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ABSTRACT

Automated unsupervised video summarization by key-frame
extraction consists in identifying representative video frames,
best abridging a complete input sequence, and temporally
ordering them to form a video summary, without relying on
manually constructed ground-truth key-frame sets. State-
of-the-art unsupervised deep neural approaches consider the
desired summary to be a subset of the original sequence,
composed of video frames that are sufficient to visually re-
construct the entire input. They typically employ a pre-trained
CNN for extracting a vector representation per RGB video
frame and a baseline LSTM adversarial learning framework
for identifying key-frames. In this paper, to better guide
the network towards properly selecting video frames that
can faithfully reconstruct the original video, we augment the
baseline framework with an additional LSTM autoencoder,
which learns in parallel a fixed-length representation of the
entire original input sequence. This is exploited during train-
ing, where a novel loss term inspired by dictionary learning
is added to the network optimization objectives, further bi-
asing key-frame selection towards video frames which are
collectively able to recreate the original video. Empirical
evaluation on two common public relevant datasets indicates
highly favourable results.

Index Terms— Video summarization, Generative Adver-
sarial Networks, Long Short-Term Memory, Dictionary learn-
ing, Unsupervised key-frame extraction

1. INTRODUCTION

Video has undoubtedly become the most widespread and
preferred source of visual information. However, this vast
availability has made it difficult for users to find content that
matches their taste, while media production companies need
tools that facilitate searching through typically enormous
video databases. Hence, overall, obtaining a succinct sum-
mary of a video is crucial for handily conveying its essence.

The research leading to these results has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under grant
agreement No 951911 (Al4Media).

This demand is met by automated video summarization
algorithms, which generate significantly shorter versions of
original input videos, called summaries. A summary only re-
tains the most important segments of the full sequence, while
removing the redundant content. Different forms of sum-
maries exist, but the most popular one is the key-frame set.
The latter is a subset of temporally ordered “representative”
video frames, that have been selected among the complete set
of original video frames as the ones that “best” summarize the
complete input in a succinct manner. As expected, different
definitions of representativeness and optimal summarization
can and have been employed over time, leading to diverging
methodological approaches.

Early methods were typically unsupervised learning algo-
rithms relying on clustering [1] or on dictionary learning [2].
Typical key-frame selection criteria were summary diversity
and reconstructive ability, the latter being a way of formaliz-
ing representativeness as the degree to which the key-frames
are jointly able to visually reconstruct all original video
frames. Additionally, in various unsupervised approaches,
key-frame difference from its temporal neighbours or similar
saliency criteria were also employed [3, 4, 5, 6]. In certain
cases these algorithms processed raw video frames, but typ-
ically they were fed manually crafted image/video features
[7, 8].

The advent of Deep Neural Networks (DNNSs) in re-
cent years led to the popularization of supervised learning
approaches to video summarization [9, 10]. However, the
high cost of annotating the training data, the increased risk
of overfitting to the specific training videos, as well as the
subjective nature of the task, which renders it difficult to ob-
tain a satisfying “ground-truth” summary, have led recently
to unsupervised deep neural approaches. Typically, these
combine several LSTMs [11], including autoencoder and dis-
criminator modules, in the context of a unified architecture
[12]. The main idea is that an LSTM selector network maps
each input video frame representation (typically obtained
by a pretrained CNN) onto a normalized scalar importance
score, which determines whether it is selected as a key-frame
or not. During training, a successively placed autoencoder
attempts to reconstruct the representations of all input video
frames from the key-frames and a discriminator judges how



convincing this reconstruction looks. Thus, an error signal
is passed to the selector, allowing its adversarial training via
back-propagation and a variant of gradient descent. Several
reworks of this main idea have been presented during the
last few years [13, 14, 15, 16], giving rise to very promising
empirical results.

This paper addresses the task of unsupervised key-frame
extraction by extending a common, state-of-the-art adver-
sarially trained, LSTM-based framework. Assuming that
a good summary must be able to reconstruct the original
full/complete input sequence, we add an additional novel dic-
tionary loss term during training, which directly penalizes the
difference of the fixed-length summary representation (final
hidden state of the LSTM autoencoder’s encoding compo-
nent) from a similar fixed-length original sequence represen-
tation. The latter is obtained as the final hidden state of a
newly introduced, parallel LSTM encoder that independently
processes the full/complete video. Before computing this dif-
ference within the loss term, the summary representation is
first projected into the space defined by a common set of basis
vectors that are being simultaneously learnt from the entire
training dataset, thus serving as a global visual dictionary
[3]. Thus, each summary representation is exhorted towards
being a set of linear reconstruction coefficients that are jointly
able to reproduce the corresponding original sequence repre-
sentation. Such a linear reconstruction requirement is added
to the corresponding non-linear one enforced by the LSTM
autoencoder’s traditional reconstruction loss, further pushing
the selector towards picking representative key-frames.

