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Abstract

For flow across the body, the vortices form in the wake due to unsteady separation of the flow.
These vortices propagate periodically in the wake called von Kármán vortex street. The von
Kármán vortex street exerts oscillatory forces on the body in terms of drag and lift. Such forces
may cause aerodynamic losses and vibration in the structure. This unsteadiness may lead to
heavy structural damage in the case of resonance. Hence it is requisite and goal of the project to
control the unsteadiness. This von Kármán vortex street can be observed for flow across airfoil
and other complex structures. Hence, controlling pressure fluctuations for complex structures
introduces a multi-dimensional problem. For simplicity, flow across a 2D cylinder is taken into
consideration as a generic problem which is also referred to as a bluff body.

In active flow control, the cylinder is supplied external energy to control the pressure fluctuation.
The external energy to the cylinder is provided by rotating the cylinder in oscillatory motion.
Active flow control may be classified as open-loop control and closed-loop control. In open-
loop control, the cylinder is oscillatory rotated with a mathematical function as an Ansatz,
which minimizes the pressure fluctuation. The optimal parameters of mathematical function are
determined by parametric study to mitigate the drag and lift forces. On other hand, in closed-loop
control, the system takes feedback to evaluate the applied rotation. In this project, the closed-
loop control is achieved by the proximal policy algorithm (PPO) through deep reinforcement
learning (DRL). For the PPO algorithm, the feedback from the system is taken as the cost
function or in deep reinforcement learning, the reward function. The cost function is formulated
with the parameter such as drag, lift, and rotational rate. The parameter of the cost function
is weighted by initial weights to find an optimal control strategy. PPO algorithm is classified
under Actor-Critic methods, in which the actor and critic are neural networks responsible for
taking action and evaluating the taken action, respectively. After the evaluation of taken action
by the cost function, the actor and critic networks are updated to achieve an optimal control
strategy. In this study, the flow control is achieved by open-loop control and closed-loop control.
In closed-loop control, the pressure sensors are placed on the surface of the cylinder and the
actuation is subjected to the rotation of the cylinder. By using the open-loop control strategy
4.61% drag reduction is observed with increasing the amplitude and frequency of fluctuation of
drag. However, by using the closed-loop control strategy 5.10% drag reduction is observed with
a significant reduction in the amplitude and frequency of fluctuation of drag.
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Chapter 1

Introduction

In nature, birds and insects are evolved to fly very efficiently in a highly complex turbulent
environment. They can precisely and efficiently maneuver, glide, land, and take off by controlling
the flow across their wings. Also in a marine environment, fishes swim efficiently in the water by
controlling the flow across the fins. Inspiring by the evolution, the shape of the wing of aircraft
is replicated from the shape of the wing of a bird. Birds and insects change their shape of the
wing to fly easily in the fluid environment or in other words, they change the shape of the wing
in order to control the flow across the wings. Therefore, for real-life applications for aircraft,
automobiles, etc., flow control is very crucial in order to improve the efficiency of control over
fluid-induced forces. For an instance, in aircraft, the shape of the wing is changed for better
efficiency with mainly changing the shape of the wing by flaps, spoiler, and slats. Throughout
time, many shape optimization methods and algorithms show the improvement in control over
fluid-induced forces like drag and lift [3]. But due to stagnation of scope in shape optimization,
it is crucial to control flow by active flow control or passive flow control [13, 23, 6, 25].

Figure 1.1: Flight of bird in complex fluid environment by changing the shape of wing to control
the flow; Cross-section of aircraft wing.

Passive flow control may be achieved using vortex generators, surface smoother or porous layers
between the solid body and the fluid in order to control fluid-induced forces [2, 25, 6]. For
instance, riblets may be used on the surface of the wing and aircraft body in order to reduce
viscous drag [25]. This is again mimic of fish skin or feather-like structures. However, for active
flow control, the external energy is supplied to the system in order to control fluid-induced forces.
Boundary layer control by the blowing and suction slot for an aircraft to reduce the drag is an
example of active flow control [27]. The active flow control is classified as open-loop control and
closed-loop control.
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2 1. Introduction

Figure 1.2: Block diagram for open-loop control and closed-loop control.

In open-loop control, the controller does not receive feedback from the system as shown in
figure 1.2. In open-loop control, the control strategy is carried out and evaluated initially, and
then it is fit in the system to achieve control. Therefore, the open-loop control strategy is also
called offline learning.

In closed-loop flow control, the feedback from the system is utilized in order to evaluate the
control strategy [4]. The feedback is frequently analyzed to improve the control. Therefore, it is
also called online learning. For closed-loop control, this feedback is used to evaluate the control
strategy and further, it is used to improve the control strategy during a running simulation [1].

For closed-loop learning, reinforcement learning (RL) is a proven state-of-the-art method. Rein-
forcement learning is one of the three categories along with supervised learning and unsupervised
learning. Reinforcement learning is self-organized learning, where learning is achieved by expe-
rience and the outcome of the experience [8]. Meaningly, reinforcement learning collects data
itself and learns from it. Reinforcement learning is a mimic of the human brain. In reinforce-
ment learning, the fluid flow setting is called environment. The external energy supplied to the
system is referred to as an action in reinforcement learning. The controller is referred to as
an agent. The feedback from the system is obtained from the environment is formulated as a
reward function which is an objective function of flow control. The reward function is utilized to
evaluate the actuation. In reinforcement learning, the goal is to maximize the reward function by
evaluating it and improving the actuation during the running of the system [15]. In a nutshell,
for reinforcement learning the agent supplies an actuation to the environment according to the
state of the system in order to maximize the returns or cumulative rewards.

In reinforcement learning, the improvement of the actuation introduced a mathematical problem
for an agent (controller), where the coupling between the rewards in terms of fluid-induced forces
and the actuation is not known. Hence, to approximate the coupling, the agent is replaced by
neural network (NN) from deep learning, thus it is called deep reinforcement learning (DRL)
[18, 20].

In fluid mechanics, when fluid flows across the object, shear stress generates between the wall
of the object and the surrounding fluid. This shear stress causes the boundary layer to detach.
Because of the detachment of the boundary layer and the vorticity generated by the object,
vortices form in the wake. The vortices propagate periodically in the wake. These periodically
propagating vortices are called von Kármán vortices [26]. The shear stress between the boundary
layer and wall, and the pressure gradient due to the surface curvature of an object exerts forces
on the body in form of drag and lift. The typical vortex propagation in the wake exerts periodic
forces on the body in terms of lift and drag, which could potentially cause aerodynamic loss
and vibration in the structure [24]. The vibration could also lead to complete structural failure
by the coupling of periodicity or frequency of vortices in the wake and natural frequency of the
structure [26]. Hence, it is essential to control the forces acting on the body and its periodicity in
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order to mitigate the aerodynamic losses and to ensure the safety of the structure. The control
plays a critical role for the structures, especially aircraft and automobiles [12]. Therefore, it is
crucial to control the unsteady separation of flow by active flow control or passive flow control.
But the control strategy for flow control is not yet fully understood for the complex structure
like aircraft, hence as a generic example flow across 2D cylinder is considered in this study in
order to evaluate the control strategy.

Figure 1.3: Block diagram for open-loop control and closed-loop control by DRL for flow across
the cylinder.

To control the periodic drag and lift forces by an open-loop control, the cylinder is subjected
to oscillatory rotation in this study. There is no direct mathematical function to carry out the
optimal parameter of the oscillatory rotation to reduce drag, lift, and fluctuation of drag and lift.
Therefore, the oscillatory rotation is provided with the sine wave function for angular velocity
as the drag and lift fluctuate with the sine-like wave function. The parameters of oscillatory
rotation are determined by parametric study for the control strategy.

In 1990 P. T. Tokumaru and P. E. Dimotakis presented the experimental study for open-loop
control for flow across the cylinder [24]. In the study, the external energy to the cylinder is
supplied as oscillatory rotation, flow is subjected to Reynolds number Re = 1.5 × 104. The
inflow boundary condition is formed by the GALCIT water channel in the study. The oscillatory
rotation is defined with the sine wave function in the study. The optimal parameter for the
oscillatory rotation is achieved by parametric study. The study presents the effect of cylinder
rotation for different parameters on drag. In the study, drag reduction is achieved by factor of
six, where the cylinder is rotated with optimal parameter for the oscillatory rotation.

For flow around a cylinder, in this study, DRL is considered as a closed-loop strategy. In closed-
loop control for flow across the cylinder, the cylinder is subjected to rotary motion for this study,
where the rotation in terms of angular velocity is determined by the agent. The agent supplies
the actuation to the environment by obtaining the feedback from the system as drag and lift
value based on the state of the environment. The state of the system is considered as the pressure
values from the cylinder surface, which is also referred to as state observations. In recent studies,
the pressure sensors are mounted in the wake of the cylinder [13, 23, 11]. However, in this
study, the pressure values are obtained from the surface of the cylinder, which is more intuitive
considering the real-life applications, thus a novelty of this study. In this study, the proximal
policy optimization (PPO) algorithm is considered for DRL to achieve flow control.

The PPO algorithm is a modern and more effective algorithm for DRL [13, 23, 11]. For the PPO
algorithm, the agent has two neural networks [20]. The one neural network approximates the
coupling between rewards and the actuation, where rewards are referred to as drag and lift. This
neural network supplies the actuation to the environment by feeding the state observations. This
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neural network is called a policy network or actor [8]. The second neural network approximates
the coupling between state observations and rewards. This neural network evaluates how valuable
the supplied actuation is, hence this neural network is called value network or critic [8]. Thus,
PPO is also called an actor-critic method. Flow control in DRL using the PPO algorithm is
achieved by optimal policy network, which supplies an action based on state observation such that
the drag and lift are minimal. The optimal policy network is determined by PPO iterations [20].

