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Abstract
The selection of the optimal external cylindrical grinding conditions importantly contributes to increase of productivity and 

quality of the products. The external cylindrical grinding is a method of finishing machine elements surface with an indeterminate 
blade shape. External cylindrical grinding can process surfaces that require high gloss and precision, although it can also be used to 
remove large surplus stock. Therefore, multi objective optimization for the external cylindrical grinding process is a problem with 
high complexity. In this study, an experimental study was performed to improve the productivity and quality of grinding process.  
By using the experimental date, the surface roughness, cutting force, and vibrations were modeled. To achieve the minimum value of 
surface roughness and maximum value of material removal rate, the optimal values of external cylindrical grinding conditions were 
determined by using the combination of Genetic Algorithms (GAs) and weighting method. The optimum values of surface roughness 
and material removal rate are 0.510 μm and 5.906 mm2/s, respectively. The obtained optimal values of cutting parameters were a feed 
rate of 0.3 mm/rev, a workpiece speed of 188.1 rpm, a cutting depth of 0.015 mm, and a workpiece Rockwell hardness of 54.78 HRC. 
The optimal values of cutting parameters, and workpiece hardness were successfully verified by comparing of experimental and 
predicted results. The approach method of this study can be applied in industrial machining to improve the productivity and quality 
of the products in external cylindrical grinding process of the T1 tool steel.
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1. Introduction
Machining process in general and the grinding process in particular, the productivity and 

surface roughness are the two important goals that the engineers and workers always want to aim.  
Depending on the stages of the grinding process the objective can be productivity or surface roughness,  
but the desire during the grinding process is to achieve both productivity and surface roughness. 
The optimal problem of two or more goals is called the multi-objective optimization problem. 
This is a complex problem containing many boundary conditions and constraints with large search 
space, so to solve this problem requires an appropriate algorithm. 

Many studies have been conducted to investigate the influence of cutting parameters on the 
surface roughness, cutting forces, vibrations, and material removal rate. The effective evaluation of 
the optimization process was achieved by rapid-working in-process and post-process measurement 
systems [1]. A novel modelling schemes and optimization methods for surface roughness was pro-
posed based on evolutionary algorithms in the grinding processes [2]. An available model with single 
criteria material removal rate was applied to obtain the optimum grinding parameters for silicon 
carbide grinding process using the particle swarm optimization algorithm [3]. A combination me thod 
of the target tree method and the genetic algorithm was used to optimize the grinding process [4]. 

In multi-objective optimization of grinding process, there are more things that have done 
with the real application. A better solution technique with scatter search approach was proposed 
for multi-objective optimization of surface grinding operations [5]. An approach using integrated  
Genetic Algorithm-Neural Network system was applied to optimize the creep feed grinding process.  
The aim of this study was determination of the maximal metal removal rate (MRR) and the mini-
mum of the surface roughness (Ra) in creep feed grinding process [6]. 

An optimization approach based on enhanced Pareto particle swarm optimization algo-
rithm and local climbing optimization technique was proposed to solve the optimization problem 
in the grinding processes [7]. The ant colony algorithm approach was successfully applied to solve  
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the optimization problem in the grinding processes [8]. A combination method of genetic algorithm 
and weighted objective function based on the optimization procedure was proposed to optimize 
for the surface grinding process [9], to model and optimize the parameters in chemotherapy [10],  
to focus mainly on optimization technique and engineering application [11], to optimize the part 
flow time between machines, processing time of the part, throughput of the plant [12].

In this study, a combination method of genetic algorithms (GAS) and weighting methods was 
proposed to solve the multi-objective optimization problem. The surface roughness function (Ra)  
and material removal rate function (Q′) were selected as the evaluation criteria in grinding process. 
The constraint functions including cutting force (Fy and Fz), and vibration function (A) were built 
using experimental data of external cylindrical grinding the T1 tool steel. The achieved results are 
important bases to select the suitable machining conditions to achieve the highest productivity and 
the smallest surface roughness in external cylindrical grinding process.

