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Abstract: Today, ensuring work safety is considered to be one of the top priorities for various in-
dustries. Workplace injuries, illnesses, and deaths often entail substantial production and financial
losses, governmental checks, series of dismissals, and loss of reputation. Wearable devices are one
of the technologies that flourished with the fourth industrial revolution or Industry 4.0, allowing
employers to monitor and maintain safety at workplaces. The purpose of this article is to systematize
knowledge in the field of industrial wearables’ safety to assess the relevance of their use in enter-
prises as the technology maintaining occupational safety, to correlate the benefits and costs of their
implementation, and, by identifying research gaps, to outline promising directions for future work
in this area. We categorize industrial wearable functions into four classes (monitoring, supporting,
training, and tracking) and provide a classification of the metrics collected by wearables to better
understand the potential role of wearable technology in preserving workplace safety. Furthermore,
we discuss key communication technologies and localization techniques utilized in wearable-based
work safety solutions. Finally, we analyze the main challenges that need to be addressed to further
enable and support the use of wearable devices for industrial work safety.

Keywords: wearables; smart devices; occupational safety; IIoT; data collection; communications;
localization

1. Introduction

The workplace is fraught with many sources of danger, especially in enterprises with
harmful work conditions. For a long time, the work safety issue has been relegated to the
background by employers for the sake of labor productivity. Published by World Health
Organization (WHO) [1], statistics on industrial death accidents from 1970 to the present
day have a shape close to Gaussian. The lack of statistics can explain this observation since
only six countries maintained such a base starting from the 70th. However, the emergence of
new technologies, including wearable devices, can also contribute to constraining mortality
in industries nowadays [2].

Although the number of accidents per year tends to decrease, the level of mortal-
ity in workplaces is still considerable. According to the International Labor Organiza-
tion (ILO) [3], approximately 1.9 million people have work-related diseases, and 2.3 million
people die from work accidents annually. Besides, these statistics reflect only reported
cases: not all enterprises openly register all cases, thus, not entailing inspections, sanctions,
unrest among staff, loss of reputation, etc. Therefore, at least 4.2 million people suffer in
the workplace per year, and 45% of countries have a population less than this number [4].
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The problem of work safety in industrial environments is still on the crest of a wave.
Worldwide statistics show a high rate of death and injury at work, a variety of hazardous
industries, and sources of danger [3]. With the advent of Industry 4.0 and broad integration
of the Internet of Things (IoT), employers are expected to achieve better safety mainly
due to the emergence of various technologies [5]. This paper is primarily focusing on
the smallest form-factor personal devices, namely, wearables, that also attempt to achieve
the same goal as part of the Internet of Wearable Things (IoWT) paradigm [6]. Further
discussion will focus on the Industrial IoT (IIoT) that emerged to design, maintain, monitor,
optimize, and analyze industrial operations to gain real-time insights, make effective
decisions and maintain occupational safety [7,8].

Historically, the IIoT was at the initial stage of its development as of 2015 [9]. At
this point, many entrepreneurs had doubts about the feasibility of introducing such an
innovation due to the uncertainty about the impact that it will have on workers, labor
processes, production, and, more importantly, profits. The situation has begun to change
in the last five years. According to [7], the IIoT market size is estimated at 77 billion USD,
with a perspective reaching 110 billion USD by 2025. However, this forecast was delivered
before the spread of the COVID-19. Due to the global pandemic situation, many enterprises
terminated their businesses or even claimed bankruptcy. Indirectly, we can estimate a
decrease in production capacity by an increase in unemployment. For example, one of the
most significant blows hit the manufacturing, construction, transportation, and storage
sectors according to the UK statistics [10,11]. In contrast, some industrial wearable device
manufacturers took advantage of the situation by adjusting products to the circumstances.
For example, Estimote has redesigned its industrial wearable tracking devices to remember
contacts between workers closer than two meters [11,12].

By meeting two basic requirements for any IoT device, namely, access to the Internet
and communication solutions, wearables have become one of the most important IoT
concepts, forming IoWT as a promising yet young segment. Various forecasts state that
the wearable device market will reach 57 billion USD by 2022 [13], or even 64 billion USD
by 2025 [14], and 104 billion USD by 2027 [15]. Wristbands and bracelets currently occupy
the leading position among wearable devices and smartwatches, which market share is
almost 50% [16].

As of today, research literature still lacks comprehensive reviews on wearable technol-
ogy and its industrial utilization [17]. The most solid work considering this topic is [18]. In
this paper, the authors distinguished 24 categories of wearable technologies and divided
them into five groups depending on the functions; monitoring, tracking, augmenting,
assisting, and delivering content. Moreover, they highlight six motivations behind the
use of wearable devices in industrial environments: the ability to monitor employees’
psychological and physiological factors, enhance operational efficiency, promote work
environment safety and security, and improve workers’ health. Finally, they revealed the
main challenge groups compliant with the adoption of wearable devices; technological
challenges (trade-off between size, weight, battery functions, accuracy, etc.), social chal-
lenges (confidentiality of data, lack of technical skills, high dependency on the wearable
device), policies and standards set by governments, economic challenges (high cost of
the wearable devices and its integration with other systems), and data challenges (data
ownership issue, huge amount of data).

In particular, authors in [19] review wearable devices as part of the IoT concept,
mentioning work safety in the list of areas where this technology is beneficial but without
special focus on it. On the opposite, some other works explore the use of wearable devices
in a narrow specific area of the industry. Moreover, the authors of [20] consider the mining
industry, while work [21] deals with the construction industry. However, to the best of
the author’s knowledge, none of these works investigates industrial wearables focusing
on occupational safety or reviews key aspects of data collection, data transmission, and
localization. Driven by the works mentioned above, this paper aims to analyze and
integrate information related to wearable devices and provides a comprehensive overview
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of the different features of their use in maintaining and increasing work safety in potentially
hazardous industries, as depicted in Figure 1.

Smartband

Smartshoes

Smartwear

Smartbelt

Logistics

Underground mining

Headset

Industrial Wearable
Ecosystem

Construction

Chemical industries

Figure 1. The concept of using wearable devices in industries to maintain work safety.

For this work, we formulated the following research questions:

• What functions of wearable devices allow enterprises to increase work safety
level and how?