In 2019, Jean Rabault et al. presented a study for flow control by DRL [14]. In the study, the
external energy to the cylinder is supplied as two air-jets mounted on the top and bottom of the
cylinder surface. The pressure sensors are placed in the wake of the cylinder, where the flow is
subjected to Reynolds number Re = 100. For closed-loop control by DRL, the PPO algorithm
is used in the study. By using PPO, 8% drag reduction is observed in the study.

In 2020 Mikhail Tokarev et al. presented a study for DRL flow control by using cylinder rotation
as an actuation [23]. In the study, pressure sensors are also placed in the wake of flow. For
DRL flow control, the PPO algorithm is considered, where flow is subjected to Reynolds number
Re = 100. In the study, the PPO algorithm is used for two different reward functions, where
depending on the reward function, 14% and 16% drag reduction is achieved with negligible
fluctuation in drag force.

In 2020 Romain Paris et al. presented a study with suction and blowing air at the top and
bottom of the cylinder surface in order to control the flow [11]. In the study, a modified PPO
algorithm (S-PPO-CMA) is considered for the flow with Reynolds number Re = 120. In this
study, 18.4% drag reduction is observed. The pressure sensors are also placed in the wake of
flow in the study but the study presented the performance of the DRL control strategy for the
different number of pressure sensors in the wake and also the effect on the performance of the
DRL by placing pressure sensors at a different distance from the cylinder in the wake.

Moreover, In 2020, Tang et al. presented a study for flow control by DRL for different values of
Reynolds number by using PPO algorithm [22]. The pressure sensors are placed in the wake in
this study. Four synthetic jets symmetrically located on the upper and lower sides of a cylinder
are used as actuation in the study. in the study, 5.7%, 21%, 32.7%, and 38.7% drag reduction is
obtained for flow with Reynolds number 100, 200, 300, and 400.

In this study, we attempt to achieve flow control by using an open-loop control strategy and a
closed-loop control strategy. The implemetation and solution of the open-loop control strategy
and closed-loop control strategy is obteined by using OpenFOAM as a CFD-solver. The primary
objective of this study is to reduce drag force and its fluctuation for flow across the cylinder as
it is higher in magnitude than lift and its fluctuation by considering flow with Reynolds number
100. The key objective of this study includes,

• Creating a 2D base flow simulation in OpenFOAM and comparing the outcome to available
results from the literature, e.g. for drag coefficient and vortex shredding frequency.

• Defining and describing open-loop control strategy, actuation, and analyzing the perfor-
mance of optimal open-loop control strategy.

• Defining and describing closed-loop control strategy, environment’s state, reward signal,
and agent’s actuation.

• Implementation of PPO algorithm for multi-agent.

• Analyzing the discussing the agent’s performance, sensitivity, and cost with respect to the
available observations, the control strategy, and the reward signal.

• assessing the agent’s ability to generalize for different flow conditions.



Chapter 2

Theoretical Foundations

2.1 Flow Problem

The Finite Volume Method (FVM) is widely used today in computational fluid dynamics to
evaluate partial differential equations in the form of algebraic equations. The FVM involves the
approximation of finite volume integrals. To perform FVM, the domain is discretized into finite
volumes. In that small finite volume, the values of properties are averaged and these values are
available at the center of the respective finite volume. These values at the centroids of finite
volume are interpolated in order to calculate the flux across the control volume’s surface. In
other words, the value of the fluid property at the cell center represents the averaged value of
that specific property within the cell. Hence FVM steps mainly involves:

• definition of the mathematical problem (PDE, initial and boundary conditions)

• discretization of domain (meshing) and equations (approximation of surface and volume
integrals)

• iterative solution (linear systems of equations, pressure-velocity coupling)

2.1.1 Formulation of the Flow Problem

In a high-dimensional flow problem, for a better understanding of the effect of drag and lift forces
and simplicity, the generic fluid flow problem as flow across 2D cylinder is considered. For the
generic flow problem, flow around the cylinder with a circular cross-section is selected. The test
case is taken from benchmark computations of laminar flow around a cylinder by Schäfer and
Turek [17] as a reference. The first case from Schäfer and Turek is selected, where the domain
is two dimensional and flow is incompressible for simplicity yet a very good representation of
generic fluid flow problem. In the flow problem, the flow characteristic properties such as drag
forces and lift are also calculated to determine system behavior.

Geometry

In the following, all distances are normalized using the cylinder diameter d.

x̃ =
x

d
(2.1)

The domain length and width is 22 and 4.1 respectively . The cross-section of the cylinder is
located 2 far from the inlet and slightly off-center from top 1.6 and bottom side 1.5. The detailed
sketch of geometry is illustrated in figure 2.1. The flow is coming from inlet, left side of figure 2.1

5



6 2. Theoretical Foundations

and exits in open environment from outlet, right side of figure 2.1. The cylinder is fixed at its
center, hence the distance of the cylinder from the domains remains constant.

Figure 2.1: Physical domain of the simulation setup; all distances are normalized with the
cylinder diameter.

Fluid Properties

The fluid flow is considered as an incompressible, unsteady, and Newtonian fluid flow, which is
governed by mass conservation equation and non-dimensional momentum conservation equation.
To solve this fluid flow problem, OpenFOAM is used as a CFD solver tool. The non-dimensional
momentum conservation equation(Navier-Stokes momentum equation) is scaled by,

t∗ =
t

du∞
(2.2)

u∗ =
u

u∞
(2.3)

∇∗ = d∇ (2.4)

p∗ =
pd

µu∞
(2.5)

Where, u∗, p∗ and ∇∗ are dimensionless properties of u, P and ∇ respectively [16], time t∗ is
non dimensional time of t, and u∞ is free stream velocity. The velocity u∗ is a non dimensional
velocity vector u = (u, v). where u and v is a velocity in respective Cartesian coordinates x
and y. Pressure p∗ is non dimensionalized by taking viscous flow into consideration. The mass
conservation equation and the non-dimensional Navier-Stokes momentum equation is formulated
by using scaled quantities as,

∇ · u∗ = 0 (2.6)

∂u∗

∂t
+ (u∗ · ∇∗)u∗ = −∇∗p∗ +

1

Re
∇∗2u∗ (2.7)

The fluid flows with Reynolds number Re = 100 which can be calculate from the equation 2.8.

Re =
u∞d

ν
(2.8)
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Where u∞ is a free stream velocity, d is a diameter of cylinder and ν is kinematic viscosity, where
ν = 1.0× 10−3m2/s.

In this flow problem, the shear stress at the wall of the cylinder cause the drag force on the cylinder
in x-direction, and the pressure gradient causes the lift force on the cylinder in y direction. The
drag force and lift force are calculated as shown in equation 2.9 and 2.10. From the drag and
lift forces, the coefficient of lift and coefficient of drag is determined as shown in equation 2.11
and 2.12 [17].

FD = Fx =

∫
S

(
ρν
δvt
δn
ny − pnx

)
(2.9)

FL = Fy =

∫
S

(
ρν
δvt
δn
nx − pny

)
(2.10)

cD =
2FD

ρU
2
d

(2.11)

cL =
2FL

ρU
2
d

(2.12)

(2.13)

Where, FD and FL are referred as drag and lift force, which are integrated over surface S. The
Fx and Fy are referred as forces acting on the cylinder in x and y axes. The cD and cL is denoted
as drag and lift coefficients. The t = (ny,−nx) represents tangent vector, where n is normal
vector on S with x-component nx and y-component ny. The tangential velocity is denoted as
vt. The ρ is referred as density of the fluid and Ū is mean inlet velocity.

Modeling of Geometry and Flow Domain

The body about which flow is to be analyzed requires modeling. This generally involves modeling
the geometry with a CAD software package.1 As OpenFOAM is used as a tool, modeling of ge-
ometry and flow domain of the generic test case of flow across cylinder can be easily implemented
within OpenFOAM [9].

Establishing the Boundary and Initial Conditions

In the test case, at the wall of the domain and the surface of the cylinder no-slip boundary
condition implemented as shown in figure 2.2. The inflow is entering into the domain with
parabolic inflow condition and at the outlet, a zero gradient flow condition is implemented.

At wall and cylinder surface : no slip,

u = v = 0 (2.14)
dp∗

dx
= 02,1 (2.15)

Where, u and v are the velocity in x-direction and y-direction respectively, p∗ is the pressure(see
equation 2.5), x is a positional vector x(x, y), and 02,1 is 2×1 zero vector.

1https://www.grc.nasa.gov/WWW/wind/valid/tutorial/process.html
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Figure 2.2: Boundary condition at domain of the flow and at the cylinder surface.

Outflow condition: zero gradient,

du∗

dx
= 02,2 (2.16)

p∗ = 0 (2.17)

Where, u∗ is velocity vector(see equation 2.3) and 02,2 is 2×2 zero matrix.

Inflow condition: Parabolic inlet condition,

u = 4Ūy (y −H) /H2

v = 0 (2.18)
dp∗

dx
= 02,1 (2.19)

Where, um is a mean velocity and H is a length the domain in y-direction. In the inlet boundary
condition Ū is set to 1.5m/s, which leads the flow with Re = 100.

2.1.2 Mesh generation

The mesh generation of the domain is performed in OpenFOAM by using blockMesh and
snappyHexMesh [9]. The background mesh is generated by the blockMesh. The background
mesh contains hexahedral cells with the same size. This mesh is refined by regionRefinement in
one third of domain from left in order to capture accurate flow dynamics. This region refinement
is achieved by snappyHexMesh. After the region refinement, the cells in cylinder is extracted
by snappyHexmesh, which is called snapping to surface in snappyHexMesh. The mesh output
from the snapping stage may be suitable for the purpose, although it can produce some irregular
cells along boundary surfaces2. Therefore, the additional layers of hexahedral cells aligned to the
cylinder surface are generated around the cylinder by snappyHexmesh as illustrated in Figure 2.3.

