

We need global data to develop global satellite algorithms.

In situ data from the Arctic is difficult to acquire

Figure recreated from Henri Drake notebook

The Arctic Ocean is changing rapidly

Many research vessels don't report any additional salinity and ocean temperature observations over the GTS, so the data don't make it into the global databases used for satellite algorithm development or for other scientific research

Saildrone Vehicles

2019: 5 Saildrones, 150 days, 3 NOAA, 2 NASA

Both NASA vehicles had additional temperature loggers along keel for upper ocean stratification measurments

NASA Saildrone data at NASA's PO.DAAC

Discovering issues with L4 products

JPL's MUR SST was compared to Arctic Saildrone SSTs during the 2019 cruise. Version 4.1 of the data had large biases which were determined to be due to the definition of 'daytime' in the data. The new version of MUR (to be released soon) fixes this problem.

Endless Summer.....

3rd lowest ice extent on record

Unusual air-sea temperature differences

Bimodal, frequent occurances where near surface air temperature warmer than ocean temperature

Upper Ocean Warming

Warming of 3.5 K in upper 1.7 m.

Upper Ocean Warming

Warming of 5 K in the upper 1.7 m.

Data Quality

Other NOAA Saildrone cruises, Baja cruise, all reported increase STD at low winds. There was concern that this was related to vehicular or sensor heating.

Is there something wrong with the observations below 6 m/s?

Use SBE56 to filter DW/cool events

Developed automated code to identify portions of the cruise where the SBE56 diverged from the CTDs onboard, indicating either diurnal warming or surface cooling events (likely related to nearby ice melt).

Unexpected result

The scatter goes away for both the RBR and the SBE37 comparisons when the data is filtered for periods when the SBE56 indicate thermal stratification.

Hypothesis: stratification

As the vehicle rides on the surface, sensors move up and down. In a well-mixed upper layer, at winds >6 m/s, all sensors measure warm layer the same temperature. In a stratified upper layer, at winds <6 m/s, small movements in vehicle

increase the STD

Cruise data quality

PO.DAAC has the ADCP and temperature logger data as well as Saildrone vehicle dataset.

Quality appears to be good, but users should be careful of data that may be affected when the vehicle was stuck in ice

Strong fronts and diurnal warming. We will provide the cool/warm data mask to PO.DAAC in the future, for now email cgentemann@faralloninsitute.org

Other interesting features

Strong salinity fronts

Strong temperature fronts

Upper ocean diurnal warming measurements

What are the heat and moisture fluxes close to the ice?

What can these observations tell us about accuracy of L2, L3, and L4 products?

What can we understand about spatial variability from the coordinated sampling?

Future data....

2020: No Arctic cruise, 3 Saildrones deployed 45 days in Brazil Current Ring region, data to be available soon

2021: 2 NASA Arctic

2022: 1 NASA Arctic

