
1

The GQL Standard
The upcoming ISO/IEC International Standard for a property graph query language

Stefan Plantikow, GQL Editor, Neo4j

2

The upcoming ISO/IEC International Standard for a

property graph query language

Stefan Plantikow, Principal GQL Editor, Neo4j

The GQL Standard

Stefan Plantikow, GQL Editor, Neo4j, May 2021

3

The GQL Standard

GQL Story

From openCypher to ISO Project

Envisaging GQL

Features and syntax

GQL Process

Standardization and timeline

1

2

3

Stefan Plantikow, GQL Editor, Neo4j, May 2021

Stefan Plantikow, GQL Editor, Neo4j, May 2021

4

Caveats

• GQL is still under development and not final
Features may be changed, dropped, or moved to a future version.

• ISO Database standards are ”featurized”
Implementations are conforming as long as they don’t violate the standard

but it’s up to them which optional features they choose to implement.

• Safe harbour statement
Nothing in this talk, the slides, or the accompanying discussion represents a commitment by Neo4j

(or any other vendor) to implement GQL or any of its features.

Stefan Plantikow, GQL Editor, Neo4j, May 2021

5

GQL Story

From openCypher to ISO project

6

(Property) graphs are everywhere

Neo4j share of Graph DBMS:
20 000 000+ Direct downloads, 3/top 5 airlines 20/top 25 financial services
100 000 000+ DockerHub downloads, 25%+ Fortune 500, 3/top 5 hotels 4/top 5 telecommunication firms
50.000+ Trained developers 7/top 10 retailers 3/top 5 airplane manufacturers

7/top 10 software companies

Stefan Plantikow, GQL Editor, Neo4j, May 2021

7

Data model

Nodes (vertices) and

relationships (edges) with

• Synthetic (unique) identity

• 0..n Labels

• 0..n Properties

• Edges may be directed or

undirected

+ 0..n graph properties

Property graphs

Stefan Plantikow, GQL Editor, Neo4j, May 2021

:City
name:
Tokio

:Person&
Employee
first: Stefan

last: Plantikow

:Company
name: Neo4j

:WORKS_AT
since: 2012

:LIVES_IN
since: 2000

:City
name:
Berlin

:City
name:

London

:City
name:
Paris

:TWIN_CITIES

:TWIN_CITIES :TWIN_CITIES

:TWIN_CITIES :TWIN_CITIES

:ISO_Project
name: GQL

number: 39075

:PRINCIPAL_EDITOR
since: 2019

:Person
first: Stephen
last: Cannan:City

name:
Amsterdam

:LIVES_IN

:ASSOCIATE_EDITOR
since: 2019

:Person
first: Tobias

last:
Lindaaker

:Person
first: Petra

last: Selmer

:Person
first: Hannes

last: Voigt

:Person
first: Keith
last: Hare

And many more!

:WORKS_ON

:WORKS_ON

:WORKS_ON

:WORKS_ON

:WORKS_ON

:WORKS_ON

8

Cypher Query Language

Declarative graph pattern matching
language

• Intuitive:
Graph patterns are very easily expressed

• Recursive (e.g. variable-length) path queries
• Querying and returning paths
• Modern data types and conventions
• Top-Down

SQL-like and pattern-based
syntax and features

• DQL for reads (focus of this talk)
• DML for updates
• DDL for creating constraints and indexes

Stefan Plantikow, GQL Editor, Neo4j, May 2021

MATCH (query)-[:MODELED_AS]->(drawing),
(code)-[:IMPLEMENTS]->(query),
(drawing)-[:TRANSLATED_TO]->(ascii_art),
(ascii_art)-[:IN_COMMENT_OF]->(code),
(drawing)-[:DRAWN_ON]->(whiteboard)