This novel, augmented DNN architecture has been eval-
uated on two commonly used, public datasets and shown to
surpass existing unsupervised state-of-the-art methods in typ-
ical video summarization metrics.

2. RELATED WORK

A first attempt to tackle unsupervised neural video key-frame
extraction is [12], taking the form of a Generative Adver-
sarial Network (GAN) framework. A bi-directional LSTM
summarizer is employed to compute the importance of each
video frame in the original/full sequence and a LSTM-based
autoencoder processes its output, i.e., the summary, to con-
struct “fake” samples for the adversarially trained discrimi-
nator. In [14] a subset of key-frames is obtained by maxi-
mizing the mutual information metric between the summary
and the original video, under the principle of cycle consis-
tency. This method trains two discriminators, instead of one.
An extension relying on conditional GANs can be found in
[15], where the generator picks conditional features to further
guide it towards selecting more important video frames. Ad-
ditionally, the problem of modeling inter-frame dependencies
across long video sequences is handled by utilizing attention
mechanisms [10]. Similarly, in [13], a variant of [12] is dis-
cussed where summarizer performance is increased by inte-
grating attention within the LSTM autoencoder, along with

additional minor improvements.

All unsupervised DNN-based methods contain several
neural components that are being jointly trained by a set of
component-specific loss functions. Typically, with the ex-
ception of [15], the most important loss is the reconstruction
term, which forces the summarizer to select key-frames that
are able to jointly reconstruct the original full video in a
convincing manner, based on a popular definition of the “rep-
resentativeness” summarization criterion. However, no effort
has been expended on improving the reconstructive ability
of the summary by imposing additional constraints on key-
frame extraction during training, since most existing relevant
research concerns the employed neural mechanisms or the
adversarial training process.

3. ADVERSARIAL FRAMEWORK FOR VIDEO
SUMMARIZATION

The method proposed in this paper contributes a novel loss
term to the training of a common, state-of-the-art, adversarial
DNN framework for unsupervised video summarization via
key-frame extraction. Thus, this Section first discusses the
baseline architecture within which the proposed method op-
erates and, subsequently, presents the novel loss term.

3.1. Baseline architecture

In principle, a Generative Adversarial Network (GAN) in-
volves a minimax game between two players, the generator
and the discriminator, where the former is trained to maxi-
mally confuse the latter and the discriminator is trained to dis-
cern whether a training sample comes from the real data dis-
tribution or it is a “fake” sample. In an adversarial framework
for unsupervised video summarization by key-frame extrac-
tion [12] the generator is typically replaced by a summarizer
which is fed CNN-derived video frame representations. Both
the summarizer and the discriminator are LSTM networks.
The baseline framework is briefly detailed below.

We assume that the full/original/complete input video se-
quence is represented by a matrix X € RM*XT where T is
the total number of video frames and M the dimensionality
of each video frame. Each column x, € RM, ¢t =1,.... T
of X is a video frame representation, extracted using a pre-
trained CNN. The columns of X are successively fed to the
summarizer, which is composed of three successive LSTM
subnetworks, each one unfolding across 7" time instances: a
selector, an encoder and a decoder. The selector output is a
real vector s € [0, 1], with each entry of s reflecting the suit-
ability of the corresponding input video frame as a key-frame.
Subsequently, each scalar product s;x; is fed to the encoder,
which gradually generates a fixed-length representation of the
summary e € R where H is the LSTM hidden state dimen-
sionality. After e has been finalized, it is fed to the decoder
which also unfolds across 7" time instances. Thus, overall, the
decoder outputs a reconstructed video sequence X € RMxT,
The columns of X are subsequently fed into the discrimina-



tor, which is a binary LSTM classifier being optimized to dis-
tinguish between original videos (“positive examples”) and
their summary-based reconstructions (‘“negative examples”).
Importantly, at approximately half of all training iterations,
the discriminator is fed an original input video as a positive
example. Thus, its final hidden state in such an iteration is
a fixed-length representation ¢(X) of the corresponding full
video X.

During training of the overall architecture, several loss
functions are concurrently minimized by different neural
components, typically using error back-propagation and a
variant of gradient descent. Since there are small variations
in the losses used for different implementations of the ba-
sic framework, we cite below the loss functions specifically
employed in [13], as a representative example.