• What metrics and techniques are common in wearable devices? and which of
them are the most promising in the industrial case?

• What are the current research gaps in the field of industrial wearables for
occupational safety?

To find the answers to our research questions, a widely-used methodology was
adopted to carry out a systematic literature review based on the PRISMA [22]. To identify
key publications on the analysis of wearable technology for work safety, we performed
a literature search in scientific databases that cover leading computer science journals
and conferences including IEEE Xplore, ACM Digital Library, ScienceDirect, SAGE Journals
Online, and Springer Link. To find relevant articles and papers for our research, we applied
the following search string: (Wearable OR “Body Area”) AND (Safety OR Industr* OR In-
jury) for the past five years and in the fields of Electrical Engineering, Applied Physics,
Telecommunications, Biomedical Engineering, and Computer Information Systems. In
total, we gathered a set of 1290 potentially relevant publications, excluding grey literature
and pre-prints.

We then analyzed the titles, keywords, and abstracts of the publications to identify pa-
pers and articles that describe at least one modeling or simulation approach for distributed
ledgers. While doing so, we selected a total of 75 publications. To further extend our
literature sample, we analyzed the selected publications’ references for additional papers
relevant to our research. Following this process, it resulted in a total of 68 publications.
The literature list was further extended based on the additional references identified in
the bodies of the selected ones or referencing those. Once the literature selection process
was completed, we carefully read the selected publications to identify the described appli-
cations and challenges. The results of our analysis form the core of the topical literature
review and are presented in the following sections.
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The rest of this article is organized as follows. Section 2 discusses industrial wearables
in more detail, considering main groups, functions, examples of applications, and benefits
to the industry in general and from an occupational safety perspective in particular. Next,
Section 3 highlights metrics, technologies, and approaches regarding the techniques of
data collection, data transmission, and localization. Further, Section 4 provides the main
challenges and future perspectives of this work. The last section concludes the paper.

2. Industrial Wearable Devices

The IIoT provides a wider view and a deeper understanding of the company’s pro-
cesses by integrating different sensors, wearables, software, and data processing tools. The
clearest advantage of wearables in IIoT is lucre, which is reached by increasing operational
efficiency, reducing downtime, and optimizing business processes. Less frequently dis-
cussed in the literature, the benefit is related to how wearable technology can maintain
workplace safety. It is necessary to identify the main sources of security threats and the
causes of workplace accidents to answer the first research question. This paper, first of all,
identifies the most dangerous industrial sectors in the world.

There are no general statistics on mortality from injuries by the industry sector. How-
ever, some countries keep such records providing statistics in ratios (commonly, the number
of deaths per 100,000 workers) without mentioning the actual number of accidents. Hope-
fully, in the near future, the management of statistics in enterprises will be more widespread
and, importantly, standardized so that data from different places can be easily compared,
problems—identified, and experience in dealing with them—shared. Figure 2 outlines
the results of investigations conducted in USA [23], Australia [24], Germany [25], Great
Britain [26].
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Figure 2. The rate of deaths due to work-related accidents during 2014–2020 (for approx. 100,000).

The most dangerous identified industry sectors are agriculture/forestry, construction,
transportation, manufacturing, and trade. Due to differences in classification, most sec-
tors such as mining, oil and gas extraction, and recycling fall under the “other” category.
Notably, the four key causes in decreasing order of frequency are: fall from height, struck
by moving/falling object, caught-in/between (when a worker is between the parts of
machinery/object [27]), and hit by moving vehicle. Among the other reasons are also cuts,
car crashes, reaction to improper motion, electrocutions, hazardous substances, chemi-
cals [20,28]. According to [1], the main consequences that lead to death due to the last two
reasons are chronic obstructive pulmonary disease and cancer (more often, lung cancer
and mesothelioma). Nonetheless, constant stress should also be added to the list. Over
time, employers have become more concerned with maintaining a favorable working
atmosphere, but the impact of stress on human health is still underestimated in many
organizations. In the short term, it may lead to various disorders, from chronic fatigue
to depression. In the long-term, it may entail severe psychological problems and several
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problems such as the higher risk of myocardial ischemia, cardiac arrhythmia, anorexia,
Alzheimer’s disease, insomnia, etc. [29,30].

Importantly, industrial wearables have increased requirements for reliability. Harsh
industrial surroundings, characterized by extreme environmental values (extra-low/high
temperatures, high radiation level, etc.), require the wearable device’s physical durability.
Also, specific worksites impose the need to develop and improve the accuracy, range,
response time, and robustness of traditional technologies. Wearables are one of the most
promising solutions to eliminate or reduce the risk of both physical and mental accidents
in workplaces. Currently, wearables are widely applied in enterprises and perform many
tasks that improve the level of safety at work. Table 1 provides an answer to the first
research question by identifying wearable features and functions that help maintain occu-
pational safety.

Table 1. Classification of industrial wearable functions.

Function Sub-Functions & Description

Monitoring (M)
Fitness trackers,
smart rings, smart
glasses, patches/
sensors attached to
the body, smart
clothing,
implantable
wearables, etc.

Monitoring and control of vital parameters of workers. Information about vital parame-
ters (heart rate, blood pressure, body temperature, brain activity, etc.) gives the employer (orga-
nization, safety manager, administration) and the worker himself an idea on the readiness of the
latter for the work process from a physical, less often psychological, point of view [31,32].
Monitoring of environmental parameters at workplaces. Knowing such parameters as the
temperature at the worksite, atmospheric pressure, level of radiation, and so on allows an
organization to control the overall environmental situation at the factory, prevent emergencies,
timely organize the evacuation of people, provide a worker with proper Personal Protective
Equipment (PPE). Moreover, by combining environmental and vital parameters, it is possible to
track environmental impacts on human health in hazardous industries such as the chemical
industry [33,34].

Supporting (S)
Exoskeletons,
patches (to control
the position of the
body when lifting
heavy objects),
wearable robots

Increasing the physical capabilities of the workers. Some industries envisage lifting and
transferring heavy objects, which is often associated with musculoskeletal injuries. Wearable
items such as exoskeletons support the musculoskeletal system to prevent damage [35–37].
Facilitating communication between workers. Due to their small size, weight, and comfortable
attachment to the wearer’s body, wearables such as headsets with embedded hand-free micro-
phones, for example, are much more convenient than phones and able to provide communication
between workers without distracting them from the work process. (hand-free microphones
embedded in headsets/helmets) [38].
Simplification of information management. Wearable devices provide secure transmitting,
storage, displaying information, and fast access to documents and notifications [39].
Performing industrial design. The use of AR enables creating virtual diagrams and graphs
that facilitate better understanding by workers [40].