The domain near to cylinder is fine-meshed, as the separation of flow occurs in this region
and thus it is fine-meshed, in order to account for accurate fluid properties. At the domain
near the cylinder, the thickness of the cell is half as the thickness of the cell in the wake. In
OpenFOAM this mesh settings can be easily achieved by changing respective parameter of the
snappyHexMeshDict files by refinementRegions [9]. As, the region refinement and the mesh
around cylinder depends on background mesh, change in background mesh as fine or coarse results

2https://cfd.direct/openfoam/user-guide/v6-snappyhexmesh/
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Figure 2.3: Descretized Computational domain.

also fine or coarse mesh in a region where cylinder is placed. Number of cells in x-direction and
y-direction can be calculated for background mesh as shown in equation 2.20.

∆x =
Lx
Nx

, ∆y =
Ly
Ny

(2.20)

Where ∆x and ∆y is the thickness of cell in x-direction and y-direction respectively. Nx and
Ny is the number of cells in x-direction and y-direction respectively. Lx and Ly is the length of
domain and width of domain for background mesh. The tx and ty is the same for the background
mesh. In figure 2.3, value of Nx and Ny is 100 and 18 respectively. These values of Nx and Ny

correspond to region without regionRefinement in snappyHexMesh. In regionRefinement the
cell numbers would be doubled as the regionRefinement is set to 2.

Mesh dependency study

Intuitively, the value of the fluid property at the cell center represents the averaged value of that
specific property within the cell. The average value at the centroid is assumed to be equal for the
entire cell. Therefore, the very small size of the cell results in an accurate and true value of fluxes
that are calculated across the faces of the cell. Hence, increasing the number of cells or in other
words, increasing the nodal point density leads to a rigorous representation of a physical property
thence an accurate approximation of partial differential equations. The increasing number of cells
or increasing nodal point density is called mesh refinement. That makes mesh refinement very
important for fluid simulations. However, refining the mesh results in high computational cost
so it can be only refined up to the coveted computational cost. Moreover, after a certain point
of mesh refinement, the change in the desire physical property is very small. Hence optimum
mesh regarding computational power refinement is obligatory, notably in FVM. Estimating this
optimum mesh refinement is called mesh dependency study and it is very crucial and inevitable
in most of the CFD simulations. The mesh refinement is performed by refining background mesh
by blockMesh as the refinement in background mesh also leads refinement around the cylinder.

In the mesh of domain, from figure 2.3, for blockMesh ∆x = ∆y = ∆ such that the resulting
number of cells in each direction is

Nx =
Lx
∆

(2.21)

Ny =
Ly
∆

(2.22)

Where ∆x = ∆y = ∆ is a thickness of individual mesh cell. Here Nx and Ny can be formulated
such that change in Nx leads to relative change in Ny. Hence, value of Ny is dependent of value
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of Nx and changing value of Nx results in relative change in Ny. For Mesh refinement, value of
Nx is varied quadratically to 100, 200, and 400. For different mesh refinements, the number of
cells, number of faces and number of points are mentioned in table 2.1.

Mesh Size(Nx) number of cells number of points

100 5506 9359
200 21991 36565
400 85678 141063

Table 2.1: Number of cells, number of faces and number of points for different mesh
refinements(Nx).

From table 2.1, increasing mesh size quadratically leads to quadratic increment of the number
of cells, and number of points. From the table 2.1, refining mesh size leads to an increase in the
number of the equation that is solved at the cell and fluxes across the cells. Which suggests the
increase in computational power.

In fluid simulation, Courant-Friedrichs-Lewy (CFL) condition is necessary for stability and con-
vergence of numerical scheme. The CFL condition is stated in equation2.23.

u∆x

∆t
≤ Cmax (2.23)

Where, in equation 2.23, u is magnitude of velocity, ∆x is characteristic cell length and ∆t is
time step. Cmax refers to the maximum value of the courant number. For explicit scheme, the
value of Cmax is 1. As in our simulation setup implicit scheme used, the higher value of Cmax
results in less accurate simulation of flow problem. Hence, in the simulation setup, the maximum
value of Cmax is set to 1. Therefore, ∆t is adjusted according to ∆x for the specific mesh.

Figure 2.4: Enlarged view at the cylinder wall for mesh refinement at mesh refinement level
(N = Nx) 100, 200 and 400.

The simulation is performed on different mesh sizes, in which the coefficient of drag(cD) and
coefficient of lift(cL) is computed, which represent the vibrations on the body(cylinder). Com-
putation of cD and cL is further described in equation 2.11 and 2.12.

In figure 2.5 and 2.6, values of coefficient of drag (cD) and coefficient of lift cL are plotted for
different mesh size 100, 200, and 400 for time t = 0 to t = 8. From figure 2.5 and 2.6, values
of cD and cL are converging along with mesh refinement. Further refinement leads to accurate
values of cD and cL but the change of the values are 0.32% and 0.38% respectively with the value
of cD and cL at mesh size 400. The relative change of cL is higher as it deviates near to zero.
For mesh size 100 in figure 2.5 and 2.6, it is clear that the results are not accurate for lift and
drag due to numerical error caused by coarse mesh.
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Figure 2.5: Values of cD for different mesh refinements (Nx), where Nx varies to 100, 200 and
400.
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Figure 2.6: Values of cL for different mesh refinements (Nx), where Nx varies to 100, 200 and
400.
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Moreover, the mean values of drag and lift(cD and cL), maximum values of drag and lift(cDmax
and cLmax) and minimum values of drag and lift(cDmin and cLmin) are converging towards the
accurate mean value of drag and lift, which are shown in figure 2.7 and 2.8. The change in mean
values, maximum values and minimum values for drag is 0.10%, 0.18%, and 0.006% respectively.
However the change in mean values, maximum values and minimum values for lift is 23.01%,
4.31%, and 5.13% respectively, where the relative change for lift in mean value, maximum value,
minimum value is slightly higher as it deviates near to zero and its lower magnitude for mesh
size 200 and 400. This change can be reduced by refining mesh further.

Figure 2.7: Mean value of cD (cD), maximum value of cD (cDmax) and minimum value of cD
(cDmin) for t = 4s to t = 8s with mesh size 100, 200 and 400.

Figure 2.8: Mean value of cL (cL) , maximum value of cL (cLmax) and minimum value of cL
(cLmin) for t = 4s to t = 8s with mesh size 100, 200 and 400.

The frequency of drag force and lift force is obtained by sine curve fitting. By fitting sine curve,
the frequency of the natural vortex shredding is determined. The frequency of the natural vortex
shredding is equal to the frequency of the sine curve fitted on cL. The sine curve fitting for the
values of drag and lift also shows that change in frequency for mesh size 200 and mesh size 400
is 0.17%. Further refinement in mesh leads to the accurate representation of frequency but the
change in frequency is very small. In figure 2.9 the sine curve fitting for drag and lift is illustrated
with mesh size 200 and 400 respectively. The values of frequencies for drag and lift can be found
in table 2.2.

Mesh Size(Nx) frequency(f) of cD frequency(f) for cL
200 6.0041 3.0022
400 6.0147 3.0074

Table 2.2: Frequencies for cD and cL for mesh size 200 and 400.

As refining mesh size, the computational time also increases. The computational time for the
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Figure 2.9: Sine curve fitting for cD and cL with mesh size Nx is 400.

Mesh Size(Nx) Computational time(s)

100 12.48
200 28.95
400 325.52

Table 2.3: Computational time for different mesh sizes, where mesh sizes varies to 100, 200 and
400.



2.1 Flow Problem 15

different mesh sizes, which are shown in table 2.3, is averaged for 3 test execution on specific
mesh size settings on a local machine with the configuration of Intel i7-8550U CPU, 4.0GHz clock
speed, and 8.0GB RAM. From the figure, it can be also seen that computation time also increases
with the mesh refinement. Hence considering the plots of drag, lift and with the computational
time for different mesh sizes, mesh size 200 is selected as an optimum mesh size.

2.1.3 Performing the Simulation

In FVM, the approximation of volume and surface integrals are carried out on the generated mesh.
The fluxes across the cell and the fluid properties can be computed from the approximation of
volume and surface integrals. Pressure(p) and velocity(u = (u, v)) can be also calculated by
implementing pimpleFoam of pressure-velocity algorithm in OpenFOAM [10]. The results are
shown in figure 2.10.

Figure 2.10: Velocity(magnitude) distribution at time t = 5s.

Due to the detachment of the boundary layer, the vortices are formed in the wake. The vortices
propagate periodically with a certain frequency. These periodically propagating vortices are
called von Kármán vortex street. The periodic behavior of von Kármán vortex street induces
periodic drag and lift forces as shown in figure 2.5 and 2.6. These periodic drag and lift forces
cause vibration on the object.

The frequency of drag force and lift is obtained by fitting the sine curve as shown in figure 2.9.
Intuitively the frequency of lift is equal to the frequency of propagating eddies in the wake. From
figure 2.11, when the eddies are forming near to the point P the lift is maximum and similarly
near the point the R lift is minimum. Similarly, the drag has a higher value when the vortices
are generated near the P point and R point but when the vortices are forming near to point Q
the drag value is minimum. Hence, the frequency of Drag is almost two times higher than the
frequency of lift fcD ≈ 2fcL , which is also shown in table 2.3.