WHERE query.id = $query_id
RETURN code.source

9

Cypher’s linear vs SQL’s nested composition

FROM myGraph

MATCH (a:B) WHERE a.foo%42 = 0

LET id=a.id, foo=a.foo, bar=a.bar

FILTER bar > 3

RETURN id, foo, count(*) as X

THEN

FILTER X > 100

RETURN foo+“ “+id

SELECT foo+“ “+id

FROM {

SELECT id, foo, count(*) as X

FROM {

SELECT a.id AS id, a.foo AS foo, a.bar AS bar

FROM myGraph

MATCH (a:B) WHERE a.foo%42 = 0

}

WHERE bar > 3

GROUP BY id, foo

}

WHERE X > 100

Linear
Top-Down

Bottom-up
Nested

• Form of nested procedure composition:
Compose reading, aggregation, and
updating steps in linear, top-down
(“GQL-style“) order

• (GQL: work with multiple graphs)

• Form of nested procedure composition:
Compose reading and aggregation step
in nested, bottom-up
(„SQL-style“) order

• (GQL: work with multiple graphs)

Stefan Plantikow, GQL Editor, Neo4j, May 2021

10

openCypher

Multivendor effort to evolve Cypher

• Started 2015, informal
• Implementers, researchers, academics
• Markdown-based specification via

addendums to Cypher 9 reference

Stefan Plantikow, GQL Editor, Neo4j, May 2021

Artifacts and tooling

• Language Front-End (Parser, Syntax Analysis)
• ANTLR and EBNF Grammars
• Formal semantics
• Technology Compatibility Kit (TCK) - Cucumber test suite
• Style guide

Research

Updating Graph Databases with Cypher.
VLDB. A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plantikow, M. Schuster, P.
Selmer, H. Voigt. 2019

G-CORE: A Core for Future Graph Query Languages.
SIGMOD. R. Angles, M. Arenas, P. Barcelo, P. Boncz, G. Fletcher, C. Gutierrez, T. Lindaaker, M.
Paradies, S. Plantikow, J. Sequeda,
O. van Rest, and H. Voigt. 2018.

Cypher: An Evolving Query Language for Property Graphs.
SIGMOD. N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plantikow, M.
Rydberg, P. Selmer, and A. Taylor. 2018.

Implementations

• 9 commercial, 4 research
• Cypher for Apache Spark
• Cypher for Gremlin

11

Graph querying

Declarative or imperative

Platform API, language, or protocol

Choices…

openCypher
(Neo4j, Redis, Katana Graph, Memgraph, Agens Graph, SAP/HANA, CAPS, …)

MATCH (n:Person)-[:KNOWS*..2]->(m:Person)
WHERE n <> m
RETURN n, count(DISTINCT m) AS num_foafs

PGQL (Oracle PGX)

SELECT n, count(DISTINCT m) AS num_foafs
FROM MATCH (n:Person)-[:KNOWS{,2}]->(m:Person)
WHERE n <> m
GROUP BY n

GSQL (TigerGraph)

SELECT n, count(DISTINCT m) AS num_foafs
FROM Person:n-(Knows>:e*..2)-Person:m
WHERE n <> m
GROUP BY n

Gremlin (Apache)

// alt: Cypher-for-gremlin
g.V().hasLabel(‘person’).as(’n’)

.outE(‘knows’).optional(_.in().outE(‘knows’))

.in().hasLabel(‘person).as(‘m’)

.select(‘n’, ‘m’).group().by(‘n’).dedup().count()

Move towards declarative languages

Pattern matching, pioneered by Neo4j Cypher

Common property graph model

Use-case centric

…and commonalities

Stefan Plantikow, GQL Editor, Neo4j, May 2021

12

The GQL Manifesto

“Let’s build a next generation, declarative,

composable, compatible, modern, intuitive

International Standard for a Property Graph Database

Language”

(Alastair Green, @ Neo4j in 2019)

95 % of ca. 4000 votes: YES

Open letter to the database industry

Stefan Plantikow, GQL Editor, Neo4j, May 2021

13

GQL Project
Property Graph World
Cypher, PGQL, GSQL

SQL
Data types, Expressions

Community
openCypher, LDBC

Academia
G-Core, Data graphs, ...

Stefan Plantikow, GQL Editor, Neo4j, May 2021

14

Goals

• Universal property graph query language that users can depend on to access graph databases,

enabling skills reuse and vendor interoperability.

• Establish graphs as primary data model, raising the level of abstraction and enabling graph views and transformation.