Training (Tn)
Smart glasses,
helmets, heads-up
display

Training of the workers. Some wearable devices can track the correctness of the actions
performed by the worker, providing him with a detailed report (for example, determining the
correct posture using biomechanical analysis). The worker can analyze his mistakes to prevent
them in the future. Moreover, using Virtual Reality (VR) and Augmented Reality (AR) helmets,
it is possible to train workers on complicated operations before performing them in reality,
thereby reducing the likelihood of injury [36,40].

Tracking (Tc)
Smart bracelets,
smart clothes,
smart boots, digital
pedometer, etc.

Monitoring of location parameters of workers. The worker’s location is one of the most
important parameters when we are talking about ensuring work safety in the industry. By
knowing each employee’s location, the safety manager can efficiently organize evacuations,
distribute help and workforce, prevent unauthorized access to the worksite or equipment, and
so on [41].
Preventing struck by moving machinery. Tracking of object locations and proximity detection
sensors allow avoiding a collision that is one of the most spread accidents in industries [33,41].
Creating a comprehensive picture of the whole production process. Thanks to wearables,
managers can see the real-time location of workers and equipment, which allows them easily
redistribute labor between operating sites and more effectively allocate resources [41].
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All industrial wearables functions can be categorized into four groups: monitoring,
supporting, training, and tracking. The informing function providing just-in-time informa-
tion at the workplace and proposed in [18] is seldom represented as a standalone function
nowadays and can be, thus, merged with the supporting function. Table 2 gives examples
of wearable solutions currently applied in the most hazardous industry branches.

Table 2. Industry branches and inherent industrial wearable functions.

Industry Branch Functions
(See Table 1) Examples of Applications

Mining M, Tc
US-based Guardhat to prevent injuries combining rugged helmets with
microphones, cameras, and track sensors [42]. Guardhat is currently
integrated into a lot of mining operations.

Chemical M, Tc MyExposome developed wristbands that can detect chemical exposures
during the day [34].

Forest products,
construction M, Tc, S

SolePower company released smart boots [41]. It is equipped with many
various modules, particularly GPS and RFID, to determine the wearer’s
location. Besides, they are very durable, so they can easily withstand many
ordinary adverse external influences.

Crude oil
production M

Smart Helmet by VRMedia Srl. was applied by the third-largest oil and gas
service company in the world Baker Hughes to reduce downtime and increase
safety at the workplace [43].

Transportation,
Shipping M, Tc, S

Kinetic presents a wearable device called REFLEX that is equipped with
sensors and modules performing biomechanical analysis [36]. It is worn on the
belt or waistband and can determine whether the posture is correct or not and
notify the user by vibration when risky movements arise.

In summary, industries are replete with hazard sources resulting in a high work
mortality rate. However, work safety levels can be increased by using wearable devices
through the ten functions mentioned above.

3. State-of-the-Art Techniques in the Field of Industrial Wearables

The use of a wearable device in the functions discussed above involves other technical
aspects, such as data collection, data transfer technologies, and localization methods.
This section reviews the existing approaches, pointing out the most promising ones for
industrial uses.

3.1. Data Collection and Wearable Metrics

The monitoring function is based on the collection of several metrics. In fact, no
classification of metrics collected by wearable devices is currently available in research
works. We, thus, divide these metrics into two groups depending on the data collected
from wearables. The first group is related to the data “extracted” from the human body,
and the second group deals with the environment’s information. Tables 3 and 4 represent
the most common wearable metrics and their classification.

In industrial scenarios and setups, the most important and frequent metrics related to
the human body are temperature, heart rate, and location. Less commonly used metrics are
motion and perspiration. However, the motion metric is essential for industries associated
with lifting heavy loads (construction, logistics), and the perspiration can also be relevant
for industries with a high probability of heat stress (e.g., mining) [44]. To the best of the au-
thors’ knowledge, the rest of body-related metrics such as EEG, EMG, ECG, heart sounds,
sleeping activity, etc. are not tracked in the industries yet, but they can help estimate
both the worker’s physical and mental readiness for the industrial process. Developing a
comprehensive, lightweight, wearable solution consisting of multiple sensors capable of
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measuring the human body’s vital parameters as possible will make a significant contribu-
tion to eliminating accidents due to human error in hazardous industries. Regarding the
parameters related to the environment, it is hard to say what metrics are more frequently
used. The industrial conditions define wearable devices’ choice and, consequently, the
metrics that can be collected. In the reviewed literature, temperature, relative humidity,
and air quality are often used as environment metrics.

Table 3. Human body-related metrics.

Metric Description Example
Accuracy Examples

Blood
pressure

The pressure that blood puts on the walls of blood vessels.
There are systolic or upper (normal value: less than 120
mmHg) and diastolic or lower (normal value: less than 80
mmHg) blood pressure [45]. The average working range of
blood pressure sensors is 0–320 mmHg [46,47].

86% [48]

Arm cuffs with
attached sensors [49],

cuff-less blood
pressure sensors [50]

Calorie

A unit equal to the amount of heat needed to increase one
gram of water temperature by one degree Celsius. There are
several ways how to calculate the number of calories (e.g.,
based on the number of steps or heart rate [51]), resulting in
a wide range of wearables providing this function.

>91%
(walking);
>90% (run-
ning) [52]

Accelerometers,
pressure sensors in

fitness bracelets,
smart shoes [51], etc.

Electro-
cardiogram

(ECG)

The electrical activity of the heart [49]. The unit of
measurement is Volts. ECG is the main diagnostic method
for detecting cardiovascular diseases such as hypertrophy,
heart attack, arrhythmia [53].

>90% [54]
Skin electrodes [49]
in clothes [55], chest

straps [56], etc.

Electro-
encephalo-

gram (EEG)

The electrical activity of the brain [57]. The unit of
measurement is Volts. EEG is used to identify and predict
brain-related diseases (e.g., Alzheimer’s disease, epilepsy,
dementia) [58]. In addition, it also used for the emotion
detection [59,60]. Until now, ECG, EEG, and EMG are
performed mainly in medical institutions. However, there
are already some wearable devices on the market for such
measurements.