Figure 2.11: The point P, Q, and R on the surface of the cylinder. At near to point P the
value of cD is maximum and value of cL is maximum, while at near to point R
the value of cD is maximum and value of cL is minimum. For vortices generation
at near to point Q the value of cD is minimum and cL = 0.



Chapter 3

Open Loop Control

In open-loop control, the controller is not subjected to any feedback from the system. In open-
loop control, the control strategy is carried out and evaluated initially, and then it is fit in
the system to achieve control. The feedback from the system in terms of evaluation of control
strategy is not used during the running of the system but at the end of the running of the system.
The improvement in the control strategy for open-loop control is accomplished by analyzing the
strategy after the completion of the system run or simulation. Therefore the open-loop control
strategy is also called offline learning.

Controller

Dynamics
Disturbance Output

Actuation

Environment
Force exerting on

cylinder

Action
(Oscillatory Motion)

Flow
instability

Figure 3.1: Open loop control diagram to reduce drag and lift acting on cylinder.

As shown in figure 3.1, the environment is considered as the flow problem with flow across the
cylinder. The controller feeds actuation for the environment which is pre-defined. For open-
loop control, in this study, the cylinder is subjected to external energy in terms of oscillatory
rotations. The cD and cL oscillates almost exactly like sine wave (see 2.9). Therefore, the cylinder
is oscillatory rotated in order to counteract the cD and cL fluctuations. Hence, the environment
receives a pre-defined action in terms of oscillatory rotations from the controller. The oscillatory
rotation of the cylinder is defined as shown in equation 3.1. The outcome from the system after
the action of control is a measure of forces acting on the cylinder. The open-loop strategy is
improved by evaluating the outcome from the system at the end of simulation.

ω = A sin (2πft) (3.1)

16
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where, ω is defined as the angular velocity of the cylinder. A is the amplitude, and f is the
frequency of sine oscillation. The parameter, amplitude A and frequency f controls the oscillatory
motion of cylinder. The boundary condition at the wall of cylinder is applied as shown in
equation 3.1. Where, r is denoted as cylinder radius, ω is angular velocity from equation and t
is denoted as unit vector tangential to cylinder surface.

Boundary condition at cylinder surface wall: Oscillatory,

u = ωrt (3.2)

3.1 Parameter study

For open-loop control, the primary objective is to reduce the drag and lift along with its fluctu-
ations. Moreover, for open-loop control, in order to improve the control strategy the values of
oscillation parameters A and f is changed in order to reduce the drag along with its fluctuations.
To solve the coupling between oscillation parameters and forces acting on the cylinder, the pa-
rameter study is performed. There is no analytical function which can describe the coupling.
For parameter study, the objective function Φ is formulated as equation 3.3 in order to reduce
the mean of drag and lift along with its fluctuations. The first term of equation 3.3 represents
the mean of drag (c̄D) and lift (c̄L). Moreover, the second term of the equation 3.3 represents
the amplitude of fluctuation of drag (cDmax − cDmin) and lift (cLmax − cLmin).

Φ = w1

(√
cD2 + cL2

)
+ w2

(√
(cDmax − cDmin)2 + (cLmax − cLmin)2

)
(3.3)

Where, cD and cL is the mean values of drag and lift respectively. cDmax and cDmin is the
maximum and minimum value of drag. cLmax and cLmin is the maximum and minimum value of
lift. w1 and w2 in equation 3.3 are the weights for the mean value and amplitude of fluctuations
of drag and lift respectively.

For simplicity and better understanding, the variable amplitude and frequency are normalized.
The amplitude, which is also referred to as peak rotational rate is normalized with mean inlet
velocity as,

Ω =
d

2Ū
Ωmax (3.4)

where, Ωmax is peak rotational rate of the cylinder, d is the diameter of the cylinder and U∞ is
free-stream velocity far ahead from the cylinder. The frequency is also normalized with mean
inlet velocity and cylinder diameter as,

Sf =
d

Ū
f (3.5)

Where Sf is also called the Strouhal number. As Ω and Sf are a dimensionless quantity, these
quantities are used in further study.

The parameter study is performed by sampling data for Ω and Sf , which are evaluated over the
objective function. Then, the parameters which have minimum value of objective function as
the optimal parameters.



18 3. Open Loop Control

Figure 3.2: Latin Hypercube sampling; near-random sampling from finite small region.

The sampling of parameters is conducted by Latin Hypercube Sampling(LHS) [5]. In LHS, the
sampling achieved from near-random sampling from finite small defined regions, which is also
shown in figure 3.2. The LHS sampling method improves the exploration in the region.

For parameters Ω and Sf , data are sampled and for each data, the simulation is executed. For
each data point, the value of the objective function is calculated. Total 800 data points are
sampled for the range of Ω from 0.1 to 3.5 and the range of Sf from 5.5 to 14. The higher value
of Ω and Sf is avoided to limit the energy supplied to the cylinder. The higher values of Ω and
Sf also cause the Magnus effect, which is not desirable for this study as it increases the lift [7].
he contours plot for objective function representing each data point is shown in figure 3.3. In
figure 3.3 the weights for objective function are set to w1 = 1 and w2 = 1.

Figure 3.3: Contour plot for objective function Φ over Ω and Sf , The minimum value of plot
0.747 is at Ω = 2.357 and Sf = 0.7381.
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From figure 3.3, The minimum value of objective function Φ is 0.747 and it lies at Ω = 2.357 and
Sf = 0.7381. The amplitude and frequency of the natural vortex shredding is Ω = 1.7838 and
Sf = 0.3002 respectively. By changing the values of weights of an objective function as shown in
figure 3.4, the minimum value of the objective function is the same. That is because the mean
value of drag is significantly higher than the mean value of lift. Moreover, the difference between
the maximum and minimum value of drag is also significantly higher than the difference between
the maximum and minimum value of lift. This results in the insensitivity of objective function
towards the weights because of a higher value of drag and its fluctuations. These results are
helpful later to design feedback(reward) function in close loop control.

Figure 3.4: Contour plot for objective function Φ over Ω and Sf for different weights, but
the minimum value of all case is at Ω = 2.357 and Sf = 0.7381, which indicate
insensitivity for weights.
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3.1.1 Functional Approximation for sampled data

In parameter study, sampling the fine data results in accurate optimal parameters but it imposes
a high computational cost. Whereas, sampling the coarse data results in an inaccurate repre-
sentation of optimal parameters. To overcome with this problem, the functional approximation
is performed over the coarse sampled data with objective function φ, where the minimum of
this functional approximation represent the accurate optimal parameters. The function is ap-
proximated for the data sampled by the LHS method with the objective function values. This
functional approximation is used to find the optimal parameter Ω and Sf . In other words, this
functional approximation is also used to verify the optimal parameter obtained by parameter
study. This functional approximation is achieved by Kernel ridge regression(KRR) 1. In scikit-
learn functionality for KRR, the data in terms of Ω and Sf is supplied and the regression gives
the best fit function representing the values of the objective function. In figure 3.5, the values
of objective function approximated by function are plotted over originally sampled LHS data.
The difference between the parameter study and function approximation is plotted in figure 3.6.
Hence, the figure 3.6 verifies the accurate approximation for the sampled data. Now this approx-
imated function is used to calculate the objective function value at any sets of the value of Ω and
Sf without executing the simulation. Using an approximated function for non-observed data
is called generalization in machine learning. A good generalization is vital in machine learning
problems.

For the generalization, in which the value of the objective function is carried out for uniformly
generated data in order to verify the functional approximation with original data. The plot for
generalization is shown in figure 3.7.

Figure 3.5: Contour plot for predicted objective function Φ by KRR over origional LHS sampled
Ω and Sf data, where weight is w = (1, 1). The minimun value of objective function
Φ = 0.747 lies at Ω = 2.357 and Sf = 0.7381.

From figure 3.7, The functional approximation by uniformly generated data represents the accu-
rate value of the objective function. Hence, the minimum value of the objective function is carried

1https://scikit-learn.org/stable/modules/generated/sklearn.kernel_ridge.KernelRidge.html
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Figure 3.6: Contour plot for difference between original value of objective fucntion and pre-
dicted objective function Φ by KRR over LHS sampled Ω and Sf data, where
weight is w = (1, 1).

Figure 3.7: Contour plot for predicted objective function Φ by KRR over uniformly generated
Ω and Sf data, where weight is w = (1, 1). The minimun value of objective function
Φ = 0.747 lies at Ω = 2.294 and Sf = 0.7128.
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out with the approximated function. The minimum of functional approximation is Φ = 0.741,
which is also approximately equal to the minimum of the parameter study. Thus, the functional
approximation from sampled data not only helps to verify the result from the parameter study
but also ensures the best exploration in the defined region for the optimal parameter.

3.1.2 Results

The Simulation is executed at the optimal parameter values of Ω = 2.294 and Sf = 0.7128, This
simulation is referred to as a controlled case, and the simulation without open-loop control is
referred to as the uncontrolled case. From figure 3.8, the propagation of vortices is decreased
and in the wake, the flow is more stable than uncontrolled case.

Figure 3.8: Velocity(magnitude) distribution at t = 5s for flow around the cylinder, where it
is oscillated by optimal parameter Ω = 2.294 and Sf = 0.7128.

Figure 3.9: cD values from t = 4s to t = 8s for controlled and uncontrolled case, where cylinder
is oscillated by optimal parameter Ω = 2.294 and Sf = 0.7128.

case Φ cD cDmax cDmin cL cLmax cLmin

Uncontrolled case 4.9566 3.1721 3.1965 3.1474 -0.0126 0.8789 -0.9049
controlled case 0.7470 3.0256 3.0778 2.9809 0.0051 0.3262 -0.3231

Table 3.1: Table containing the values for controlled case and uncontrolled case.