2. Materials and methods
2. 1. Multi-Objective optimization method
2. 1. 1. Multi-Objective optimization process
Fig. 1 described the multi-objective optimization process in the grinding process.

Fig. 1. Block diagram to solve the multi-objective optimization problem for external  
cylindrical grinding process

The steps to solve the optimization problem were presented as following:
– Step 1. Setting the initial population: The initial values of machining parameters and the 

hardness of the workpiece material are the initial values of the optimization process.
– Step 2. Determination of objective functions: Surface roughness (Ra) and material removal  

rate (Q ′) function are modeled as the single objective functions. The adaptive function was built as 
a multi-objective function, which is a function of single-objective functions.
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– Step 3. Determination of boundary conditions: The boundary conditions include the func-
tion constraints and variable constraints. The function constraints in this problem included vibration 
and force functions, variable constraints are cutting parameters and machining material stiffness. 

– Step 4. Solving the optimization problem: This step consists of the selection, the hybri-
dization, and the mutation of the genetic algorithm. The number of iterations to create the best 
individual among selected individuals to find the optimal parameters. 

– Step 5. Obtaining the optimum values.

2. 1. 2. Multi-objective functions
The grinding process is divided into rough grinding and fine grinding. With rough grind-

ing, the greatest productivity is concerned while maintaining a certain surface roughness. With 
fine grinding, the goal optimization process is to achieve the smallest surface roughness and to  
ensure the maximum value of machining productivity [6]. Thus, the grinding process needs  
to satisfy as follows:

– minimum in surface roughness;
– maximum of machining productivity, or maximum of material removal.
Therefore, it is possible to build a multi-objective function by weighting method as by the eq. (1):

 M w
R

R
w

Q

Q
a

a
= −

′
1 2. . ,* *  (1)

where Ra is the surface roughness function.
The surface roughness function is modeled experimentally on external cylindrical grinding 

with T1 tool steel as by the eq. (2):

 R Ra a≤ *,  (2)

Ra
*  is the limit of surface roughness. That is the value of surface roughness when replacing the 

upper boundary condition of the variables into the mathematical function of surface roughness.
Q ′ is the material removal rate function. Q ′ is determined by the eq. (3):

 ′ ≥Q Q*,  (3)

where Q* is the limit value of the material removal rate criteria.

2. 1. 3. The Constraints
Functional constraints. The constraints on cutting force and vibration functions are deter-

mined by the eq. (4) to the eq. (6):

 F f S t HRC Fy d y= ( ) ≤, , ,*  (4)

 F f S t HRC Fz d z= ( ) ≤, , ,*  (5)

 A f S n t Ad w= ( ) ≤, , .*  (6)

Variable constraints [12]. The variable constraints are determined by the eq. (7) to the eq. (10).
Feed rate: 

 S S Sd d d
min max.≤ ≤  (7)

Workpiece speed:

 n n nw w w
min max.≤ ≤  (8)
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Cutting depth:

 t t tmin .≤ ≤ max  (9)

Hardness of workpiece material:

 HRC HRC HRCmin ,≤ ≤ max  (10)

where:
– Sd – Axial Feed rate (mm/rev);
– nw – Rotation speed of workpiece (rpm);
– t – Cutting depth (mm);
– HRC – Rockwell hardness of workpiece;
– Fy – Amplitude of cutting force along the Oy (N);
– Fz – Amplitude of cutting force along the Oz (N);
– A – Acceleration amplitude (m/s2);
– Fy

*, Fz
*, A* are the boundary limits of the normal force, tangential force and vibration 

amplitude, respectively, which are determined by the strength, firmness of the machine, and the 
cutting tool. 

2. 1. 4. The Weights
Weights of surface roughness and machining productivity are w1 and w2. These values that 

are in the range (0, 1), allow to determine the corresponding effects of Ra and Q ′. The sum of these 
coefficients is 1 as by the eq. (11) [13].

 w1 + w2 = 1. (11)

If the priority of the variables is not the same, the variable with a larger coefficient will be 
more important. Depending on the purpose of the grinding process, if it is a rough grinding pro-
cess, the productivity will be an important goal, the coefficient w2 will be larger. On the contrary, 
if it is a finish grinding process, the surface roughness is an important goal, so the coefficient w1 
will be larger.