>86% [59,60] Headset [57,61]

Electro-
myography

(EMG)

The electrical activity of the muscles [49]. The unit of
measurement is Volts. When measuring EMG, the critical
point is the exact position of the electrodes on the muscles.
EMG is used to identify the muscle traumas and monitor the
recovery tendency after such traumas [62].

>90% [63]

Skin electrodes [49]
embedded in

bracelets, waist
straps [64],

clothes [65].

Glucose

The level of sugar in the blood. It is measured in grams per
liter or moles per liter. High glucose level identifies diabetes,
the symptoms of which are quite wide, ranging from visual
impairment to increased fatigue and depressive
episodes [66,67]

>95% [68]

Strip-base [69],
implantable [70]
glucose sensors,

smart tattoos [71]

Heart rate
and pulse

Heart rate is the number of heartbeats per minute. Pulse is
the number of vibrations of the aortic walls. Pulse may be a
less accurate characteristic in pathologies (for example,
extrasystole) since not all heartbeats lead to the formation of
a pulse wave [72]. Critical boundaries usually range between
40-200 beats per minute and depend on current activity,
gender, age, health, type of activity, etc.

>76% [73]

Pulse oximeter [74],
chest [75] and wrist
straps [69], fitness

bracelets
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Table 3. Cont.

Metric Description Example
Accuracy Examples

Heart sounds

Sounds that appear due to a change in blood flow, vibration of the
surrounding tissues of the heart, and large vessels. The
conventional way to measure heart sounds is
phonocardiograph [76]. However, there are already some wearable
solution [77].

>80% [77] Wrist band [77]

Location-
related
metrics

Metrics related to identifying the object’s position: coverage,
accuracy, power consumption, price of the wireless technology, etc.
Localization technologies are considered in more detail in
Section 3.3.

NA Wide range of
wearables

Motion-
related
metrics

This metric refers to identifying the parameters of the human
movements that are also called biomechanical analysis [78,79]. The
range of the wearables for which this metric is used is very wide
since the measured parameters could be very different: from
detection of the velocity and speed to determining if the posture
correct or not.

NA

Accelerometer,
gyroscope [80],

exoskeletons, pressure
insoles, e-textile [78]

Perspiration
or sweat

A liquid excreted from the skin’s sweat glands [81]. Sweat is the
second body fluid after the blood that contains the richest range of
biomarkers like glucose, pH, cortisol, etc. [82]. Usually, this metric
is used in sport or healthcare areas.

>99% [83]
Sweat collectors, skin

patches [82], smart
watches [84]

Temperature

A measure of the ability of the body to generate heat [49]. However,
the normal temperature range for a healthy human is 36.16–37.02
◦C [85], and the widest recorded range is 24–44 ◦C [86], usually the
range of the wearables measuring temperature is wider.

>99% [87]
Temperature

sensors [88,89] and skin
patches [90]

NA— Accuracy is not specified for metric groups.

Table 4. Environment-related metrics.

Metric Description Examples

Air Quality
In-
dex (AQI)

An index shows the degree of air pollution in a certain area [91]. It is calculated
based on measured concentrations of pollutants and government-set limits for
those concentrations. The list of measured pollutants can include ozone, carbon
monoxide, sulfur dioxide, nitrogen dioxide, dust, etc. The possible values of the
index are between 0 to 500. The scale is divided into ranges, usually 5 or 6, each
corresponding to a specific air quality rating, from good to hazardous. The
influence of high AQI levels (101 and above) on the human body varies
depending on the predisposition (great age, heart/lung diseases), and could lead
to such diseases as lung cancer, stroke, pneumonia, etc. [91]

Gas sensors (e.g.
CO2 sensor [92])

Atmospheric
pressure

The pressure exerted by the weight of the atmosphere on the surface (of the
Earth or another planet) below it [93]. This metric is necessary for jobs in
low (pilots) or high (divers) barometric pressure conditions. On average, the
measurement range of pressure sensors is from 300 to 1100 hPa with an error of
0.5 hPa. Extra low or extra high atmospheric pressure cause respiratory, heart,
neurological changes, barotraumas, decompression illness, etc. [94,95]

BMPxxx sensor
group [92],
barometers
embedded in
bands,
smartwatches,
glasses [96], etc.
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Table 4. Cont.

Metric Description Examples

Light
intensity

The strength of light produced by a specific lamp source measured in lux [97]. The light
intensity’s recommended levels in different cases can be found in the document issued by
the National Optical Astronomic Observatory [98]. Both excessive and insufficient
lighting in the workplace can lead to visual impairment. A wide range of health effects of
lighting is observed in working conditions at night or in underground sites, including
various types of cancer, irregular sleeping habits, and cardiovascular disorders [99,100].
Significantly, an insufficient illumination intensity is considered as causing an additional
increase in the rate of accidents in low-light environments, such as construction areas,
warehouses, and tunnels [101].

Motion, traffic,
ambient light
sensors [20], e.g. [102]

Noise level
The amplitude level of the undesired background sound [103] is measured in dBA.
Constant sound above 80 dBA leads to the physiological effects and above 100 dbA—to
the hearing damage, [104].

Sound sensors,
dynamic
microphones [20]

Radiation

An energy from a nuclear reaction [105]. Nowadays, it is measured in Sv (Sievert).
However, rem (roentgen equivalent man) units also could be found in the literature. US
Nuclear Regulatory Commission has set a radiation limit of 5 rem or 0.05 Sv [106]. Even
an acceptable level of radiation during a long period of time (what is typical for radiation
industry employees) can be a reason for irreversible changes in the body, in particular, the
risk of cancer increases. High doses lead to the vomit, skin burns, can cause death [107]

Radiation
detectors [108]

Relative
Humidity

The amount of water that is present in the air compared to the greatest amount it would
be possible for the air to hold at that temperature [109]. The hygienic norm of relative
humidity for humans is 30–60%. With low humidity, the body becomes dehydrated, and
the risk of bacteria entering the human organism increases. High humidity can cause
overheating, increased perspiration rate, and promotes the appearance of allergens (mold,
fungi, dust mites) [110,111].