In figure 3.9, the values of cD is plotted from t = 4s to t = 8s for both controlled and uncontrolled
case. Similarly, in figure 3.10, the values of cL is plotted from t = 4s to t = 8s for both controlled
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Figure 3.10: cL values from t = 4s to t = 8s for controlled and uncontrolled case, where
cylinder is oscillated by optimal parameter Ω = 2.294 and Sf = 0.7128.

and uncontrolled case. In figure 4.12, the pressure distribution over the polar coordinates at the
surface of the cylinder is plotted. By using an open-loop control strategy, the pressure at the
cylinder surface is changed, which results in a change in drag and lift values than an uncontrolled
case. In the open-loop control strategy, at the top and bottom of the cylinder surface, the
pressure value is decreased hence, the mean value of drag and lift is decreased. The mean value
of drag is reduced by 4.61% and the mean value of lift is improved by 0.56% for controlled case,
where the cylinder oscillates at optimal parameter Ω = 2.294 and Sf = 0.7128. However, In
the open-loop control strategy, at the cylinder surface, the pressure fluctuation is high which
results in increasing the frequency and amplitude of the drag and lift fluctuations. Therefore,
the amplitude of fluctuations of drag is increased 97.35% by using the open-loop control strategy.
The amplitude of lift fluctuation is decreased by 63.60%. Moreover, the objective of this study is
to reduce mean values of drag and lift along with its fluctuation, where the results suggests strong
correlation between mean value of drag and its fluctuation for objective function φ by oscillation
cylinder with sine wave function. Similarly, the maximum value of drag is reduced by 5.34% and
the maximum value of lift is decreased by 17.28% for the controlled case. The minimum value
of drag is reduced by 3.86% and the minimum value of lift is improved by 18.48%. The values
are also contained in table 3.1.
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uncontrolled

Figure 3.11: Pressure distribution in polar coordinates at the surface of the cylinder for con-
trolled and uncontrolled case. In open-loop controlled case the cylinder is oscil-
lated by optimal parameter Ω = 2.294 and Sf = 0.7128.



Chapter 4

Closed-Loop Control

The closed-loop control method is a classification of active flow control, in which the system
utilizes the feedback from the system. The feedback from the system is utilized to evaluate the
flow control strategy. The control strategy may be improved in order to achieve the objectives by
the evaluation of the control strategy. The evaluation and improvement of strategy are performed
during the running of the system. Hence, closed-loop control is also called offline control.

Controller

Dynamics
Disturbance Cost Function

FeedbackActuation

Figure 4.1: Closed-loop control for flow across cylinder.

For closed-loop control of flow around the cylinder, the cylinder is subjected to the angular
velocity. The objective of the control is to reduce drag and lift with its periodicity in order
to stabilize the cylinder. Hence, the objective function is formulated with drag and lift. The
feedback is the evaluation of this objective function. The objective function is also referred to as
the cost function since it is subjected to minimization. The controller receives feedback from the
system and applies the actuation to the system. In this study, the actuation is the rotation of
the cylinder, hence the controller applies angular velocity of the cylinder on the system in order
to minimize the drag and lift.

4.1 Deep Reinforcement learning

Reinforcement learning is one of three basic machine learning paradigms, alongside supervised
learning and unsupervised learning.1 In reinforcement learning, the agent takes an action to
maximize the cumulative reward in order to achieve the objectives. In deep reinforcement learn-
ing, the learning of taking an action based on feedback is achieved by deep learning. To design a

1addiai.com/reinforcement-learning/
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controller for a closed-loop system, DRL is has proven to achieve state of the art results [15, 23].
In DRL, the controller is referred to as an agent. The agent is a mimic of the human brain which
can understand the coupling between actuation, state of the system, and cost function. The
agent takes an action such that the cost function is minimized. The pictorial representation of
DRL is represented in figure 4.2.

Controller

Dynamics

SensorActuation

Policy

Agent

Environment
Rewards

Observation
(Pressure values)

Action
(Angular velocity)

Flow
instability

Policy Improvement
(Weights update)

State

Cost Function 

Figure 4.2: Closed-loop control by deep reinforcement learning.

4.1.1 Environment

In reinforcement learning, the system is called an environment. In this study, the environment is
referred to as the flow problem. For DRL, episode is the part of simulation between the starting
of control and ending of control. In DRL, a trajectory is the entirety of all state-action-reward-
next state tuple of one episode, where the surface pressure is the state, the angular velocity is
the action, and the resulting forces results in the reward. The complete simulation is called as
a trajectory in DRL. The agent supplies the actuation in form of angular velocity based on the
current state of the environment. The flow problem is formulated as described in chapter 2. The
boundary condition for the cylinder is set to:

u = ωrt (4.1)

Where, ω is angular velocity. The r is cylinder radius and t is denoted as a unit vector tangential
to the cylinder surface.

Horizon

In reinforcement learning, the length of the trajectory is called the horizon. Horizon is divided
into two categories, finite horizon, and infinite horizon. The selection of horizon is problem-
specific. For a problem such as finding the shortest path, the infinite horizon is selected as
reaching at the goal by minimum state transition is essential. The state transition occurs by
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taking an action in the environment. For the infinite horizon, the length of trajectory is the
total state transition required in order to achieve the goal. Initially during learning, for such
a problem the length of trajectory is set to infinite. After reaching the goal the information is
bootstrapped and the length of the trajectory is calculated. Thus, the trajectory length varies
while learning, and the main objective is to reduce the trajectory length hence, achieving the
shortest path. For the infinite-horizon, the trajectory is formulated as shown in equation 4.2.
The trajectory is referred to as τ and the state-action pair is represented by s and a. The state
transition is denoted as {st, at, Rt, st+1} where, by taking action at, the state transitions from st
to st+1 , and reward Rt is obtained.

τ = ({s0, a0, R0, s1}, {s1, a1, R1, s2}, . . . ) (4.2)

For the problems, where the number of state transitions or the system dynamics, is independent
of trajectory length, the finite horizon is considered. For the finite-horizon, the trajectory is
formulated as shown in equation 4.3. The length of trajectory is fixed for the finite number of
state transitions. In this study, the controlling flow is independent of the length of simulation or
trajectory hence, the finite horizon is considered in this study.

τ = ({s0, a0, R0, s1}, {s1, a1, R1, s2}, . . . , {sn, an, Rn, sn+1}) , n ∈ N (4.3)

4.1.2 State observations

In reinforcement learning, at each control step t, the agent receives partial state observations
St and a reward Rt quantifying the current performance of the environment [11]. The state
observation contains information about the state of the system at control time t. In this study,
the state observations are considered as the pressure values at the cylinder surface. In recent
studies, [13, 23, 11], for controlling flow by DRL, the pressure sensors are placed in the wake
of the cylinder. In this study, the pressure values are obtained from the mesh at the cylinder
surface as shown in figure 4.3, but in a real physical model, the pressure values are obtained by
the pressure sensors. Mounting the pressure sensors on the cylinder surface is more intuitive and
practical for the flow around the cylinder.

Pressure
probes(sensors)

Mesh around
cylinder surface

Figure 4.3: State values (pressure sensors) on the cylinder surface which are fetched from the
simulation.

4.1.3 Reward and Return

The agent computes the reward (Rt) at each state transition from st to st+1. The reward
represents the advantage of the action for the st after the transition. In other words, reward Rt
is the gain by taking an action at control time step t.
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Rt = R(st, at, st+1) (4.4)

The objective of this study is to reduce cD and cL. Hence, the objective function is formulated
with cD and cL. The reward function is computed from the environment as a converse of the
objective function where, the reward function is formulated as a weighted sum of drag, lift, and
rotational rate of cylinder. The rotational rate of cylinder is introduced in the reward function in
order to mitigate the energy supplied to the cylinder. Therefore, the value of the reward function
is large if the cD and cL are small and vice-versa. The reward function is designed as shown
in 4.5. Hence, the main goal of reinforcement learning is to maximize the cumulative rewards
at the end of the trajectory. The reward function is utilized to evaluate the performance of the
agent and to improve it.

Rt = r0 −

(
r1cD + r2cL + r3θ̇ + r4

dθ̇

dt

)
, (4.5)

where, r0, r1, . . . , r4 are the constants. The rotational rate of cylinder is defined as θ̇ and dθ̇
dt

denotes as the rotational acceleration of the cylinder. The mean value of drag (cD) and its
fluctuation is higher in magnitude than lift (cL) hence, the primary objective is to reduce cD.
Therefore, the weight for the drag is larger than the weight for lift. The cD yields minimum for
the higher rotational rate but the higher rotational rate is energy inefficient and leads to Magnus
effect [7]. Thus lower rotational rate is desired for the efficient control strategy. Therefore, the
rotational rate and rotational acceleration are formulated in the reward function. The rotational
rate (θ̇) penalizes the higher angular velocity and the rotational accelerations and it ensures
smooth transition of angular velocity from one state to another. The total rewards at the end
of the trajectory are computed as the discounted sum of rewards collected from every control
time step. The total discounted sum of rewards is called return (Gτ ). For the finite-horizon
trajectory, the (Gτ ) is computed as shown in equation 4.7,

Gτ = Rt + γRt+1 + γ2Rt+2 + . . . (4.6)

=

T∑
t=0

γtRt (4.7)

where, γ is discount factor and the γ ∈]0; 1[. If the value of γ is close to zero then the current
reward is weighted most and the future rewards are weighted less. If γ = 1 then all rewards are
weighted the same. In DRL, for good policy, the early future rewards are more relevant than
the later future rewards. Hence, the optimal choice for γ is close to 1, where the early future
rewards are weighted more than the later future rewards. In this study, the discount factor is
set to γ = 0.97.