2. 2. Experimental setup
2. 2. 1. Experimental machine
The external cylindrical grinding machine MEG-120 MAGNUM CUT was used to perform 

the experiments as illustrated in Fig. 2.

Fig. 2. External cylindrical grinding machine MEG-112
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The rotation speed of grinding wheel is 2000 rpm, the rotation speed of workpiece is 650 rpm, 
the movement speed of the stepless machine table is from 0.1 to 5 meters per minute (mm/rev).

2. 2. 2. Workpiece and grinding wheel
The experimental workpieces with the diameter of 40 mm was used in grinding process 

as described in Fig. 3. The workpiece material is T1 tool steel that was heat treated to achieve the 
hardness of 40, 50, and 60 HRC. The composites of T1 tool steel was listed in Table 1.

Fig. 3. Workpiece dimensions

Table 1
The components of T1 tool steel

Steel brand Chemical composition (%)

ASTM: T1 tool steel C 0.7–0.8, Si £   0,4, Mn £ 0.4, Cr 3.8–4.4, V 1–1.4, W 17.5–19

The experimental grinding wheel has the size 400×50×203, 3-grain diamond stone dressing 
tool with size: 8.5×40 using the grinding method with the center of the feed rate.

2. 2. 3. Measurement system
MITUTOYO-SJ-400 Surface Roughness Tester (Japan) was used to measure the surface 

roughness of the workpiece as illustrated in Fig. 4. The cut-off length and evaluation length were 
fixed at 0.8 mm and 4 mm, respectively. The surface roughness was measured parallel to the ma-
chined surface repeated three times following three repeated times of each cutting test. The aver-
age values of the measurements were evaluated.

The setting of cutting forces measurement is illustrated in Fig. 5.

Fig. 4. The surface roughness tester Mitutoyo Surflest SJ-400

Fig. 5. The setting of cutting force measurement: a – Grinding wheel (1), workpiece (2)  
and Force sensor (3); b – Signal processing system

 

 
                         a                                       b
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The vibration measurement system that included the acceleration sensor Triaxial DeltaTron 
Accelerometer with TEDS Type 4525-B-001, the stored data LAN-XI, and the PULSE FFT 7770 
module was used to measure the machine-tool vibrations. The detail is illustrated in Fig. 6 [14].

All the measuring devices are connected simultaneously to ensure the system synchronization.

Fig. 6. Setting of vibration measurement:  
a – Vibration sensor; b – Measurement position; c – Data processing system

2. 2. 4. Design of the experimental matrix
From the trial grinding tests, the effect of the grinding conditions and workpiece hardness 

on the surface roughness, the cutting forces, and the vibrations were determined. The important 
factors that influence on the surface roughness are the axial feed rate, the workpiece speed, the cut-
ting depth, and the workpiece hardness. There are three important factors (axial feed rate, cutting 
depth, and workpiece hardness) that influence on the cutting forces. And there are three important 
factors (axial feed rate, workpiece speed, and cutting depth) that influence on the vibration. So, the 
levels of experimental factors and the experiment design of this study were listed from Tables 2–7.

Table 2
Machining parameters and their levels in surface roughness measurement

Factors Unit
Levels

Level 1 (–1) Level 1 (0) Level 1(1)
Axial feed rate Sd mm/rev 0.3 0.4 0.5

Workpiece speed nw rpm 100 150 200
Cutting depth t mm 0.005 0.015 0.025

Workpiece hardness HRC 40 50 60

Table 3
Experimental matrix and measured results of surface roughness

No.
Input factors

Ra (µm)Coded factors Machining parameters
X1 X2 X3 X4 Sd (mm/rev) nw (rpm) t (mm) HRC