Temperature/humidity
sensors [112]

Temperature

Ambient temperature, which is most often expressed in degrees Celsius. The the typical
range of temperature sensors is −40 to 125 degrees Celsius ◦C [82]. The survival limit for
the person is between −40 ◦C [113] and 48 ◦C. For the best performance the optimal
ambient temperature is 22–26 ◦C [114].,

Temperature/humidity
sensors [82,112]

Ultraviolet
index (UVI)

An index shows the degree of ultraviolet radiation from the sun at a particular time and
place. For measuring UVI World Health Organisation (WHO) proposed a linear scale
beginning from 0 and without an upper border. There are 5 ranges: low (UV: 1–2),
moderate (3–5), high (6–7), very high (8–10), extreme (11+) [115]. The sun exposure with
UV higher than 7 can lead to serious damage of eyes (e.g., snowblindness), skin (burns,
skin cancer, skin aging), and overall immune system [116].

UV radiometers and
dosimeters
embedded in wrist
bands, smartwatches,
clips, etc. [117]

3.2. Data Transmission

Historically, wearable solutions that appeared in the medical domain were based on a
wired communication architecture, where wearable devices transmit their collected data to
external processing units via wired links [44,118]. However, relying on wired connectivity
restricts user mobility. This limitation was the main reason behind considering the wireless
alternative for wearable communications. The migration from wired to wireless connec-
tivity for data transmission is a trend in healthcare monitoring systems and industrial
wearables in general. On top of the industrial wearable applications that are provided
in Table 2, several examples were studied in the literature and utilized different wireless
communication technologies [119–121]. These technologies can be classified based on
various metrics, among which we choose the range. As a result, we provide in Table 5
a summary of the main short-range, mid-range, and long-range connectivity solutions
currently employed in industrial wearable systems.

Due to the battery lifetime consideration, most market-available wearable devices
generally rely on smartphone-aided operations using short-range and mid-range communi-
cation technologies. In this architecture, the smartphone pre-processes the data sent by the
wearable device and acts as a gateway to transmit the pre-processed data to the cloud (if
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needed). The short-range and mid-range connectivity solutions in industrial wearable
applications include Radio Frequency Identification (RFID), ZigBee, Bluetooth, Bluetooth
Low Energy (BLE), and Wireless Fidelity (Wi-Fi) [122]. For instance, Reactec company has
designed a wearable wristband that measures the amount of Hand-Arm Vibration (HAV)
that provides real-time monitoring and automated reporting of HAV exposure [123]. This
solution is called HAVWEAR and is utilized by several construction companies to prevent
HAV-related diseases such as the white finger syndrome and, thus, to protect the workers’
health conditions. Each wristband contains an RFID card indicating the personalized
exposure threshold that each operator should respect [123].

ZigBee and Bluetooth are among the Industrial Wireless Sensor Networks (IWSN)
technologies based on the IEEE 802.15 standard and are characterized by the low energy
consumption and the support of several topologies [124]. In [125], the authors proposed a
wearable system that utilizes ZigBee technology and aims at improving the worker’s safety
in the energy industry. As depicted in Table 5, examples of Wi-Fi medium-range standards
include IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, and IEEE 802.11ac.

Several life insurance companies offer Intel Basis Peak smartwatches to their cus-
tomers to measure their heart rates, sleep patterns, and physical activities [123]. These
smartwatches utilize Wi-Fi and Bluetooth standards for connectivity purposes. The data
collected from the smartwatches are stored in the cloud, and real-time analytics can be
performed to identify customers having healthy lifestyles, while various challenges related
to data privacy arise since wearables are essentially processing person-identifiable biomet-
ric information [126]. In particular, the data processing should follow regional-specific
regulations, e.g., General Data Protection Regulation (GDPR) in EU [127].

Furthermore, wearable devices can be equipped with both short-range and long-range
connectivity chipsets. It can be justified by the device manufacturers’ aim to enable stan-
dalone and hands-free operations for wearable devices and end-users, respectively [128].
The main long-range connectivity solutions considered for industrial wearable applications
are based on low-power wide-area (LPWA) standards. As their name suggests, LPWA
technologies are optimized for low power operation, thus, the long battery life in low-end
wearable applications. In [120], the authors demonstrated a smart shoe that harvests
mechanical and solar energy to provide it to the LoRa radio component. These smart
shoes can be utilized in tracking and physical activity monitoring applications. Similar to
LoRa technology, Sigfox is also among the LPWA solutions that are being used in wearable
tracking systems [129].

Tracking applications are not the only services that can be provided by wearable solu-
tions using long-range communication technologies. For instance, the AlertGPS wearable
devices offer a multitude of functionalities for worker safety, including mass notifications
in cases of fire, bad weather, or other emergency situations [123]. They also offer the
feature of emergency calls where the worker can initiate a call with a safety agent using
conventional Long-Term Evolution (LTE) cellular technology [130]. Although the adoption
of licensed cellular technologies in wearable solutions has not received enough attention in
the literature, the cellular IoT standards that were ratified by the 3rd generation partnership
project (3GPP) to support the LPWA operations can enable wearable applications with bet-
ter coverage, scalability, interoperability, quality of service (QoS), and security [19]. These
cellular IoT standards include narrowband IoT (NB-IoT) and LTE-machine type communi-
cations (LTE-M). Despite being introduced in 3GPP Release 13 as part of LTE standards,
NB-IoT and LTE-M fulfill the international mobile telecommunications-2020 (IMT-2020)
requirements for massive machine-type communications (mMTC) and can be, as confirmed
in the 3GPP study on “self-evaluation towards IMT-2020 submission”, certified as 5G
technologies [131].
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Table 5. Communication technologies utilized in industrial wearable applications.

Category Technology Frequency Max. Data Rate Refs.