• Compatibility with existing languages, applications, and skills. No idle variation from proven syntax & semantics.

• Query language for graph experts, SQL users, programmers, and data analysts.

• Grow the property graph space to enable use of connected data by modern organizations.

• Support modern technology stacks: Unicode, IEEE Floats, ISO 8601, …

• Standard that is easy to learn, use, teach, implement, and evolve.

Stefan Plantikow, GQL Editor, Neo4j, May 2021

15

Envisaging GQL

Features and syntax

16

A taste of what GQL might look like

① SESSION SET VALUE $age = 20 /* session parameters */
START TRANSACTION /* transaction demarcation */

② GQL runtime=gpu /* optional preamble */

③ USE myGraph

④ MATCH (p:Person)-[:FRIEND]->()-[:FRIEND]->(friend)
WHERE friend.age > $age AND p.country = $country /* procedure parameter */

⑤ RETURN count(*) AS edges_added /* SELECT is supported, too */

⑥ COMMIT /* transaction demarcation */
END /* session demarcation */

Stefan Plantikow, GQL Editor, Neo4j, May 2021

17

Language basics

Common ground between SQL and property graph world.
• Human-readable „Clause syntax“ following SQL, openCypher, PGQL, GSQL, ...

• Linear top-down (RETURN) and nested bottom-up (SELECT) composition

• Expressions from all input languages (openCypher, SQL, GSQL, ...)

• Hierarchical catalog: Vendor-adaptable directory structure with schema at leaves.

Modern data types
• Standard scalar types: Unicode strings, numbers incl. IEEE 754/ISO 60559 floats, ISO 8601 temporal types, booleans, ...

• Collection data types: Maps { name: "GQL", type: "language", age: 0 }, arrays [1, 2, 3], sets SET { a, b }, ...

• Graph-related data types: Node, edge, and graph references, as well as paths, ...

• Other schema objects (Next slide)

Stefan Plantikow, GQL Editor, Neo4j, May 2021

18

Hierarchical Catalog

Vendor-adaptable directory structure with

schema at leaves. Schema contains primary

objects such as

• Graphs

• Graph types

• Stored procedures

• Global constants

• Path pattern macros

• …

/sales (root directory)
/2019 (schema)
• Total2019 (graph)
• Quarterly2019Q4 (graph)
• Quarterly2019Q3 (graph)

/2018 (schema)
• Total2018 (graph)

/HR (directory)
/open (schema)

/Staff (graph)
• Persons (subgraph view)
• Departments (subgraph view)

/Sensitive (graph)
• Persons (subgraph view)
• Departments (subgraph view)
• Salaries (graph)

Stefan Plantikow, GQL Editor, Neo4j, May 2021

(Example from H. Voigt)

19

Graph schema is a graph

// Graph type describing graph schema

(:Person { gender STRING, birthday DATE }),
(:Message { creationDate DATETIME, context TEXT }),
(:Tag { name STRING, url STRING }),
...

(:Person)-[:LIKES { creationDate DATETIME }]->(Message),
(:Message)-[:HAS_TAG]->(:Tag),
(:Person)-[:HAS_INTEREST]->(:Tag),
...

+ Schema constraints

• Key constraints
• Cardinality constraints
• ...

Stefan Plantikow, GQL Editor, Neo4j, May 2021

20

New graph patterns

1. Selecting elements with complex label expressions.
MATCH (n:Person&(Employee|Intern))

2. Predicates on properties along a path:
MATCH (start) [(p1:Person)-[r:KNOWS]-(p2:Person) WHERE r.since < date("2001-09-11"]* (end)

3. Bounded repetition.
MATCH (me) [(:Person)-[:KNOWS]->(:Person)]{2,5} (you)

4. Path pattern union (a form of disjunction).
MATCH (a) (-[:KNOWS]- | -[:WROTE]->()<-[:WROTE]- | -[:WORKS_AT]->()<-[:WORKS_AT]-) (b)

5. Configurable pattern-matching semantics: Node isomorphism, edge isomorphism, homomorphism.

6. Path pattern output modifiers.
MATCH ALL | ANY SHORTEST | ALL SHORTEST ...

Stefan Plantikow, GQL Editor, Neo4j, May 2021

(Examples from P. Selmer)