Reconstruction 10ss: £,ccon = ||¢(X)—d(X)||2. Lrecon
is used to update 6, 6. and 6.

Original video loss: £,,;; = (1 — C(X))?, which is the
MSE between the original video label (i.e., 1) and the dis-
criminator output for original video input. L,,;, is used to
update 6.

N2
Summary loss: Lsm = (C’(X)) , which is the MSE

between the summary label (i.e., 0) and the discriminator out-
put for summary-based reconstructed video input. Ly, is
used to update 6.

2

Generator loss: Ly, = (1 - C’(X)) , which is the
MSE between the original video label (i.e., 1) and the dis-
criminator output for summary-based reconstructed video in-
put. Lgep is used to update 0.

Sparsity loss: Loparsity = |7 Zil s¢ — a2 is a
diversity-inducing regularizer used to update 6,. Hyper-
parameter o represents the desired percentage of original
video frames to be retained in the summary.

In this formulation, 6, 6., 64 and 6. refers to the param-
eter vector of the selector, the encoder, the decoder and the
discriminator, respectively. Moreover, ¢(X)/¢(X) is the dis-
criminator’s final hidden state when it has been fed X/X as
input, respectively. In a similar manner, C'(X)/C(X) is the
final output of the discriminator when it has been fed X/X as
input, respectively.

3.2. Proposed Dictionary Loss

Building upon this basic framework, the proposed method
adds a complementary neural component which is only em-
ployed during training, i.e., an LSTM autoencoder that also
unfolds across 7' time instances and consists in a LSTM
encoder-decoder architecture. This parallel encoder runs
in parallel to the main network. It successively receives all
original video frame representations x; as input, encodes the
entire original sequence into a final hidden state h € RY
and subsequently decodes it to approximately reproduce the

full original video. Obviously, N is the dimensionality of the
hidden state of the parallel encoder.

The newly introduced, parallel autoencoder is pretrained
in a separate preliminary phase, before training the main
DNN, using a typical MSE loss. After it has been optimized,
its decoder is discarded and only the parallel encoder is re-
tained for the main training stage. Subsequently, during the
inference phase of the trained summarizer DNN, only the
selector LSTM is required: the encoder, the decoder, the
discriminator and the parallel encoder can be discarded.

The rationale behind the addition of the parallel autoen-
coder into the overall framework for obtaining a fixed-length
representation of the original video, was that the existing
¢(X) which is employed for computing the main reconstruc-
tion loss is constructed by the discriminator. Thus, it is a
representation adapted to discriminating between original
videos and their summary-based reconstructions, but not nec-
essarily an optimal compact representation of the original
video content itself. In contrast, h is a exactly such an origi-
nal sequence representation, obtained at each iteration of the
summarizer training process as the final hidden state of the
pretrained parallel encoder.

This allows us to introduce the proposed dictionary loss
Lgict as an additional training constraint for updating 6, and
0., besides the traditional reconstruction loss. Lgjct exploits
h and a common matrix A. It is inspired by the dictionary-of-
representatives formulation of unsupervised video key-frame
extraction [3]. In this generic framework, given original input
video X € RM*T | the goal is to find an optimal summary
matrix S € RM*¢ (' << T and a reconstruction coefficient
matrix B € RE*T | 5o that the columns of S constitute a sub-
set of columns of X and the following objective is minimized:

win: > (IX = SB)n, )

where || - || is a matrix norm.

Eq. (1) is not a loss function, but a generic and abstract
problem formulation which, up to now, had not been con-
sidered at all in the context of the adversarial reconstruction
video summarization framework. Thus, the proposed method
is a novel loss term that concretizes this general objective
for deep neural unsupervised key-frame extraction scenarios
which rely on adversarial reconstruction:

‘Cdict = ||h - Ae”?a (2)

where e is the final hidden state of the main LSTM encoder
(summary representation of training example X) and A €
RNXH ig learnt during training from the entire dataset, i.e.,
over time it converges to a single matrix for all training exam-
ples.

At each training iteration, A transforms the current sum-
mary representation to a vector space being simultaneously
learnt from all the original videos, therefore A serves as a
global visual dictionary. Thus, the gain from integrating £ 4jct



into the training process is two-fold. First, each summary
representation is exhorted towards being a set of linear re-
construction coefficients that are jointly able to reproduce the
corresponding original sequence representation. Such a lin-
ear reconstruction requirement is added to the corresponding
non-linear one enforced by L,ccon, [17], further pushing the
selector towards picking representative key-frames. Second,
Lgict directly updates only 6, and 6., while traditional L..ccon,
influences 6, as well, potentially leading to an undesired com-
pensation of suboptimal key-frame selection by overfitting the
decoder to the training set.

