

1. Introduction

Soil moisture (θ) is a key variable for agriculture, however θ monitoring has gaps at intermediate scales which makes decision making challenging at field scale. Therefore, technology like cosmicray neutron sensors (CRNS) and time domain reflectometry (TDR) provide a unique research opportunity. An approach to analyze time series of θ observations is through drydown curves. After an irrigation event, θ decreases gradually with time, the rate (cm³/ cm³/ day) at which θ decreases is called θ_{decay} . When the remaining θ is 1/3 of the initial θ we reach the $\theta_{threshold}$, which could be close to the wilting point and may be an indicator of dryness. Better understanding θ_{decay} and $\theta_{threshold}$ can provide insight for water management purposes.

2. Objective and hypothesis

O1. Characterize the θ through the use of drydown curves and the $\theta_{threshold}$, at each irrigation event for the winter wheat crop year 2019-2020.

O2. Quantify the impact of meteorological conditions and vegetative greenness in θ after every irrigation event.

H1. Drydown curves and $\theta_{threshold}$ will be different after every irrigation event and between observation methods due to spatial scale.

H2. Meteorological variables correlated with θ will be different with every irrigation event.

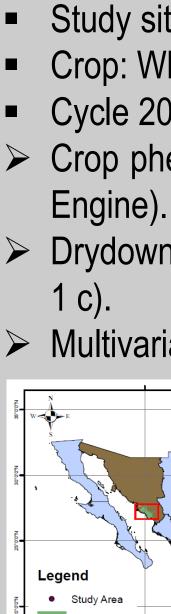


Fig. 1 a) Yaqui Valley (240,000 ha) agriculture footprint in NW México, b) Main crop winter wheat with flood irrigation and CRNS (Hydroinnova®), weather sensor (ClimaVUE[™]50, Campbell Scientific[®]), soil profilers (TDRs, SoilVUE[™]10, Campbell Scientific[®]) and radiometer (4-WR, Apogee Instruments®) and c) Conceptual diagram of a drydown curve, θ_{decay} , $\theta_{threshold}$ and time to reach threshold (1/ τ).

A detailed set of equations can be found scanning the QR-code

5. Multivariate analysis during θ drydown after irrigation events Table 1. Spearman correlation coefficient matrix between θ estimated from TDR and CRNS (θ_{TDR} and θ_{CRNS}) with air temperature (T_{air}) , soil temperature averaged 5-30 cm (T_{soil}) , evapotranspiration (ET), vapor pressure deficit (VPD), normalized difference vegetation index (NDVI), precipitation (PPT), short wave incoming radiation (SW_{in}) and difference between T_{air} and T_{soil} (ΔT). 1st Irrigation 2nd Irrigation 3rd Irrigation DIM 1 (38.24%, 41.68%, 60.19%)

	1 st Irrigation		2 nd Irrigation		3 rd Irrigation	
	θ_{TDR}	θ_{CRNS}	θ_{TDR}	θ _{crns}	θ_{TDR}	θ _{crns}
θ_{TDR}	Х	0.91	Х	0.65	Х	0.43
θ_{CRNS}	0.91	Х	0.65	Х	0.43	Х
T _{air}	-0.78	-0.71	-0.35	-0.24	-0.22	-0.61
T _{soil}	-0.65	-0.55	-0.13	0.19	-0.30	-0.74
ET	0.15	-0.06	0.53	0.15	0.71	0.32
VPD	0.05	-0.21	0.62	0.13	-0.28	-0.81
NDVI	-0.30	-0.42	-0.33	-0.24	0.45	0.84
PPT	-0.04	-0.02	-0.53	-0.30	0.51	0.43
$\mathrm{SW}_{\mathrm{in}}$	0.24	0.20	0.64	0.27	-0.19	-0.51
ΔT	-0.64	-0.67	-0.48	-0.53	-0.03	0.16

- After each irrigation, the correlation of θ with NDVI and meteorological variables, • The variation explained by PC1 and PC2 increased with each irrigation event varied in strength and signal (+/-) (Table 1). (63% < 70% < 75%) (Fig 5).
- θ from TDR and CRNS correlates best (r>0.9) during 1st irrigation and least (r~0.4) • Variables that best explain PC1 and PC2 change with every irrigation. during the 3rd irrigation, scattering was observed at lower θ values.
- θ is highly (r>0.7) negatively correlated with T_{air} and T_{soil} during 1st irrigation, and with the temperature difference between air and soil.
- ET increases its correlation with θ after every irrigation event.
- VPD (-) and NDVI (+) had a strong correlation (r>0.8) with θ during the 3rd irrigation.