4.1.4 Agent

The agent receives state observation st and outputs action at. The agent is considered as a brain
of reinforcement learning. In DRL, the agent is a neural network (NN), which is also called
a policy network. The NN is designed with an input layer, output layer, and hidden layers, in
which each layer consists of a finite number of neurons. Each neuron is subjected to mathematical
function with weight and bias [18]. The state observations are feed into the network and the
network yields the output as an actuation, which is angular velocity. The number of hidden
layers and number of neurons in each hidden layer is considered as an ansatz and tuned for
better performance. In learning, the agent performs policy improvement by Rt and st.
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Exploitation and Exploration

The agent is restricted to explore in the sub-optimal region of state-action space by taking exact
output value from the policy network. Considering the exact value from the policy network is
called exploitation. To explore in the sub-optimal region of state-action space for the agent,
randomness is introduced in the output of the policy network. Introducing the randomness in
the output of the policy network is called exploration. All learning algorithms aim at solving
the exploration-exploitation dilemma, meaning achieving the best performance at a minimum
learning cost [11]. Efficient exploration of the state-action subspace is a key factor in the per-
formance of the learning algorithm [11]. The selection of exploration is crucial in DRL as too
much randomness yields high computational cost and reduces the overall performance of learn-
ing. Thus, finding the right balance between exploration and exploitation is crucial in DRL. To
establish the balance between exploration and exploitation, the agent is introduced exploration
variance as a learning parameter. Hence, the output layer of the policy network is subjected to
two parameters, mean of action µa and standard deviation of action σa. The randomness for the
learning is introduced by sampling an action from the Gaussian distribution.

at ∼ N (µa, σ
2
a) (4.8)

Policy network

The policy network is designed with input layers, two hidden layers, and an output layer. The
input layer consists of 54 neurons as there are 54 state observations available at the surface of the
cylinder. Each hidden layer contains 64 neurons. The output layer is subjected to two neurons
for µa and σa. The activation function for the hidden layer is used as ReLU (Rectified Linear
Unit). The state observation st is fed into the neural network at each control time step, which
yields output as µa and σa.

Information flow

Input
layer

hidden
layer

hidden
layer

Output
layer

Figure 4.4: Policy network for DRL.
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Control Time Step

In this study, the control time step is considered as,

∆tc = 20×∆tcfd (4.9)

Where, ∆tc is control time step for DRL and ∆tcfd is simulation time step. At each control
time step ∆tc, action is sampled and feed into system based on st at that time step. The Rt is
calculated at that time step from the cD, cL, θ̇ and dθ̇

dt available at that time step. The transition
of action at → at+1 is implemented as linear in this study.

Figure 4.5: Control time step and simulation time step over lift. The cycle of lift in the figure
represents natural vortex shredding frequency.

State-value function

The state-value function estimates the return at the end of the trajectory for being in the state
st. The state-value function represents how valuable the state is. In other words, The state-value
function gives information about the expected return Gτ for being in a state s by taking action
from policy [8]. The state-value function is formulated as,

vπ(s) = E[Gt|st = s] (4.10)

Where, vπ(s) is the value of state s by following policy π. In the present study, the policy π is
a NN. The state-value function is also known as V-function or value function.

Action-value function

The action-value function estimates the return at the end of the trajectory for being in the state
st and by taking an action at. The action-value function gives information about how valuable
the taken action is for being in state s. The action-value function represents the expected reward
at the end of the trajectory by being in state s and taking the action a by following policy π [8].
The action-value function is formulated as,

qπ(s, a) = E[Gt|st = s, at = a] (4.11)

Where, qπ(s, a) is the q value of state s and action a by following policy π for. The action-value
function is also called as Q-function.
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Action-advantage function

The action-advantage function is a difference of action-value function of action a in state s and
state-value function of state s under policy π. The action-advantage function represents the
advantage of taking action a instead of following policy π [8]. The action-advantage function is
formulate as,

aπ(s, a) = qπ(s, a)− vπ(s) (4.12)

Where, aπ(s, a) is the advantage of taking action a in state s. The action-advantage function is
also called as A-function or advantage function.

Optimal strategy

The main objective for closed-loop control by DRL is to minimize drag, lift, and its fluctuations.
The policy is called an optimal policy for possible minimum drag and lift values. For the optimal
policy, the reward function value is maximum. For an optimal policy, the expected returns
are greater than or equal to all other policies. An optimal state-value function is a state-value
function with the maximum value across all policies for all states. Likewise, an optimal action-
value function is an action-value function with the maximum value across all policies for all
state-action pairs [8]. For optimal policy, the value of the action-advantage function is zero or
close to zero as for optimal policy, there is no better action than the action following the optimal
policy. Hence, for optimal control the main objective is to maximize the action-value function
of action a in state s and state-value function of state s under policy π and to minimize the
action-advantage function of action a in state s.

4.2 Proximal Policy Optimization method

Proximal policy optimization(PPO) is a method in deep reinforcement learning which is widely
used in DRL. PPO method is a modern and very efficient method to approximate state-value
function and action-advantage function at the same time. The block diagram of PPO is shown
in figure 4.6.

For PPO, to approximate state-value function, a neural network called the value network is used.
The policy network is also known as actor and value network as a critic, as the value network is
utilized to approximate action-advantage function. In other words, the value network judges the
action taken by the policy network in the PPO algorithm. Thus, PPO algorithm is also called
an actor-critic method. In this study, the NN architecture of the value network is the same as
the policy network shown in figure 4.4. However, the output layer only consists of one neuron,
which represents the value of the state-value function.

In the PPO algorithm, the environment samples total M number of trajectories which is stored
in the buffer memory. This buffer memory is called a reply buffer or experience in DRL. To fill
the buffer memory, PPO allows sampling multiple N numbers of trajectories at the same time.
This N number of trajectories is sampled by the N-number of workers. Each worker is assigned
to the simulation of the flow problem and when the simulation is finished, it will be stored in a
replay buffer and the worker gets the new simulation to perform until the buffer is full.

For efficient learning and better performance of PPO, randomness is introduced for starting for
control in trajectories. The randomness in starting of control allows capturing all possible initial
state values. In recent studies [23, 11, 13], the starting time of control is taken after the natural
vortex shredding frequency stabilizes. However, in this study, the starting time of control is
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considered between 0 to 4 sec, ∆t0c ∈ [0, 4] in order to capture all possible states and also to
improve the flow control for initial flow disturbance.

Reply Buffer
M-simulations

(M-Trajectories)

Controller

SensorsActuation

Policy Network

Agent

N-Workers

RewardsState
(Pressure values)

Action
(Angular velocity)

Value Network

Policy Loss

Value Loss

N-Environments

GAE

Figure 4.6: Block diagram of PPO algorithm with N numbers of workers and M number of
total trajectories.

4.2.1 State-value function estimation

In the PPO algorithm, the state-value function is represented by the value network (NN). Hence,
using a nonlinear function approximator to represent the value function, the simplest approach
is to solve a nonlinear regression problem [19]:

minimize
φ

N∑
n=1

∥∥∥Vφ (sn)− R̂t
∥∥∥2 (4.13)
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Where, Vφ (sn) is value of the state n obtained from the value network, where the parameters of
value network are φ. The indexes n are overall time-steps in a batch of trajectories to encounter.
R̂t is discounted sum of rewards from the current time step t = l to end of the trajectory t = T .
Hence, R̂t is referred as rewards-to-go as it considers future rewards from the time step t = l.

R̂t =

T∑
l=0

γlrt+l (4.14)

Hence, to approximate the state-value function, the value network is updated by back-propagating
value loss. For value network, by back-propagating the value loss the parameters φ of value net-
work are updated from φk → φk+1. The parameter updating step is subjected to a minimization
problem. The parameters are updated in order to minimize the error between the collected data
from the trajectory and the output of the network. Hence, the value loss is the mean-squared
error averaged over the number of trajectories.

value loss=
1

|Dk|T
∑
τ∈Dk

T∑
t=0

(
Vφ (st)− R̂t

)2
(4.15)

Parameter updating step: φk+1 = arg min
φ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(
Vφ (st)− R̂t

)2
(4.16)

Where, Dk is the number of trajectories that are taken into consideration from the reply buffer
for updating the value network.

4.2.2 Action-advantage function estimation

The action-advantage function which is described in equation 4.12, measures whether or not the
action is better or worse than the policy’s default behavior [19]. In this study, GAE is performed
over the TD-λ method. Where, TD-λ is referred to as temporal difference method [21]. The
action-advantage function estimation for TD-λ method is described as,

δVt = Rt + γV (st+1)− V (st) (4.17)

Where, δVt is referred as the estimation of action-advantage function for action at. TD-λ is a
state-value function estimator where, λ is an weight parameter of the state-value function [21].
However the advantage function estimator is formulated for k-step as,

Â
(k)
t :=

k−1∑
l=0

γlδVt+l = −V (st) + rt + γrt+1 + · · ·+ γk−1rt+k−1 + γkV (st+k) (4.18)

Where, Â(k)
t is an estimator of the k-step discounted advantages [19]. The generalized advantage

estimator GAE(γ, λ) is defined as the exponentially-weighted average of these k-step estimators
[19].
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Â
GAE(γ,λ)
t := (1− λ)

(
Â

(1)
t + λÂ

(2)
t + λ2Â

(3)
t + . . .