Overall, the proposed method only affects the training
stage: the novel loss term Lgict is appended to the training
objectives set of the adversarial reconstruction video summa-
rization framework (not replacing anything), while the novel,
pretrained parallel autoencoder is simultaneously appended
to the neural architecture so that Lg;c4 can be computed. The
parallel autoencoder can be discarded after training has been
completed; therefore, the proposed method induces zero in-
ference runtime overhead to the baseline framework.

4. EVALUATION

The baseline framework codebase was borrowed from [13].
According to typical adversarial unsupervised video summa-
rization evaluation protocols, the videos were downsampled
to 2 frames per second, the CNN-derived 1024-dimensional
video frame representations were extracted from the pool5
layer of a GoogLeNet [18], pretrained on the ImageNet
dataset for image classification, while the hidden state of
the involved LSTM modules is 500-dimensional. Each com-
ponent, including the newly introduced parallel autoencoder,
consists in a two-layer LSTM. The parallel encoder, produces
a fixed-size (500-dimensional) original sequence representa-
tion.

Two Adam optimizers with a learning rate of 10~ were
employed, for training the summarizer and for learning matrix
A in the dictionary loss, respectively. 80% of the dataset was
used for training and the rest was reserved for validation. Ac-
cording to common practice in relevant literature, the dataset
was repeatedly partitioned in 5 random splits and the overall
reported performance is the average over all runs. Matrix A
was initialized using Glorot uniform initialization [19].

Finally, given that the selector LSTM produces an impor-
tance score/percentage per original video frame during infer-
ence, a Knapsack algorithm was implemented [20] to tem-
porally segment the video into subshots (i.e., smaller consec-
utive video clips). The subshots are sorted from high to low
based on the average importance of their video frames, before
selecting the final key-frame set [13].

Empirical evaluation was conducted using the F-Score
metric F' and the commonly employed, public datasets
SumMe [21] and TVSum [22]. These contain videos of
diverse content, ranging from first- and third-person clips of
human activities to television shows and documentaries, with

a varying duration of 1 up to 6 minutes. Both datasets provide
ground-truth summaries annotated by multiple users.

Table 1 depicts quantitative evaluation results for the pro-
posed method, as well as for competing ones, with desired
summary length equal to 15% of the duration of the original
full/complete input in all cases.

Method TVSum | SumMe
SUM-GAN-AAE [13] | 58.3% 48.9%
vsLSTM [23] 54.2% 37.6%
dppLSTM [23] 54.7% 38.6%
Cycle-SUM [14] 57.6% 41.9%
ACGAN [15] 58.5% 46.0%
Proposed 59.3% | 51.0%

Table 1. F-Score results of unsupervised video summariza-
tion methods in two public datasets.

As it can be seen, the proposed method surpasses all
competing methods and gives rise to gains of 0.8% and
2.1% (measured in F-Score), respectively in the two datasets,
in comparison to the next best unsupervised approach per
dataset. In comparison to the baseline [13] where the pro-
posed method is appended to, the respective F-Score gains
are 1.0% and 2.1%.

For reference purposes, we also report here the F-Score
performance of two supervised, neural attention-driven meth-
ods: VASNet [24] achieves 49.71% and 61.42%, in the
SumMe/TVSum dataset, respectively, while M-AVS [10]
achieves 44.4% and 61.0%, respectively.

5. CONCLUSIONS

This paper presented a novel, differentiable loss function in-
spired by dictionary learning, which is added to the training
process of a common adversarial neural video summariza-
tion framework for unsupervised key-frame extraction. The
proposed dictionary loss exploits a newly introduced, parallel
LSTM autoencoder and biases key-frame selection towards
video frames which are collectively able to recreate the orig-
inal sequence, by imposing a linear reconstruction objective
on top of the non-linear reconstruction enforced by the main
LSTM autoencoder. The method surpasses the state-of-the-
art when evaluated on two common public relevant datasets,
confirming our underlying hypothesis that the reconstructive
ability plays a crucial role in key-frame selection.

6. REFERENCES

[1] “VSUMM: A mechanism designed to produce static
video summaries and a novel evaluation method,” Pat-
tern Recognition Letters, vol. 32, no. 1, pp. 56 — 68,
2011.

[2] E. Elhamifar, G. Sapiro, and R. Vidal, “See all by look-
ing at a few: Sparse modeling for finding representa-
tive objects,” in Proceedings of the IEEE Conference



(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

on Computer Vision and Pattern Recognition (CVPR),
2012.