Soil moisture drydown curves after flooding events across an irrigated farmland

Gaxiola-Ortiz F¹., Álvarez-Yepiz J. C.¹, Franz T.², Garatuza-Payan J.¹, Guevara M.³, Peñuelas-Rubio O.⁴, Rosolem R.⁵, Torres-Velázquez J. R.⁴, Yepez E. A.¹, Sanchez-Mejia Z.¹

¹ Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, México ² University of Nebraska-Lincoln, NE, USA ³ Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México ⁴ Instituto Tecnológico del Valle del Yaqui, Bácum, Sonora, México ⁵ University of Bristol, Bristol, UK

corresponding author: francisco.gaxiola111644@potros.itson.edu.mx and zulia.sanchez@itson.edu.mx

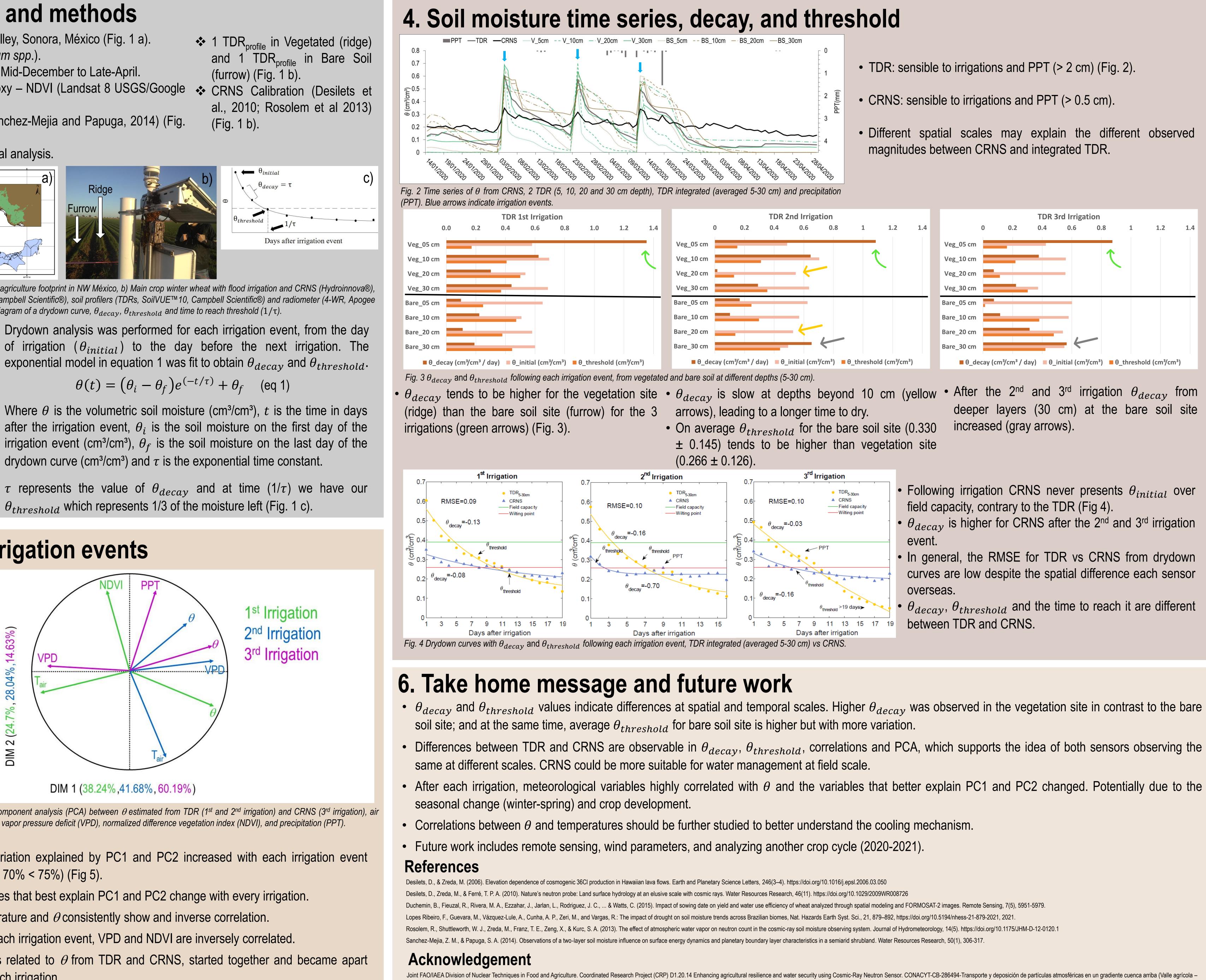
3. Materials and methods

Study site: Yaqui Valley, Sonora, México (Fig. 1 a). Crop: Wheat (*Triticum spp.*).

- Cycle 2019 2020: Mid-December to Late-April.
- Crop phenology proxy NDVI (Landsat 8 USGS/Google)
- Drydown curve (Sanchez-Mejia and Papuga, 2014) (Fig.

Multivariate statistical analysis. Days after irrigation event

> of irrigation ($\theta_{initial}$) to the day before the next irrigation. The exponential model in equation 1 was fit to obtain θ_{decay} and $\theta_{threshold}$. $\theta(t) = (\theta_i - \theta_f)e^{(-t/\tau)} + \theta_f \quad (\text{eq 1})$


> Where θ is the volumetric soil moisture (cm³/cm³), t is the time in days after the irrigation event, θ_i is the soil moisture on the first day of the irrigation event (cm³/cm³), θ_f is the soil moisture on the last day of the drydown curve (cm³/cm³) and τ is the exponential time constant.

> τ represents the value of θ_{decay} and at time $(1/\tau)$ we have our $\theta_{threshold}$ which represents 1/3 of the moisture left (Fig. 1 c).