1 –1 –1 –1 –1 0.3 100 0.005 40 0.32
2 +1 –1 –1 –1 0.5 100 0.005 40 0.35
3 –1 +1 –1 –1 0.3 200 0.005 40 0.37
4 +1 +1 –1 –1 0.5 200 0.005 40 0.41
5 –1 –1 +1 –1 0.3 100 0.025 40 0.56
6 +1 -1 +1 –1 0.5 100 0.025 40 0.6
7 –1 +1 +1 –1 0.3 200 0.025 40 0.66
8 +1 +1 +1 –1 0.5 200 0.025 40 0.69
9 –1 –1 –1 +1 0.3 100 0.005 60 0.28
10 +1 –1 –1 +1 0.5 100 0.005 60 0.31
11 –1 +1 –1 +1 0.3 200 0.005 60 0.34
12 +1 +1 –1 +1 0.5 200 0.005 60 0.37
13 –1 –1 +1 +1 0.3 100 0.025 60 0.56
14 +1 –1 +1 +1 0.5 100 0.025 60 0.59
15 –1 +1 +1 +1 0.3 200 0.025 60 0.62
16 +1 +1 +1 +1 0.5 200 0.025 60 0.68

 
                    a                                     b                                   c
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Table 4
Machining parameters and their levels in cutting force measurement

Factors Unit
Levels

Level 1 (–1) Level 2 (0) Level 3 (1)

Axial feed rate Sd mm/rev 0.3 0.4 0.5

Cutting depth t mm 0.005 0.015 0.025

Workpiece hardness HRC 40 50 60

Table 5
Experimental matrix and measured results of cutting forces

No.
Input factors

Performance measures
Coded factors Machining parameters

X1 X2 X3 Sd (mm/rev) t (mm) HRC Fy (N) Fz (N)
1 –1 –1 –1 0.3 0.005 40 7.10 3.45
2 +1 –1 –1 0.5 0.005 40 12.33 4.24
3 –1 +1 –1 0.3 0.025 40 12.85 5.15
4 +1 +1 –1 0.5 0.025 40 25.43 9.33
5 –1 –1 +1 0.3 0.005 60 16.55 6.23
6 +1 –1 +1 0.5 0.005 60 20.64 7.78
7 –1 +1 +1 0.3 0.025 60 19.36 7.45
8 +1 +1 +1 0.5 0.025 60 30.32 14.21

Table 6
Machining parameters and their levels in vibration measurement

Factors Unit
Levels

Level 1 (–1) Level 2 (0) Level 3 (1)

Axial feed rate Sd mm/rev 0.3 0.4 0.5

Workpiece speed nw rpm 100 150 200

Cutting depth t mm 0.005 0.015 0.025

Table 7
Experimental matrix and measured results of vibration

No.

Input factors

A (m/s2)Coded factors Machining parameters

X1 X2 X3 Sd (mm/rev) nw (rpm) t (mm)

1 –1 –1 –1 0.3 100 0.005 0.766
2 +1 –1 –1 0.5 100 0.005 0.888
3 –1 +1 –1 0.3 200 0.005 0.913
4 +1 +1 –1 0.5 200 0.005 0.998
5 –1 –1 +1 0.3 100 0.025 0.933
6 +1 –1 +1 0.5 100 0.025 1.237
7 –1 +1 +1 0.3 200 0.025 1.108
8 +1 +1 +1 0.5 200 0.025 1.319

The Tables 2–7 above show the measured values of roughness, cutting force and vibration 
at different test levels.
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3. Results 
3. 1. The regression and verification of experimental models
3. 1. 1. Regression of surface roughness model
The experimental results were stored as in Table 3 for the surface roughness, Table 5 for 

the cutting forces, and Table 7 for the vibration. By analyzing of the experimental data, the surface 
roughness in the grinding process was modeled as the exponential function (12). The verification 
results of surface roughness model were described in Fig. 7. As seen from this figure, the predicted 
results were quite close to the experimental results. There is a quite good relation between predicted 
values and test values. The surface roughness models can be used to optimize the grinding para-
meters of the grinding process.