I. Mademlis, A. Tefas, and I. Pitas, “A salient dictionary
learning framework for activity video summarization via
key-frame extraction,” Information Sciences, vol. 432,
pp- 319-331, 2018.

I. Mademlis, A. Tefas, and I. Pitas, “Greedy salient dic-
tionary learning with optimal point reconstruction for
activity video summarization,” in Proceedings of the
IEEE International Workshop on Machine Learning for
Signal Processing (MLSP), 2018.

I. Mademlis, A. Tefas, and I. Pitas, “Regularized SVD-
based video frame saliency for unsupervised activity
video summarization,” in Proceedings of the IEEE In-

ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2018.

I. Mademlis, A. Tefas, and 1. Pitas, ‘“Summarization
of human activity videos using a salient dictionary,” in
Proceedings of the IEEE International Conference on
Image Processing (ICIP). IEEE, 2017.

I. Mademlis, A. Tefas, N. Nikolaidis, and I. Pitas,
“Compact video description and representation for au-
tomated summarization of human activities,” in INNS
Conference on Big Data. Springer, 2016.

I. Mademlis, N. Nikolaidis, and I. Pitas, “Stereoscopic
video description for key-frame extraction in movie
summarization,” in Proceedings of the European Sig-
nal Processing Conference (EUSIPCO). IEEE, 2015.

B. Zhao, X. Li, and X. Lu, “TTH-RNN: Tensor-train
hierarchical recurrent neural network for video summa-
rization,” IEEE Transactions on Industrial Electronics,
2020.

Z.Ji, K. Xiong, Y. Pang, and X. Li, “Video summariza-
tion with attention-based encoder-decoder networks,”
IEEE Transactions on Circuits and Systems for Video
Technology, 2019.

S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural computation, vol. 9, no. 8, pp. 1735—
1780, 1997.

B. Mahasseni, M. Lam, and S. Todorovic, “Unsuper-
vised video summarization with adversarial 1stm net-
works,” in Proceedings of the IEEE conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017.

E. Apostolidis, E. Adamantidou, A. I. Metsai,
V. Mezaris, and 1. Patras, “Unsupervised video sum-
marization via attention-driven adversarial learning,” in
Proceedings of the International Conference on Multi-
media Modeling (MMM ). Springer, 2020.

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

L. Yuan, F. E.H. Tay, P. Li, L. Zhou, and J. Feng, “Cycle-
SUM: Cycle-consistent adversarial LSTM networks for
unsupervised video summarization,” in Proceedings of
the AAAI Conference on Artificial Intelligence, 2019.

X. He, Y. Hua, T. Song, Z. Zhang, Z. Xue, R. Ma,
N. Robertson, and H. Guan, “Unsupervised video sum-
marization with attentive conditional generative adver-
sarial networks,” in Proceedings of the ACM Interna-
tional Conference on Multimedia, 2019.

E. Apostolidis, A. 1. Metsai, E. Adamantidou,
V. Mezaris, and 1. Patras, “A stepwise, label-based ap-
proach for improving the adversarial training in unsu-
pervised video summarization,” in Proceedings of the
International Workshop on Al for Smart TV Content
Production, Access and Delivery, 2019.

N. Srivastava, E. Mansimov, and R. Salakhudinov,
“Unsupervised learning of video representations using
LSTMs,” in Proceedings of the International Confer-
ence on Machine Learning (ICML), 2015.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich, “Going deeper with convolutions,” in Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015.

X. Glorot and Y. Bengio, “Understanding the difficulty
of training deep feed-forward neural networks,” in Pro-
ceedings of the International Conference on Artificial
Intelligence and Statistics, 2010.

D. Potapov, M. Douze, Z. Harchaoui, and C. Schmid,
“Category-specific video summarization,” in Proceed-
ings of the European Conference on Computer Vision
(ECCV). Springer, 2014.

M. Gygli, H. Grabner, H. Riemenschneider, and
L. Van Gool, “Creating summaries from user videos,” in
Proceedings of the European Conference on Computer
Vision (ECCV), 2014.

Y. Song, J. Vallmitjana, A. Stent, and A. Jaimes, “TV-
Sum: Summarizing web videos using titles,” in Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015.

K. Zhang, W.-L. Chao, F. Sha, and K. Grauman, “Video
summarization with long short-term memory,” in Pro-
ceedings of the European Conference on Computer Vi-
sion (ECCV). Springer, 2016.

J. Fajtl, H. S. Sokeh, V. Argyriou, D. Monekosso, and
P. Remagnino, “Summarizing videos with attention,”
in Proceedings of the Asian Conference on Computer
Vision (ACCV). Springer, 2018.