)
=
∞∑
l=0

(γλ)lδVt+l

(4.19)

Where, ÂGAE(γ,λ)
t is denoted as GAE for action at. The generalized advantage estimator for

0 < λ < 1 makes a compromise between bias and variance, controlled by the parameter λ
[19]. Parameter λ and γ allows to trade-off between bias and variance. The γ determines the
scalability of V π,γ hence controlling the variance, where the scalability does not depend on the
λ. Moreover, λ < 1 introduces bias into the system, which is independent of the accuracy of the
state-value function. on the other hand, the λ < 1 introduces bias only when the state-value
function is inaccurate [19]. In this study, the values of parameter set as λ = 0.97 and γ = 0.99.

4.2.3 Policy optimization

The policy optimization is achieved by calculating the policy gradient using GAE. Hence, policy
optimization imposes the minimization problem by updating the parameters of the policy net-
work. In order to update the parameter of the policy network, the policy loss is computed and
back-propagated in the network. Where, the policy optimization is formulated as,

Policy loss=
1

T

T∑
t=0

πθ (at | st)
πθk (at | st)

Ât (4.20)

Where, πθ (at | st) is the log probability of the action at for state st by following policy π with
parameter θ. In simple words, πθk is the old policy (the old set of network parameters)

For better performance and faster convergence, the policy loss is clipped. Clipping of the policy
loss controls that the new policy is not too far away from the old one. The clipping of policy
loss is determined as,

L (s, a, θk, θ) = min

(
πθ(a | s)
πθk(a | s)

Aπθk (s, a), g (ε, Aπθk (s, a))

)
(4.21)

Where,

g(ε, A) =

{
(1 + ε)A A ≥ 0
(1− ε)A A < 0

(4.22)

Where, L (s, a, θk, θ) is the clipped policy loss. The ε is referred to as the clipping parameter
and the value of the clipping parameter in this study is selected as ε = 0.1. Hence, in this study
the parameter is updated by back-propagating the clipped policy loss in the policy network.
By back-propagating the clipped policy loss, the parameter of policy network θ is updated as
θk → θk+1 [20].

Parameter updating step:

θk+1 = arg max
θ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

min

(
πθ (at | st)
πθk (at | st)

Aπθk (st, at) , g (ε, Aπθk (st, at))

)
(4.23)

The pseudo algorithm for PPO iteration is shown in figure 4.7.
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Figure 4.7: Psuedo algorithm for PPOa. The python code of PPO for this study is available
at github.com/darshan315/flow_past_cylinder_by_DRL

a spinningup.openai.com/en/latest/algorithms/ppo.html

4.2.4 PPO iterations

The pseudo algorithm for PPO iterations is shown in figure 4.7. For iterations of the PPO
algorithm, 10 workers are considered. The buffer size of the reply buffer is set to 10. Hence, 10
workers execute the 10 simulations at the same time. The weight for reward function is defined
as r0 = 3, r1 = 1, r2 = 0.1, r3 = 10−4 and r4 = 10−6. The weight r3 and r4 are set to small in
order to limit the energy spending for the rotation of the cylinder. In this study, as the main
objective is to reduce cD and its fluctuations due to its higher magnitude compared to cL, the
weight for cD is set to r1 = 1 and the weight r2 which is the weight of cL is considered small
0.1. The higher value of r2 also results in slower convergence for the PPO algorithm. In order
to make the trajectory length equal, the total control time is set to T = 5s, where the control
starts at t = tc and ends at t = tc + 5.

Intuitively, for higher value of angular velocity, the drag is minimum. In this study, performing
PPO iterations, it is observed that the agent is able to learn that physics, where policy network
supplies higher values of mean and standard deviation of an action. The higher value of standard
deviation may be understand as for any uncertain higher value of angular velocity, the drag is
minimum. However, the higher value of angular velocity is energy inefficient and hence, not desir-
able. Moreover, for higher values of angular velocity, the simulation fails in OpenFOAM. Hence,
the mean µa and standard deviation σa is also clamped. The values for clamping parameter for
µa and σa is set as εµ = 20 and εσ = 7.39 respectively.

µa = c (εµ, µa) (4.24)
σa = c (εσ, σa) (4.25)
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Where,

c(ε, A) =


A A ∈ [−ε, ε]
−ε A < 0 and A /∈ [−ε, ε]
ε A > 0 and A /∈ [−ε, ε]

(4.26)

Figure 4.8: Mean of the cumulative rewards and 2 σ averaged rewards over a iterations of PPO
algorithm.

The PPO algorithm is executed for 80 iterations. The average rewards and 2 σ averaged rewards
at the end of the iteration is plotted in figure 4.8. From the figure, the learning converges after
60 iterations, and iterating further leads to the same results. Therefore, the policy does not
improve after 80 iterations. The policy network after the 80 iterations is considered as optimal
policy and the value network is considered as an optimal value network.

4.2.5 Results

To execute the simulation for optimal policy, the mean of the policy is only considered. When
the state observations st are fed into the policy network, the mean of ω from the output layer
is considered rather than sampling from the normal distribution. Hence for the rotation of the
cylinder, the angular velocity is determined as,

ω = µ
π∗
θ
a (4.27)

Where, π∗θ is the optimal policy with parameter θ. The simulation is executed for the optimal
policy, where the DRL control starts at t = 2.19s. Meaningly, at t = 2.19s, the agent starts
collecting state observation, and the cylinder is rotated by the agent in order to minimize the
drag, lift, and their fluctuations. This simulation by following optimal policy in DRL is referred
to as a DRL controlled case or closed-loop controlled case, and the simulation without closed-loop
control is referred to as the uncontrolled case. The simulation of the closed-loop controlled case
and simulation of the uncontrolled case is shown in figure 4.9. From the figure, the formation of
the vortices in the wake occurs far from the cylinder in a closed-loop controlled case compared
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Figure 4.9: Velocity(magnitude) distribution at t = 5.34s for closed-loop(DRL) controlled case
and uncontrolled case. In closed-loop controlled case the control starts at t = 2.19s.

Figure 4.10: Values of cD for closed-loop(DRL) controlled, open-loop controlled case and un-
controlled case, where in closed-loop controlled case cylinder is rotated by an agent
which follows optimal policy, where the control starts at t = 2.19s. In open-loop
controlled case the cylinder is oscillated by optimal parameter Ω = 2.294 and
Sf = 0.7128.
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Figure 4.11: Values of cL for closed-loop(DRL) controlled, open-loop controlled case and un-
controlled case, where in closed-loop controlled case cylinder is rotated by an agent
which follows optimal policy, where the control starts at t = 2.19s. In open-loop
controlled case the cylinder is oscillated by optimal parameter Ω = 2.294 and
Sf = 0.7128.

case cD cDmax cDmin cL cLmax cLmin

uncontrolled case 3.1721 3.1965 3.1474 -0.0126 0.8789 -0.9049
open-loop controlled case 3.0256 3.0778 2.9809 0.0051 0.3262 -0.3231
closed-loop controlled case 3.0102 3.0153 3.0017 -0.1957 0.0956 -0.4897

Table 4.1: Table containing the mean, maximum, and minimum values of cD and cL for con-
trolled case and open-loop controlled case and closed-loop controlled case, where the
values are considered from t = 4 to t = 8.

case (cDmax − cDmin) (cLmax − cLmin)

uncontrolled case 0.0491 1.7838
open-loop controlled case 0.0969 0.6493
closed-loop controlled case 0.0136 0.5853

Table 4.2: Table containing the values of amplitude of fluctuations for controlled case and open-
loop controlled case and closed-loop controlled case, where the values are considered
from t = 4 to t = 8.
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uncontrolled

Figure 4.12: Pressure distribution over the polar coordinates at the surface of the cylinder for
closed-loop(DRL) controlled, open-loop controlled case and uncontrolled case. In
closed-loop controlled case cylinder is rotated by an agent which follows optimal
policy, where the control starts at t = 2.19s. In open-loop controlled case the
cylinder is oscillated by optimal parameter Ω = 2.294 and Sf = 0.7128.
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Figure 4.13: Angular velocity for closed-loop(DRL) controlled and open-loop controlled case.

to an uncontrolled case. The vortices propagation in the wake of the cylinder is weaker in
closed-loop controlled case with comparing uncontrolled case.

In figure 4.12, the pressure distribution over the polar coordinates at the surface of cylinder is
plotted. By using open-loop control strategy and closed-loop control strategy, the pressure at
the cylinder surface is changed, which results reduction in drag and lift. The mean value of drag
and lift is also improved by using closed-loop control, as the pressure fluctuation at the cylinder
surface is decreased. Hence, in closed-loop control the agent learns to rotate the cylinder in order
to decrease the pressure fluctuation at the cylinder surface.

The table 4.1 contains mean, maximum and minimum values of cD and cL. The amplitude of
fluctuation of cD and the amplitude of fluctuation of cL are contained in table 4.2. In figure
4.10, the values of cD is plotted for uncontrolled case, open-loop controlled case and closed-loop
controlled case. From figure, the mean value of cD is reduced with the significant reduction in
the fluctuation of cD compared to open-loop control. In closed-loop control, the frequency of
the fluctuation is also significantly reduced compared to open-loop control. From table 4.1 and
table 4.2, The mean value of drag is reduced by 5.10% and the amplitude of the fluctuation is
damped by 72.30% by closed-loop control. However, in open-loop control the amplitude of the
fluctuation of cD is increased by 97.35%. Similarly, in figure 4.11, the values of cL is plotted
for uncontrolled case, open-loop controlled case and closed-loop controlled case. In closed-loop
control the amplitude of fluctuation of cL is decreased by 3.58% with compared to open-loop
control. From figure 4.13, the relative change in the amplitude of angular velocity ω is 35.36%
for closed-loop control compared to open-loop control. The ordinary frequency of rotation for
closed-loop is also reduced by factor of 2. Hence, closed-loop control is energy efficient compared
to open-loop control.