Fig. 5 Principal component analysis (PCA) between θ estimated from TDR (1st and 2nd irrigation) and CRNS (3rd irrigation), air temperature (T_{air}), vapor pressure deficit (VPD), normalized difference vegetation index (NDVI), and precipitation (PPT).

- Temperature and θ consistently show and inverse correlation.
- After each irrigation event, VPD and NDVI are inversely correlated.
- Vectors related to θ from TDR and CRNS, started together and became apart with each irrigation.

- ✤ 1 TDR_{profile} in Vegetated (ridge) and 1 TDR_{profile} in Bare Soil
- CRNS Calibration (Desilets et al., 2010; Rosolem et al 2013) (Fig. 1 b).
- (furrow) (Fig. 1 b).

pie de monte). The help of Miguel Rivera, Guillermo López Castro, Crhistian Silva, Javier Rivera and ITVY field managers.

- TDR: sensible to irrigations and PPT (> 2 cm) (Fig. 2).
- CRNS: sensible to irrigations and PPT (> 0.5 cm).

Veg_05 cm

Veg_10 cm

Veg_30 cm

Veg_20 cm

• Different spatial scales may explain the different observed magnitudes between CRNS and integrated TDR.

- Bare_05 cm Bare_10 cm Θ_initial (cm³/cm³) θ_threshold (cm³/cm³)
- After the 2nd and 3rd irrigation θ_{decay} from deeper layers (30 cm) at the bare soil site increased (gray arrows).
- Following irrigation CRNS never presents $\theta_{initial}$ over field capacity, contrary to the TDR (Fig 4).
- θ_{decav} is higher for CRNS after the 2nd and 3rd irrigation event
- In general, the RMSE for TDR vs CRNS from drydown curves are low despite the spatial difference each sensor overseas.
- θ_{decay} , $\theta_{threshold}$ and the time to reach it are different between TDR and CRNS.