cInvGrid

FWind + FPV
fmaxWind + fmaxPV

(A.10)

FDHN ≥
∑

i∈T-EUT{HeatDHN}

Fi (A.11)

Constraint (A.12) complies with the decision of the Swiss government of eliminate nuclear power

plants at the end of their useful life.

FNUCLEAR = 0 (A.12)

Objective for the second-stage problem

min
∑
r∈R

∑
t∈P

ht · copr,t · Ftr,t (A.13)

The total operational cost is calculated as the sum of the use over different periods and resources

multiplied by the period duration (ht) and the specific cost of the resource (cop).

Constraints for the second-stage problem

In the second-stage problem, all first-stage decision variables are considered as fixed parameters.

Constraints (A.14)-(A.15) link the installed size of a technology to its actual use in each period

(Ft) via the two capacity factors, respectively. Constraint (A.16) is used to limited the total use of

resources for its yearly availability (avail).

Fti,t ≤ Fi · ki,t ∀i ∈ T, ∀t ∈ P (A.14)∑
t∈P

Fti,t · ht ≤ Fi · k̂i
∑
t∈P

ht ∀i ∈ T (A.15)∑
t∈P

Ftr,t · ht ≤ availr ∀r ∈ R (A.16)

Constraint (A.17) expresses the balance for each layer: all outputs from resources and technologies

(including storage) are used to satisfy the End-Uses-Demand or as inputs to other resources and

technologies.∑
i∈R∪T\Sto

fi,lFti,t+
∑
j∈Sto

(Sto−j,l,t−Sto+
j,l,t)−Dl,t−1A(l)·Lossl,t = 0 ∀l ∈ L,∀t ∈ P,A = {HeatDHN}

(A.17)

Constraint (A.18) regulates the operation (Ft) of decentralized technologies, enforcing that the

relative share of heat produced by a given technology j be the same for all t. If decentralized solar

thermal (Decsolar) panels are not installed, i.e. F(Decsolar) = 0, then the percentage of heat

produced by all other technologies j is constant in all periods t. This constraint is linearized as in
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Moret et al. [2020a].

Fti,t+FtDecsolar,t·Ysolar
i ≥ DHeatDHN,t + DHeatDec,t

eUIheatSH + eUIheatHW

∑
t∈P

Fti,t·ht ∀i ∈ T-EUT{HeatDec}\{Decsolar},∀t ∈ P

(A.18)

Constraint (A.19) corresponds to the loss of electricity in the grid and DHN, which are calculated

as a percentage (%loss) of the total production and import in the corresponding layers.

Losseut,t =
∑

i∈R∪T\Sto,fi,eut>0

fi,eut · Fti,t ·%losseut ∀eut ∈ EUT,∀t ∈ P (A.19)

Constraint (A.21) is used to calculate the total yearly emissions of the system (GWPtot), by sum

of the emissions related to the construction and end-of-life of the energy conversion technologies

(GWPconstr), allocated to one year based on the technology lifetime, and the emissions related to

resources (GWPop) calculated in constraint (A.20).

GWPop
r =

∑
t∈T

gwpopr,tFtr,t · ht ∀r ∈ R (A.20)

GWPtot =
∑
i∈T

GWPconstr
i

ni
+
∑
r∈R

GWPop
r (A.21)

Constraint (A.22) is used to avoid underestimating the cost of centralized heat production, a

multiplication factor is introduced to account for peak demand, defined as a %PeakDHN times the

maximum monthly average heat demand. This constraint is linearized as in Moret et al. [2020a].∑
i∈T-EUT{HeatDHN}

Fi ≥ %peakDHN max
t∈P
{DHeatDHN,t + LossHeatDHN,t} (A.22)

Constraint (A.23) is complementary to constraint (A.3), as it expresses the minimum (fmin,%) and

maximum (fmax,%) yearly output shares of each technology for each type of EUD.∑
i′∈T−EUT (eut)

fmin,%i

∑
t∈T

Fti′,tht ≤
∑
t∈T

Fti,tht ≤
∑

i′∈T−EUT (eut)

fmax,%i

∑
t∈T

Fti′,tht ∀eut ∈ EUT,∀i ∈ T-EUT{eut}

(A.23)

Constraint (A.24) imposes that the share of the different technologies for mobility be the same in

each period.

Fti,t
∑
t∈P

ht ≥
∑
t′∈P

Fti,t′ht′ ∀t ∈ P,∀i ∈ T-EUC{MobPass} ∪ T-EUC{MobFreight} (A.24)

Constraint (A.25) is a complement of constraint (A.7) and it is used for ensures that the shifted

production in a given time period does not exceed the electricity production by the dams in that
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period.