Short-range
(<100 m)

RFID 0.86 GHz 40 kbps [132]

Zigbee 868 MHz, 915 MHz, 2.4 GHz 20 kbps, 40 kbps, 250 kbps [125]

Bluetooth 2.4 GHz 1–3 Mbps [123,133]

BLE 2.4 GHz 125 kbps–2 Mbps [123,133]

Mid-range
(100 m–5 km)

IEEE 802.11b 2.4 GHz 1–11 Mbps [123,134]

IEEE 802.11g 2.4 GHz 6–54 Mbps [123,135]

IEEE 802.11n 2.4/5 GHz Up to 600 Mbps [123,135]

IEEE 802.11ac 5 GHz Up to 1 Gbps [123,135]

Long-range
(>5 km)

LoRa 915–928/863–870/433 MHz 50 kpbs [136,137]

Sigfox 868/902 MHz 100 bps [129]

LTE 3GPP frequency bands 100 Mbps [130]

LTE-M 3GPP frequency bands 1 Mbps [138]

NB-IoT 3GPP frequency bands 250 kbps [139,140]

On top of the currently utilized short-range, mid-range, and long-range technologies
provided in Table 5 and with the increasing attention addressed to industrial wearables,
other candidate communication technologies are lately being taken into account and stud-
ied to support the novel requirements. Among these, the IEEE 802.11ah standard, also
known as Wi-Fi HaLow, is considered to be an enabler of the low-power connectivity
required in wearable applications [141]. Its extended range can provide wearable devices
with seamless connections in challenging environments like industrial setups and, being
backward compatible, is expected to allow seamless integration with higher energy effi-
ciency [142]. Further, and on top of the cellular IoT standards for wearable mMTC, certain
industrial wearable applications can have requirements [143] that are similar to the other
two 5G service classes, namely enhanced mobile broadband (eMBB) and ultra-reliable and
low latency communications (URLLC) [144]. For instance, AR and VR-based applications
require high data rates, high reliability, and low latency and can utilize the millimeter
wave (mmWave) 5G technology [145]. Other potential mmWave and terahertz technologies
for industrial high-end wearable applications include IEEE 802.11ad (also called WiGig)
and Visible Light Communications (VLC), respectively.

3.3. Localization Techniques

As mentioned, identifying the exact location of the objects is one of the most important
functions performed by wearable devices. There are two types of objects in industries:
machinery/equipment and personnel. Accurate positioning is key to preventing worker
collision with moving machinery, exclusion of an opportunity of unauthorized access to
hazardous work areas and equipment, successful evacuation, and efficient distribution
of labor. However, positioning continues to be one of the most challenging problems
for industrial wearable devices due to the nature of the workplace (e.g., underground,
underwater) and, at the same time, high accuracy requirements. Moreover, employee
location tracking also raises data ownership, security, and privacy questions, which will be
explored in more detail in the next section.

All location tracking techniques could be divided into two groups: methods depend-
ing on range and range-free techniques [146]. The first group considers the conversion
of various parameters to the range. It comprises time-based measurements (Time of Ar-
rival (ToA), Time Difference of Arrival (TDoA)), angle-based measurements (Angle of
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Arrival (AoA), Angle of Departure (AoD), power-based measurements (Received Signal
Strength Indicator (RSSI), in connection with which path loss models are used).

In the second group’s schemes, for example, in the Distance Vector-Hop algorithm (DV-
HOP), anchors broadcasting their location to the whole network, and unknown nodes
estimate their location based on the proximity to these known anchors (hop size and
hope count). Such algorithms can be used without any additional equipment [146]. The
choice between these two groups is based on the trade-off between price and accuracy:
range-based techniques provide high precision, but their application is quite expensive.
Range-free techniques are usually considered a cheaper and less precise alternative to the
first group.

To choose the localization solution for a particular case, one should review such pa-
rameters as the environment (outdoor/indoor), coverage, power consumption, scalability,
price, and accuracy.

The first question is what environment is more typical for industrial cases: outdoor or
indoor. This question is essential since the different conditions dictate different approaches
for these two cases [146]. While indoors is the scatter-rich environment where the path
loss model’s prediction is a big challenge, outdoors usually have Line-of-Sight. For the
same reason, achieving high accuracy in the first case is much more complicated than in
the second. However, it is more desirable, especially during evacuations from the rubble
or other emergency cases. In outdoor cases, random existing static anchor stations are
usually used to determine the location, whereas in indoor cases, anchors’ deployment
could require complex preliminary calculations. We further consider the techniques from
both indoor and outdoor cases, see Table 6.

Table 6. Comparison of localization solutions.

Technology
References

Localization
Techniques Typical env-t. Accuracy Additional Details

GNSS [147] Time-based Outdoor cm-level

Global, not applicable indoors, still considered as
high consuming for industrial wearabes, however,
some companies already started to present ultra-low
power GNSS [148]

Wi-Fi
[149,150]

Time-based,
Angle-based,

Power-
based

Indoor m-level

Nowadays, Wi-Fi fingerprinting (FP) is one of the
most promising localization approaches for
industrial wearables due to good accuracy and
relatively low cost. The disadvantage of this
approach is high consumption in terms of power
and efforts spending on the training step

BLE [151]
Time-based,

Power-
based

Indoor m-level

Another perspective technology for indoor
localization in IIoT [152] with such advantages as
easy deployment, low cost, and low power
consumption. However, the accuracy of the method
is not very high, and supplementary algorithms are
required to improve it [153].

UWB
[150,154]

Time-based,
Angle-based Indoor cm-level

This method provides the highest accuracy of the
localization, requires not much power, has
immunity to fading, applicable even in the case of
underground worksites. However, it is hard to
deploy [155,156].
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Table 6. Cont.

Technology
References

Localization
Techniques Typical env-t. Accuracy Additional Details

LoRa
[157,158]

Time-based,
Power-based Outdoor 100 m-level

The key advantages of this technology are coverage
range (up to 20 km), low consumption, bigger stability
than in case of WiFi and BLE
[159]. However, low accuracy prevents the spread of the
technology as a localization solution.

Sigfox
[160,161] Power-based Outdoor 100 m-level Advantages and disadvantages are similar to LoRaWAN

technology.

RFID
[132,162,163]

Power-based Indoor cm-level This technology ensures high precision but in a low
range (approx. 15 m).

Angle-based Indoor m-level Less accurate than passive RFID but has bigger
range (approx. 150 m).

Usually, we want to identify the worker’s position in a relatively limited area, referring
mainly to indoor localization. It is worth noticing that in such manufactures as construction
or logistics, for example, just indoor localization is not sufficient. Thus, the perfect variant
for some industries would require seamless connectivity, which continuously monitors the
location of people/equipment/assets. However, seamless localization is still a problem:
there is no localization solution for both outdoors and indoor cases and cellular-based
solutions have lousy accuracy. This situation is expected to be changed with the coming
5G that, as was announced, will ensure sub-meter accuracy. However, the question is
still open.