Fig. 7. Measured and predicted results of surface roughness

The surface roughness model in exponential function:

 R S n t HRCa d w= −2 2463 0 1559 0 2204 0 4277 0 1605. .. . . .  (12)

To assess the appropriateness of the regression equation is to check whether the model ob-
tained correctly describes our experiments or not. Let’s use Fisher standard to compare:

 F F P k kcal tab< ( ), , ,1 2  (13)

in which k1 = N–n–1; k2 = N (m–1); N – number of experiments (N = 8); n – number of factors affect-
ing the test results (n = 3); m – number of repetitions of the experiment (m = 3). So: k1 = 4; k2 = 16:
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where yi  – experimental results No. i calculated according to the regression equation; yi  – the ave-
rage value of m times experiments in the ith experiment; yij – the value of the ith experiment in the 
jth iteration; y yi i−   – error between theory and experiment in ith experiment. 

Basing on experimental results according to the regression eq. (12), the evaluation values of 
the surface roughness regression model (Ra) were calculated as following:
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According to the Fisher standard [15]:

Fcal = 1.797<Ftab(11, 32, 0.95) = 2.1.

Thus, eq. (12) is consistent with reality.

3. 1. 2. Regression of cutting force models
By the same way, the cutting forces in the grinding process were modeled as the exponential 

functions (17), (18). The verification results of cutting force models were described in. As seen 
from Fig. 8, 9, the predicted results were quite close to the experimental results. The cutting force 
models can be used to optimize the grinding parameters of the grinding process.

Fig. 8. Measured and predicted results of normal cutting force

Fig. 9. Measured and predicted results of axial cutting force

The normal cutting force model in exponential function:

 F S t HRCy d= 36 445 0 9324 0 3507 0 3373. .. . .  (17)

The axial cutting force model in exponential function:

 F S t HRCz d= 13 397 0 8176 0 3655 0 3662. .. . .  (18)

Basing on experimental results according to the regression (17), the evaluation values of the 
cutting force regression model (Fy) were calculated as following:

S Sc r
2 20 0623 0 0534= =. ; . .

According to the Fisher standard [14]:

Fcal = 1.17<Ftab(4, 16, 0.95) = 3.0.

Basing on experimental results according to the regression (18), the evaluation values of the 
cutting force regression model (Fz) were calculated as following:

Sc
2 0 0599= . ;  Sr

2 0 0532= . .

So, Fcal = 1.13<Ftab(4, 16, 0.95) = 3.0. Thus, eq. (17), (18) are consistent with reality.
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3. 1. 3. Regression of vibration model
By the same way, the vibration in the grinding process was modeled as the exponential func-

tion (19). The verification results of surface roughness model were described in Fig. 10. As seen 
from this figure, the predicted results were quite close to the experimental results. The vibration 
models can be used to optimize the grinding parameters of the grinding process.

Fig. 10. Measured and predicted results of amplitude vibration

The amplitude vibration model in exponential function:

 A S n HRCd w= 1 2409 0 3397 0 1908 0 1809. .. . .  (19)

Basing on experimental results according to the regression eq. (19), the evaluation values of 
the vibration regression model (A) were calculated as following:

Sc
2 0 0139= . ;  Sr

2 0 0135= . .

According to the Fisher standard [14]:

Fcal = 1.03<Ftab(4, 16, 0.95) = 3.0.

Thus, eq. (19) is consistent with reality.

3. 2. Multi-Objective optimization of Cutting Conditions in Grinding process
3. 2. 1. The Objective functions
The surface roughness function. The surface roughness function is constructed experimen-

tally on external cylindrical grinding as by the eq. (12). Is the value when replacing the upper boun-
dary condition of the variables into the mathematical functions as above. In this study Ra

* .= 0 69 µm.
The material removal rate function. The material removal rate in grinding process was cal-

culated by the eq. (20) to the eq. (23):

 Q v t bw s= ⋅ ⋅ ,  (20)

t is the cutting depth, mm; bs is the width of the grinding wheel. Due to the constant width of the 
grinding wheel, the material removal rate function can be calculated as by the eq. (21):

 ′ = ⋅Q v tw .  (21)

Workpiece speed vw is calculated according to the eq. (22).
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So,

 ′ =Q
d n tw wπ
60

,  (23)

where dw is the diameter of the workpiece; nw is the number of revolutions of the workpiece.
Condition Q′³Q*. In this case, Q* = 0.523 mm2/s.