Sto+
StoHydro,Elec,t ≤ FtHydroDam,t + FtNewHydroDam,t ∀t ∈ P (A.25)

Constraint (A.26) is used for modeled the storage as a “tank” whose level (Ft) in period t is equal

to the level at the end of the previous period plus input to the storage (Sto+) minus output (Sto−)

in t.

Ftj,t = Ftj,t−1 + ht
∑
l∈L
η+j,l>0

Sto+
j,l,tη

+
j,l − ht

∑
l∈L
η−j,l>0

Sto−j,l,t/η
−
j,l ∀j ∈ Sto,∀t ∈ P (A.26)

Constraint (A.27)-(A.32) shows the constraints relative to the calculation of the EUD in each period

t, starting from the projected total yearly demand D (eUI, input from demand-side model) summed

across the different energy sectors (households, services, industry, transport).

DElec,t =
eUIElec∑
t′∈P ht′

+ eUIlighting
%lightingt

ht
+ LossElec,t ∀t ∈ P (A.27)

Dq,t =

(
eUIheatHW∑

t′∈P ht′
+ eUIheatSH

%sht
ht

)
(1B(q) + (−1)1B(q)G%Dhn)

∀t ∈ P ;

q ∈ {HeatDHN,HeatDec};
B = {HeatDec}

(A.28)

Dq,t =
eUIpassenger∑

t′∈P ht′
(1{Pri}(q) + (−1)1{Pri}(q)G%Public) ∀t ∈ P, q ∈ {Pub, Pri} (A.29)

Dq,t =
eUIfreight∑

t1∈P ht1
(1{Road}(q) + (−1)1{Road}(q)G%Rail) ∀t ∈ P, q ∈ {Rail, Road} (A.30)

DHeatT,t =
eUIHeatT∑
t′∈P ht′

∀t ∈ P (A.31)

Dr,t = 0 ∀t ∈ P, r ∈ R \ {BioFuels ∪ Export} (A.32)

B Appendix

B.1 Sample generation and optimality gap

Consider the stochastic programming problem

v∗ = min
x∈X

{
g(x) := cTx + E[Q(x, ξ)]

}
(B.1)

where v∗ is the optimal value of original problem and g(x) is the expected value function at a given

point x plus a constant. We will present briefly how to estimate the optimility gap using the estimates

of v∗ and g(x).

In SAA, we select and fix (ξi)
N
i=1, all having the same distribution as ξ, and solve the following
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deterministic optimization problem:

v̂N = min
x∈X

{
g(x) := cTx +

1

N

N∑
i=1

Q(x, ξi)

}
(B.2)

To reduce the computational effort in solving the problem (B.2), the ideal is to choose a small

sample size N . We generate K independent random samples each of size N and solve the corresponding

SAA problems (B.2). Let v̂kN and x̂kN be the corresponding optimal objective and optimal solutions,

respectively, with k = 1, ...,K.

Then we can estimate v∗ by

v̄KN =
1

K

K∑
k=1

v̂kN (B.3)

which represents a lower statistical bound of the original problem. Now consider a feasible solution

x̂ ∈ X. For example, we can take x̂ to be equal to an optimal solution x̂kN of an SAA problem. Let g(x̂)

be the true objective value the function g at the point x̂. An unbiased estimator of g(x̂) is given by:

ĝN ′(x̂) = cT x̂+
1

N ′

N ′∑
i=1

Q(x̂, ξi) (B.4)

where ξ1, ..., ξN ′ are an independently and identically distributed random sample of N
′

realizations

of random vector ξ. Since estimating the objective function g(x̂) at a feasible point x̂ by means of the

average of ĝN ′(x̂) requires much less computational effort than solving the SAA problem, it makes sense

to choose a very large sample size N ′ � N in order to obtain an accurate estimate of the value objective

g(x̂) of an optimal solution x̂ of the SAA problem. Consequently, since x̂ is a feasible point of the true

problem, ĝN ′(x̂) gives a statistical upper bound on the true optimal solution value. Using the above

expressions, an estimate of the optimality gap g(x̂)−v∗ of a candidate solution x̂ is given by ĝN ′(x̂)− v̄KN .

This procedure is repeated, progressively increasing the values of K and N until a desired optimality

gap is obtained. For more details on this method we suggest the reader to see [Homem-de-Mello and

Bayraksan, 2014],[Mak et al., 1999]. Finally, through numerical experiments of the method described

above, we obtained a optimality gap of 0.3% for a sample size N = 1, 500.
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