As mentioned before, localization accuracy is still a big issue, especially in the in-
door environment. To improve it, engineers explore and apply different combinations
of technologies as it was done in QUUPPA Intelligent Locating System where RSSI was
combined with AoA Direction Finding signal processing methodology [164]. However,
the declared high accuracy of less than 10 cm is offset by high cost, small coverage, and
relative deployment complexity [165].

Another big issue in this area is providing an accurate localization in underground
work sites. For these purposes, ground-based pseudolites (pseudo-satellite transmitters)
can provide localization in industrial environments where the GPS has poor or no coverage,
such as deep, open-pit mining, high water dams; urban canyons; large indoor industrial
halls. Two well-known positioning solutions are LocataNet, developed by Locata Corpora-
tion/Leica, and Terralite XPS, developed by Trimble. Both use a network consisting of fixed
pseudolites installed on the ground, around the perimeter of the objective; mobile receivers
installed on moving equipment such as heavy engineering vehicles and aircraft [166–168].
These pseduolite systems operate in industrial environments such as Boddington Gold
Mine (Australia), Morenci Copper Mine (Arizona, USA), White Sands Missile Range (New
Mexico, USA). The main advantages are centimeter-level accuracy, coverage radius of
several tens of km, obtained with just 10 pseudolites [168]. These systems require an initial
complex ground deployment and set-up by the manufacturer on-site. The puseudolites
need access to a power source and a clear line of sight for best precision. This solution
was still not applied in the IIoT area to the best of the authors’ knowledge but should
be considered a promising one. Other positioning methods proposed for underground
workspaces are: ZigBee, Visible Light Communication [169], WiFi, BLE, Inertial Measure-
ment Units [170], image-assisted person localization [171]. Most of them require a large
density of beacons and stations, offering meter accuracy. For example, in the USA, since
2006, all mine operators must adopt electronic tracking systems, RFID being the most
popular solution [172].

To conclude, choosing the appropriate localization techniques in each case compro-
mises accuracy, coverage, power consumption, scalability, and price. When discussing
localization techniques for industrial wearables, we need to consider that we usually deal
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with low throughput, low power, small size, and specific locations (underground, under-
water). The position is an essential parameter for work safety providing and remains one
of the main accuracy-related issues (especially in indoor and underground conditions) and
smoothness of tracking.

4. Challenges and Future Perspective

Nowadays, the innovations’ speed has significantly increased compared with the last
decades: the new technologies boost the development of another technology, facilitate our
lives, and create solutions in different areas, including the enterprises’ sector. Along with
the challenge of improving work efficiency, IIoT, and wearable devices, as part of it, help
the industry cope with the challenge of ensuring a high safety level at work. However, the
new technologies open new opportunities and bring new questions and the old challenges
for which no reliable solution has been found. In this section, we summarized the most
significant ones in Table 7.

Table 7. Key challenges in the adoption of industrial wearables.

Challenge Groups Refs. Possible solutions

Localization
accuracy

indoors/outdoors
T

[173,174] Applying of ML algorithms to identify missing values, predict the
number of obstacles and distance between RX and TX

[175,176] Seamless localization to provide smooth tracking both indoor and
outdoor

Connectivity solutions and
propagation models for
underground work sites

T [177,178]

Application requirement-based selection of connectivity solutions,
developing of empirical and industrial environment-specific
propagation models with on-body/off-body/body-to-body
communications

Power consumption and
supply of a big amount of
devices

T [136,179] Energy harvesting approaches: harvesting from the sunlight, motions,
temperature gradients, etc.

Privacy and
security T, S, D [180,181] Elliptic Curve Cryptography (ECC) and other lightweight

cryptography

[182] Development of strong authentication schemes

Location data
privacy S, D

[183,184] Adding noise to the exact coordinates on the device side before
transmitting it to the cloud

[185,186] Transmission of the location-related function instead of the coordinates

Social
resistance S

[18,92]
Development of the simple and detailed manual, video guidance and
provision of the constant support to eliminate the problem of low
technical skills of users;

[187,188]
Usage of Technology Acceptance Models (TAM) to estimate key factors
affecting the level of social resistance and rearrange the process
implementation of the technology accordingly

[189] Involving of the employees in the process of the choice of wearables

[190] Data flows transparency

Heterogeneity of the IIoT
devices D, SD [191] Application of the data fusion approaches on the hardware level,

seamless integration on the protocol level

Placement of preprocessing
and processing entities D [192,193] Optimization of data placement, dynamic computation resource

allocation, computation offloading techniques.

High cost of wearables and
its coupling with other
technology in big industries

E [18] Development of one-size wearable to be used for data acquisition by
different workers during different shifts

D—Data-related; E—Economic; S—Social; SD–Standard-related; T—Technological.
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In [18], the authors highlight the main challenge groups compliant with the adoption
of wearable devices: technological, social, economic, data-related, and standards-related.
Using the same terms, let us highlight the main challenges and areas for further investiga-
tion in industrial devices, directly or indirectly contributing to preserving human health
and life.

In the framework of technological issues, several previous works pointed out the
problems of finding the trade-off between functionality, battery life of a wearable device,
its size and convenience for the user, adjusting one device to several users in big industries,
management, and processing of the considerable amount of data produced by the hetero-
geneous devices [18,92]. In addition to it, it is also worth noting the problem of ensuring
high accuracy of positioning, especially in indoor scatter-rich environments. Currently, one
of the most spread solutions is Wi-Fi fingerprinting. However, it is quite power-consuming
for industrial wearable devices. While the indoor environment is more typical for industrial
scenarios, the outdoor environment is also not rare: such sectors as agriculture, logistics,
forestry, etc., involve large work sites.

Moreover, some industries, e.g., construction, include both types of environment.
It raises the question of the possibility of ensuring seamless localization since it is more
convenient for an enterprise to use one technology in terms of price and compatibility.
However, nowadays, we still do not have a reliable solution for this purpose, and cellular
technology does not meet high precision requirements. Currently, active attempts are being
made to close this research gap, and the 5th generation of mobile communications promises
to improve the situation on this issue significantly.

