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Abstract

We calculate the Lyapunov exponents of the complex stretch factor
f−(z) = (1−z2)−1/2 from the Lorentz transformations and of its
reciprocal f+(z) = (1 − z2)+1/2 as well.
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Introduction

1. Very little is known regarding the connection of mathematical maps
and physical systems.

2. We proposed two conjectures for this end, one relating quantum su-
perposition with the logistic map [1], and the other giving an insight
about the fundamental nature of time [2].
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Lorentz transformations

3. The warp of spacetime in the realm of special relativity (inertial ob-
servers) is due to the following function,

f(x) = 1√
1 − x2

= (1 − x2)−1/2,

in the natural system of units (NSU), where light has velocity c = 1 [3].

4. In the NSU, x is the fraction of the light speed, i.e., 0 ≤ x ≤ 1.

5. f(x) accounts for both time dilation and space contraction; let’s call
it the stretch function.

Lyapunov exponent

6. A chaotic system exhibits sensitive dependence on initial conditions
and henceforth has a positive Lyapunov exponent.

7. We summarize the idea of the Lyapunov exponent in the following;
more details can be found in [4].

8. x0 ∶= initial condition

9. δ0 ∶= a point nearby x0 such that ∣x0 − δ0∣ << 1

10. δn = ∣xn − x0∣ is the separation of xn from x0 after n iterates.

11. ∣δn∣ ≈ ∣δ0∣enλ → λ ∶= Lyapunov exponent

12. f ′(x) = df(x)
dx

13. The analytical form of the Lyapunov exponent is thus given by

λ = lim
n→∞
(1
n

n−1
∑
i=0

ln∣f ′(xi)∣).
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14. Although λ depends on x0, it is the same for all x0 in the basin of
attraction of a given attractor [4].

15. A positive Lyapunov exponent is a signature of sensitive dependence
on initial conditions; it does not necessarily mean the system is in a
chaotic regime, as we will see in the next section.

Results

16. We calculate numerically the Lyapunov exponents of ∣f−(z)∣ and ∣f+(z)∣
for the rational interval 0 < z < 1 from the following definitions.

17.
f− ∶ C→ C such that f−(z) = (1 − z2)−1/2

18.
f−
′(z) = z(1 − z2)−3/2

19.
f+ ∶ C→ C such that f+(z) = (1 − z2)+1/2

20.
f+
′(z) = −z(1 − z2)−1/2

21. Figs. 1−4 show the Lyapunov exponents of ∣f−(z)∣ and ∣f+(z)∣, re-
spectively.

22. Figs. 5−12 show the iterations (time series) of ∣f−(z)∣ and ∣f+(z)∣,
respectively.
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Figure 1: The Lyapunov exponents of f−(z) = (1 − z2)−1/2 plotted for
z0 ∈ {0.01, 0.02, 0.03, ..., 0.99}.
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Figure 2: The Lyapunov exponents of f−(z) = (1 − z2)−1/2 plotted for
z0 ∈ {1.01, 1.02, 1.03, ..., 99.99}.
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Figure 3: The Lyapunov exponents of f+(z) = (1 − z2)+1/2 plotted for
z0 ∈ {0.01, 0.02, 0.03, ..., 0.99}.
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Figure 4: The Lyapunov exponents of f+(z) = (1 − z2)+1/2 plotted for
z0 ∈ {1.01, 1.02, 1.03, ..., 99.99}.
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Figure 5: Iterations (time series) of ∣f−(z)∣ = ∣(1 − z2)−1/2∣ for the initial
conditions Z0 = {0.15, 0.30, 0.45, 0.60, 0.75, 0.90}. Each color represents
one different initial condition z0 ∈ Z0. Note that all conditions led to
three attractors.

23. The attractors ai of the system in Fig. 5 are the following.

z0 a1 a2 a3
0.15 6.59 0.15 1.01
0.30 3.18 0.30 1.05
0.45 1.98 0.45 1.12
0.60 1.33 0.60 1.25
0.75 0.88 0.75 1.51
0.90 0.48 0.90 2.29
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Figure 6: Iterations (time series) of ∣f−(z)∣ = ∣(1 − z2)−1/2∣ for the
initial condition z0 = 12. The attractors are 11.999999999999925,
0.0836242010007096, and 0.9965217285917831.
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Figure 7: Iterations (time series) of ∣f−(z)∣ = ∣(1 − z2)−1/2∣ for the
initial condition z0 = 34. The attractors are 0.9995673804686134,
33.99999999999647, and 0.029424494316828042.
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Figure 8: Iterations (time series) of ∣f−(z)∣ = ∣(1 − z2)−1/2∣ for the
initial condition z0 = 1234. The attractors are 0.9999996716479318,
1234.0000001380304, and 0.0008103730374718962.
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Figure 9: Iterations (time series) of ∣f+(z)∣ = ∣(1 − z2)+1/2∣ for the initial
conditions Z0 = {0.15, 0.30, 0.45, 0.60, 0.75, 0.90}. Each color represents
one different initial condition z0 ∈ Z0. Note that all conditions led to two
attractors.

24. The attractors ai of the system in Fig. 9 are the following.

z0 a1 a2
0.15 0.15 0.99
0.30 0.30 0.95
0.45 0.45 0.89
0.60 0.60 0.80
0.75 0.75 0.66
0.90 0.90 0.44
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Figure 10: Iterations (time series) of ∣f+(z)∣ = ∣(1− z2)−1/2∣ for the initial
condition z0 = 12. The attractors are 12.0 and 11.958260743101398.
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Figure 11: Iterations (time series) of ∣f+(z)∣ = ∣(1− z2)−1/2∣ for the initial
condition z0 = 34. The attractors are 34.0 and 33.98529093593286.
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Figure 12: Iterations (time series) of ∣f+(z)∣ = ∣(1− z2)−1/2∣ for the initial
condition z0 = 1234. The attractors are 1234.0 and 1233.9995948135477.
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Python scripts

25. https://osf.io/5cx4r

26. https://osf.io/rwg73

27. https://osf.io/rychk

Final Remarks

28. We showed that the complex version of the Lorentz factor has both
negative and positive Lyapunov exponents while preserving its peri-
odic behavior under the dynamics of a certain subset of initial condi-
tions.

29. The stretch function comprised in the Lorentz transformations might
shed some light on the quantum nature of spacetime in case it follows
such a discrete dynamical system in its innermost fundamental blocks
[1, 2].
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