Chapter 5

Assessment

An assessment study provides information about the performance control strategy by changing
the variable of the flow problem. The assessment determines the agent’s ability to generalize
for different flow conditions. In this study, for the assessment, the simulation is performed for
Re = 200. For open-loop control strategy, the assessment is performed for optimal parameter
Ω = 2.294 and Sf = 0.7128 which are achieved for Re = 100. Similarly, in the closed-loop
strategy, the assessment is performed for optimal policy π∗θ , which is obtained by Re = 100.
The simulations assessment for the uncontrolled case, open-loop controlled case and closed-loop
controlled case are shown in figure 5.1.

Figure 5.1: Velocity(magnitude) distribution at t = 5.34s and Re = 200 for closed-loop(DRL)
controlled case and uncontrolled case, where with control referred as closed-loop
controlled case and without control referred as uncontrolled case. In closed-loop
controlled case the control starts at t = 2.19s.

41
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Figure 5.2: Values of cD for closed-loop(DRL) controlled, open-loop controlled case and uncon-
trolled case for Re = 200, where in closed-loop controlled case cylinder is rotated
by an agent which follows optimal policy, where the control starts at t = 2.19s. In
open-loop controlled case the cylinder is oscillated by optimal parameter Ω = 2.294
and Sf = 0.7128.

Figure 5.3: Values of cL for closed-loop(DRL) controlled, open-loop controlled case and uncon-
trolled case for Re = 200, where in closed-loop controlled case cylinder is rotated
by an agent which follows optimal policy, where the control starts at t = 2.19s. In
open-loop controlled case the cylinder is oscillated by optimal parameter Ω = 2.294
and Sf = 0.7128.
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case cD cDmax cDmin cL cLmax cLmin

uncontrolled case 3.0737 3.1848 2.9681 -0.0436 1.8512 -1.8789
open-loop controlled case 2.4900 2.5459 2.4492 -0.0389 0.1213 -0.2016
closed-loop controlled case 2.6550 2.7729 2.5589 -0.2014 1.1644 -1.5159

Table 5.1: Table containing the mean, maximum, and minimum values of cD and cL for
controlled case and open-loop controlled case and closed-loop controlled case for
Re = 200, where the values are considered from t = 4 to t = 8.

case (cDmax − cDmin) (cLmax − cLmin)

uncontrolled case 0.2167 3.7301
open-loop controlled case 0.0967 0.3227
closed-loop controlled case 0.214 2.6803

Table 5.2: Table containing the values of amplitude of fluctuations for controlled case and open-
loop controlled case and closed-loop controlled case for Re = 200), where the values
are considered from t = 4 to t = 8.

From figure 5.2, the mean drag value is reduced for both open-loop controlled case and closed-
loop controlled case. However, the frequency of fluctuation of cD is increased for the open-loop
control strategy. For open-loop control, the amplitude of fluctuation of cL is damped significantly
compared to other cases. On other hand, for a closed-loop controlled case, the agent is able to
reduce c̄D by 13.62% with significantly reducing amplitude and frequency of fluctuation of cD.
Moreover, The agent is also able to reduce c̄L by 19.32% with a reduction in amplitude and
frequency of fluctuation of cD. The relative drag reduction achieved by the agent is higher at
Re = 200 compared to Re = 100.



Chapter 6

Summary

When fluid flows across the object, due to the surface geometry and the shear stress between
the surface of the object and boundary layer, the vortices form in the wake of the object. These
vortices propagate in the wake of the object. These vortices are called von Kármán vortex street.
The periodically propagating von Kármán vortex imposes periodic drag and lift forces on the
object. Pressure fluctuations due to the surface curvature and shear stress between the boundary
layer and boundary wall of the object. These periodic drag and lift forces are considered unwanted
system dynamics in aircraft and automobiles. Hence, these unwanted system dynamics need to
be controlled which imposes high dimensional optimization problem. As a generic example, flow
across the 2D cylinder is considered in order to control the unwanted system dynamics in terms
of drag, lift, and its fluctuations. The parabolic inflow boundary condition is considered. The
fluid flows with Reynolds number 100. The flow problem is solved by using an OpenFOAM
open-source solver. The meshing is achieved In OpenFOAM by creating the background mesh
for the whole domain and subtracting the cylinder from it and the mesh around the cylinder
is refined by region refinement in order to accurately capture the flow instability. The mesh
dependency study is performed on a different level of mesh refinement 100, 200, and 400. The
mesh refinement level 200 is considered as there is no significant change in drag and lift after
the refinement level 200. The execution of the cylinder is performed parallel to minimize the
computation time. The execution of the flow simulation provides information about drag, lift,
and its fluctuations. The fluctuations and the mean value of drag are much higher than the
fluctuations and the mean value of the lift. Hence, the primary objective is to control the drag
and its fluctuations.

In open-loop control, the system is not subjected to feedback in order to evaluate the control
strategy. In open-loop control, the control strategy is carried out and evaluated initially, and then
it is fit in the system to achieve control. The evaluation of the open-loop control strategy occurs
after the running of the system. For the open-loop control strategy, the cylinder wall boundary
condition is subjected to the oscillatory sine wave function with parameter as amplitude A and
f . The parameter A and f can be normalized as Ω and Sf . The optimal parameter Ω and Sf is
determined by parameter study, where the cost function is formulated with the mean values of
drag and lift along with its fluctuations. The range of parameter study is restricted for smaller
values of Ω and Sf in order to limit the energy for rotating the cylinder. A fine sampling of Ω
and Sf for parameter study results in high computational cost. A coarse sampling of Ω and Sf
for parameter study results in inaccurate optimal parameters. To overcome this problem, the
functional approximation is achieved on the coarse sampled data with the cost function, where
the minimum value of the functional approximation yields the optimal parameters Ω and Sf .

In closed-loop flow control, the feedback from the system is utilized in order to evaluate the
control strategy. The feedback is frequently analyzed to improve the control strategy in closed-
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loop control during the running of the system. For closed-loop control, reinforcement learning
is a proven state-of-the-art method. The environment in reinforcement learning is subjected to
flow problems. The reinforcement learning problem is formulated as a finite horizon. The reward
function is formulated as the converse of the cost function, where the cost function is formulated
as drag, lift, and its fluctuations. The agent receives feedback from the environment in terms
of state and rewards. The state of the environment is referred to as the pressure values at the
cylinder surface. In reinforcement learning, the agent takes an action based on the state of the
environment to maximize the reward function in order to achieve the objectives. The action
taken by the agent is in form of rotating the cylinder. The agent determines the action by using
a neural network(NN) architect from deep learning, which is called a policy network or actor.
Therefore it is called deep reinforcement learning (DRL).

For DRL, the proximal policy optimization (PPO) algorithm is considered in this study. The
PPO algorithm approximates state-value function and action-advantage value function. For PPO
algorithm, the approximation of state-value function and action-advantage function is achieved
by using value network and policy network respectively. The learning of a PPO algorithm is
performed by PPO iterations. The optimal policy is obtained by the end of sufficient PPO
iterations. For optimal policy, the policy network determines an action at based on the state
of the environment st, such that the reward function Rtis maximum. In other words, optimal
policy determines the angular velocity for the cylinder based on the pressure values at the cylinder
surface in order to minimize the drag and lift along with its fluctuation.

The optimal parameters for the open-loop strategy are achieved as Ω = 2.294 and Sf = 0.7128.
For optimal parameters Ω = 2.294 and Sf = 0.7128, the reduction in pressure gradient at the
top and bottom of the cylinder surface results in a reduction in c̄D by 4.61% and c̄L by 0.56%.
However, due to the high fluctuation of the pressure at the cylinder surface, the frequency of the
fluctuation of cD is increased and the amplitude of the fluctuation of cD is increased by 97.35%.
The cDmax and cLmax is reduced by 5.34% and 17.28% respectively for the open-loop controlled
case. Similarly, the cDmin and cLmin is reduced by 3.86% and 18.48% respectively.

In closed-loop control, for the optimal policy, the c̄D is decreased with significant damping its
fluctuation. By optimal policy, the pressure fluctuation at the cylinder surface is significantly
decreased, which results in the reduction of c̄D and its fluctuation. The c̄D is decreased by 5.10%
with 72.30% reduction in amplitude of fluctuation of cD. The c̄L is also reduced by 5.77% and the
amplitude of fluctuation of cL is decreased 67.18%. The cDmax and cLmax is reduced by 5.66%
and 24.50% respectively for the closed-loop controlled case. Similarly, the cDmin is reduced by
4.62% and cLmin is increased by and 18.48%.

The agent is assessed for Re = 200 in order to determine the agent’s ability to generalize for
different flow conditions. In the assessment, the agent is able to reduce c̄D by 13.62% with
significantly reducing amplitude and frequency of fluctuation of cD and c̄L by 19.32% with a
reduction in amplitude and frequency of fluctuation of cD. The assessment study suggests that
the the relative drag reduction achieved by the agent is higher at Re = 200 and it has high
potential to reduce the drag, lift, and its fluctuations.

The performance of an agent can be also improved by taking the sensible pressure values from
the surface of the cylinder. At the top and bottom of the cylinder, where the pressure fluctuates
more can be considered as the most sensible pressure values in the training of PPO. The pressure
values, which do not fluctuate much can be avoided for better performance of the agent. Paris et
al. [11] presented the study, which shows the sensitivity of the agent’s learning ability with the
number of pressure sensors placed in the wake of the cylinder and its distance from the cylinder.
The performance of the agent can be also evaluated for the variable inflow conditions.
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