Another sharp technological problem is the development of connectivity solutions
and propagation models in underground work sites, especially in the sector of coal mining,
which is considered as one of the riskiest places of work due to the high probability of
roof-falling, the concentration of toxic gases, explosions and so on. In this case, technology
should cope with low-power signals, electrical interference, multiple reflections across the
corners, and at greater depth [177]. The problem of the existing solutions like Wi-Fi, Zigbee,
Bluetooth, cellular technologies lies in short communication distance and high delay [178].
Simultaneously, the need to develop a reliable technology for this field is undeniable and
creates a direction for further research.

Talking about large worksites and the deployment of wearable sensor networks
supporting many environmental and wearable devices, we will still meet the issues of
power consumption and supply due to the necessity to track and sustain a charge of a large
number of devices. Substantial efforts over the past decades resulted in the development of
long-lived batteries, which partially resolved the challenge. However, in some industries,
the power consumption level is still very high compared to energy provision. One of the
promising directions in this field is the energy harvesting approaches of light, rainwater,
motion, and temperature gradients. In work [136], the authors designed a micro-power
manager that can obtain energy both indoors and outdoors due to solar panels embedded
in the construction of the device and thus constantly support sensor node feeding. Similarly,
nowadays market offers wearable devices that can extract energy from the sun, for example,
T-shirts [194] or smartwatches [195], however, for example, for the mining industry, it is
not an option.

The next problem is related to privacy and security. It covers three groups simultane-
ously: technological, data-related, and social. Confidentiality of the data is a big question
in this area: wearable devices become subject to a wide range of external attacks due to
communication with another device, limited bandwidth, and processing power [180,182].
Various approaches are applied to improve the technological part of security and privacy
challenges, and one of the most actively studied is ECC, the main advantage of which from
the point of view of wearable devices is light weight [180,181]. However, the current world
situation shows that existing solutions are not sufficient to ensure security in industries.
For example, mining companies are of great interest for espionage, as they contain data
on the location of valuable minerals. According to [196], 54 percent of companies in the
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mining/metal industry were attacked in 2019, and these numbers tend to grow. This
state of affairs sets another relevant direction of development in the field of industrial
wearable devices.

The question of location data privacy, namely, finding the trade-off between the
accuracy of positioning of the worker and confidentiality, can be singled out separately.
The exact location is essential in industries, especially during evacuation sessions. However,
as was mentioned before, workers feel nervous being tracked all the time, consequently,
the likelihood of error increases. Significantly, the localization could be executed either on
the device itself or in the centralized processing point [185]. The second option requires
additional obfuscation to provide the desired level of privacy for the user. The authors
of [183] discuss the various obfuscation techniques to overcome this issue.

Data-related and social groups consider security and privacy issues from the side
of data ownership questions [18,197]: how the data is distributed, who has access to it,
and how it could be used. Lack of information about the flows of data collected in the
workplace builds mistrust of the technology. M. Kritzler et al. in [190] state that this
problem could be eliminated by a clear explanation of the purposes of the implementation
of wearable technology in the enterprise. Since most employees do not share their personal
information with the employer, this method is not effective, and this problem also remains
on the list of research agendas for next years.

The last main challenge in industrial wearables that we would like to address here is
social resistance to adopting technology. For any innovation in modern society, the level of
acceptability is even more important than the corresponding benefits and usefulness [198].
Workers feel constant pressure being monitored all the time, which increases their stress
level and, consequently, the probability of injury. Also, they afraid that the collected by
wearables raw information, which they cannot control, improve or modify, may become a
reason for dismissal or fines. Some workers cannot quickly learn how to use the wearable
device and do not want to spend additional time on it, considering the traditional way
of the work process as the most convenient and the only possible. The literature and
practice offer several options to improve the situation, such as more friendly interfaces,
video guidance, constant support. V. Jacobs et al. in [189] distinguish the row of factors
that predicts the level of acceptance of industrial wearables and suggests a list of actions
that should accelerate the process.

In summary, the above discussion identifies some research directions that should be
explored during the next decades to accelerate the adoption of wearable technology in in-
dustries and, thus, increase work safety. Table 7 gathers the key challenges in the field of in-
dustrial wearables and general issues which are specific to the area of wearable technology.

5. Conclusions

Modern wearable devices already offer several opportunities to maintain occupational
safety in the work environment rife with various hazard sources. This work identifies four
key functions (monitoring, supporting, training, and tracking) and ten sub-functions, show-
ing which wearables can directly or indirectly contribute to preserving workplace safety
to assess wearables’ use cases and benefits for industrial work safety. Additionally, this
article summarizes and classifies metrics collected by wearable devices (12 metrics related
to the body and 8 metrics related to the environment), thereby showing how enterprises
can control workplace safety from both personnel and environment perspectives.

It is essential to highlight that discussed modern techniques for communication,
localization, and privacy protection in wearable technology still cannot fully cover all
industries’ needs. The level of social resistance is still considered very high, slowing down
the widespread adoption of wearable devices in enterprises. The present article summarizes
the key open challenges (technological, data-related, standard-related, economic, and social)
and suggests possible solutions, pointing to a wide field for future research on industrial
wearable solutions for occupational safety.
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AoA Angle of Arrival
AoD Angle of Departure
AQI Air Quality Index
BLE Bluetooth Low Energy
DV-HOP Distance Vector-Hop
ECG Electrocardiogram
EEG Electroencephalogram
eMBB Enhanced Mobile Broadband
EMG Electromyography
GNSS Global Navigation Satellite System
GPS Global Positioning System
HAV Hand-arm Vibration
IEEE Institute of Electrical and Electronics Engineers
IIoT Industrial Internet of Things
ILO International Labor Organization
IoT Internet of Things
IWSN Industrial Wireless Sensor Networks
LoRaWAN Long-Range Wide-area Network
LPWAN Low-power Wide-area Network
MDPI Multidisciplinary Digital Publishing Institute
mMTC Massive Machine-type Communications
NB-IoT Narrowband IoT
RFID Radio Frequency Identification
RSSI Received Signal Strength Indicator
TDoA Time Difference of Arrival
ToA Time of Arrival
UE User Equipment
URLLC Ultra-Reliable and Low Latency Communications
UVI Ultraviolet Index
VLC Visible Light Communications
WHO World Health Organization
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