21

Updating graphs
The power of visual pattern syntax re-used:

USE myGraph
INSERT (:Language {name: "GQL"})-[:PRESENTED_AT]->(:Place {name: "Austin"})

// or
INSERT (place:Place {name: "Austin"})
INSERT (lang:Language {name: "GQL"})
INSERT (lang)-[:PRESENTED_AT]->(place)

More modifying statements:
DELETE n // delete graph elements
DETACH DELETE n // delete nodes and their relationships
SET/REMOVE n:Label // set or remove labels
SET/REMOVE n.prop // set or remove properties
MERGE (:Book { isbn: ... }) // upsert (under discussion)

Stefan Plantikow, GQL Editor, Neo4j, May 2021

22

Multigraph and graph projection

Queries may use multiple graphs.
Graphs are either persistent or
constructed by

• Sharing existing elements
• Deriving new elements

(Shared edges always point to the same (shared)
endpoints in all graphs)

Graph projection is
the inverse of pattern matching.

Stefan Plantikow, GQL Editor, Neo4j, May 2021

23

Procedure composition

• Abstraction and re-use
• Complex processing chains
• Parameterized views (e.g. for inference)

Enabling

• Graphs
• Binding tables
• Regular values,

including nodes, relationships, paths etc.

Returning

Stefan Plantikow, GQL Editor, Neo4j, May 2021

24

GQL Process

Standardization and timeline

25

Standardizing GQL
Goal Let’s build a next generation, declarative, composable, compatible, modern, intuitive International Standard for a
Property Graph Database Language!

Where? ISO/IEC JTC 1/SC 32/WG 3 aka “The SQL Standards Committee“ (Convenor: Keith Hare)

How?

1. National standards bodies representing countries (e.g. ANSI) or liasion organizations join SC 32 as P-members or
establish a liasion relationship (e.g. LDBC)

2. Each such eligible organization delegates experts (mostly from major vendors) to WG3 to submit discussion papers
and change proposals and generally attend the WG3 meetings discussion those papers.

3. Editors modify the GQL draft to reflect consensus on submissions by WG3 and conform to ISO requirements.

4. The GQL draft is gradually refined in stages to become an International Standard.
Formal progress requires voting by SC32 P-Members.

More information: Please contact Keith Hare, Stefan Plantikow, or Stephen Cannan.

Stefan Plantikow, GQL Editor, Neo4j, May 2021

26

GQL Draft

• Initially drafted by editors (S. Plantikow, S. Cannan)

Re-using existing text from SQL where appropriate and
in line with ISO requirements, using proven tooling of
the SQL Standard

• Featurized to help adoption (“Small GQL core")

• Currently reviewed and reworked by standardization
process involving experts from the national standards
bodies of the US, Germany, Netherlands, UK, Japan,
South Korea, Sweden, Finland, Canada, China and
liaison organizations such as the LDBC

• Developed in tandem with SQL/PGQ sibling standard

• 498 pages

Stefan Plantikow, GQL Editor, Neo4j, May 2021

27

Timeline and summary

• GQL is being standardized based on the

success of property graph query

languages.

• This is just the first version. More to come.

• Established languages, like openCypher,

and their implementations (e.g. Neo4j)

today provide the gateway to GQL

tomorrow.

Stefan Plantikow, GQL Editor, Neo4j, May 2021

Working Draft

Committee Draft

Draft Intl. Standard

International Standard

Since early 2021

Towards end of 2021

Polishing

Publication by ISO, ~ 2022

Final Draft Intl. Standard More polishing

28

@KGConference

linkedin.com/company/the-knowldge-graph-conference/

youtube.com/playlist?list=PLAiy7NYe9U2Gjg-600CTV1HGypiF95d_D

#KGC2021

Join the Conversation

@boggle

gqlstandards.org

Stefan Plantikow, GQL Editor, Neo4j, May 2021

https://www.linkedin.com/company/the-knowldge-graph-conference/
https://www.youtube.com/playlist?list=PLAiy7NYe9U2Gjg-600CTV1HGypiF95d_D