3. 2. 2. The constraints
Functional constraints. The function constraints on cutting force and vibration functions 

are determined by the eq. (24) to the eq. (29):

 F f S t HRC Fy d y= ≤ =( , , ) ,* 100 N  (24)

 F f S t HRC Fz d z= ≤ =( , , ) ,* 50 N  (25)

 A f S n t Ad= ≤ =( , , ) .*
w m/s2 2  (26)

Variable constraints [9]. The variable constraints on cutting conditions and workpiece hard-
ness are determined by the eq. (27) to the eq. (30). Feed rate:

 0 3 0 5. .≤ ≤Sd (mm/rev).  (27)

Rotation speed of workpiece: 

 100 200≤ ≤nw (rpm).  (28)

Cutting depth:

 0 0025 0 025. .≤ ≤t (mm).  (29)

Hardness of machining materials:

 40 60≤ ≤HRC .  (30)

The program is programmed directly on MATLAB software. Running the program with 
the module Optimization Tool/Multi objective optimization using Genetic Algorithm for grinding 
process of T1 tool steel.

3. 2. 3. Weight
In this study, considering the priority of the variables to be the same, the coefficient w1 

equal the coefficient w2. Then the multi-objective function can be expressed as by the eq. (31):

 M
R

R

Q

Q
a

a
= −

′
0 5 0 5. . .* *  (31)

In case to prioritize a goal, it is possible to choose a greater weight but still have to ensure 
that the sum of the weights is 1.

3. 2. 4. The optimization results
The optimization results were stored in Tables 8, 9. The Genetic Algorithm graphs were de-

scribed in Fig. 11. The results of the program show the stability of the variable values. Although the 
values changed, the range is very small. Hence, the average values were employed in the run lead 
to a fast convergence speed. However, the rapid convergence rate is also the disadvantage of the 
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algorithm. If the convergence is too fast, the reliable information growing in the population will be 
overlooked and lead to a locally optimal solution. To overcome this disadvantage, let’s first select 
the number of generations for the first run and then increase in the number of generations until the 
graph are always a straight line that is to achieve the global optimal value.

Results with 5 running times show that the optimal value for each run is variable but the 
difference is not so much. The average value of the runs can be used to predict the values of surface 
roughness and the material removal rate Fig. 11.

Table 8
Results of the program run with T1 tool steel

Variable Sd (mm/rev) nw (rpm) t (mm) HRC

1st run 0.3 187.25 0.015 54.5

2nd run 0.3 189.16 0.014 54.3

3th run 0.3 187.01 0.015 55.2

4th run 0.3 193.10 0.014 54.7

5th run 0.3 183.76 0.016 55.2

Table 9
Results of running the program, taking the average values after 5 runs

Parameters Sd (mm/rev) nw (rpm) t (mm) HRC Ra (µm) Fy (N) Fz (N) A (m/s2) Q′ (mm2/s)

Optimized values 0.3 188.1 0.015 54.78 0.51 10.441 4.648 1.045 5.906

Constraint values 0.3÷0.5 100÷200 0.0025÷0.025 40÷60 Min 100 50 2 Max

Fig. 11. Genetic algorithm graph for grinding T1 tool steel: a – Time 1; b – Time 2;  
c – Time 3; d – Time 4; e – Time 5

                                         a                                                                                b

                                         с                                                                                d

e
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From the adaptive function, there is many optimization options by changing the coeffi-
cients w1, w2 depending on which priority for the target. For example, in a roughing process, it is 
necessary to prioritize productivity targets by choosing a large w2 coefficient. Or when finishing 
requires a priority to achieve the target is the surface roughness let’s choose a large w1 coefficient. 
When w1 or w2 is zero, the problem becomes a single-objective problem.

3. 3. Experimental using the optimal values
Using the optimal values of the cutting parameters and the hardness of the workpiece, the 

verification experiments were conducted. The comparison results of experimental and predicted 
values of surface roughness, cutting force amplitude, vibration amplitude, and material removal 
rate are calculated and listed in Table 10.

Table 10
The predicted and experimental results with optimal parameters

Parameters Ra (mm) Fy (N) Fz (N) A (m/s2) Q′ (mm2/s)
Experimental 0.530 10.972 4.531 1.135 5.466

Predicted 0.510 10.441 4.648 1.045 5.906
Error (%) 3.8 1.8 6.5 7.9 7.5

In Table 10, the maximum error is the error of vibration with 7.9 %. Minimum error is the 
error of normal cutting force with 1.8 %.

4. Discussions of experimental results
From mathematical models (12), (17)–(19) showed that surface roughness when external cy-

lindrical grinding of T1 tool steel is proportional to cutting parameters but inversely proportional to 
machining material hardness. They also show that both the cutting force Fy and Fz are directly pro-
portional to the cutting parameters and the hardness of the workpiece. In which, the normal cutting 
force Fy is much greater than the tangential cutting force Fz. The large Fy cutting force is due to the 
loss of energy to separate the chip from the part when there is the penetration of the grinding grain, 
the higher the hardness of the material, the more difficult the grinding ability of the grinding grain. 
In addition, vibration during outer circular grinding is also proportional to the cutting parameters.

The results from Table 10 showed that the prediction of surface roughness, cutting force 
amplitude, vibration amplitude, and material removal rate were very close to the experimental 
results. The maximum difference between predicted and experimental values was 7.9 % (for vibra-
tion amplitude). So, the combination of GAs and weighting method that was proposed in this study 
can be applied to improve the productivity and reduce the surface roughness of the workpiece in 
external cylindrical grinding process using T1 tool steel.

Because grinding is the process of cutting materials including cutting, scratching and rub-
bing with abrasive particles at very high speeds, so the heat generated during the grinding process 
is quite large. However, in this study, the thermal model has not been built up during the grinding 
process, nor has the effect of heat on the surface roughness and machining productivity be evalu-
ated when external cylindrical grinding. This is a difficult problem to do because the coolant must 
be used during the external cylindrical grinding process, so the use of existing thermometers will 
give inaccurate results. The solution is being researched and resolved in the future by us.

5. Conclusion
In this study, an experimental method was performed to model the surface roughness, cut-

ting forces, and vibration, and to optimize the cutting parameters in the external cylindrical grind-
ing process of the T1 tool steel. Depending on the analysis of experimental results, the conclusions 
of this study can be drawn as follows.

In the external cylindrical grinding process, the surface roughness, cutting force amplitude, 
and vibration amplitude were modeled as the exponential functions of cutting parameters (axial 
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feed rate, workpiece speed, and cutting depth) and the workpiece hardness. These models were 
successfully verified by experimental results with very promising results. 

A combination of GAs and weighting method was successfully applied to solve the multi- 
objective optimization problem. Using this proposed combination method, the productivity and 
surface roughness quality were improved. 

The optimum values of input parameters were a feed rate of 0.3 mm/rev, a workpiece speed of 
188.1 rpm, a cutting depth of 0.015 mm, and a workpiece hardness of 54.78 HRC. Using these optimal 
values, the surface roughness and material removal rate were obtained to be 0.510 μm and 5.906 mm2/s, 
respectively. The optimal values were successfully verified by experimental results with very promis-
ing results. The maximum difference between predicted and experimental values was 7.9 %.

The proposed method of this study can be applied in industrial machining to improve the 
productivity and quality of the products in external cylindrical grinding process of the T1 tool steel, 
and can be extended to the other machining processes such as milling, turning, drilling, etc. and 
another workpiece, tool materials. These are the future studies.
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