Comparison of uncertainties in measurements from cup anemometers and lidar systems

David Schlipf, Feng Guo, Yiyin Chen

27.05.2021 Wind Energy Science Conference

Motivation

Lidar systems for power performance testing

- cost-effective alternatives to cups on masts
- obtain only the line-of-sight wind speed
- need model-based wind field reconstruction
- common feeling: lidar uncertainty might be higher than cup uncertainty?
- caused by traditional comparison to cup?
- but less scatter in lidar-based power curves [1]

Main questions

- Does a cup really outperform a lidar system estimating the wind speed of another cup?
- Is a cup or a lidar system better to estimate the rotor-effective wind?

David Schlipf, Feng Guo, Yiyin Chen WETI&SWE	Introduction	То Сир	To Rotor	Conclusions	2/20
Comparison of uncertainties in measurements from cup anemo	meters and lidar systems <<00				

Modeling Uncertainties of Wind Field Reconstruction Using Lidar [2]

Measurement uncertainties

- due to calibration, installation issues, etc.
- error propagation from line-of-sight to reconstructed signals can be calculated
- depends mostly on practical issues

Model uncertainties

- due to homogeneous flow assumption
- can be modeled with wind spectral models
- can be larger than measurement uncertainties

Here, we focus on model uncertainty in 2.5 D only and compare it to a cup anemometer!

David Schlipf, Feng Guo, Yiyin Chen WETI&SWE	Introduction	To Cup	To Rotor	Conclusions	3/20
Comparison of uncertainties in measurements from cup anemometers and lidar systems	040				

Contents

1. Comparison of a Cup and a Lidar to a Reference Cup

2. Comparison of a Cup and a Lidar to a Rotor

3. Conclusions and Outlook

David Schlipf, Feng Guo, Yiyin Chen WETI&SWE	Introduction		4/20
Comparison of uncertainties in measurements from cup anemometers and lidar systems	001		

How can we model the cup-cup uncertainty?

- IEC Kaimal turbulence spectrum [3] at $\bar{u} = 10 \text{ m/s}$
- turbulence class A
- 2.5D distance with D = 130 m
- exponential decay wind evolution model [4]
- uncertainty defined as 2σ of measurement error e between u₁ and u₂ averaged over T = 10 min

David Schlipf, Feng Guo, Yiyin Chen WETI&SWE	Introduction	To Cup	To Rotor	Conclusions	5/20
Comparison of uncertainties in measurements from cup anemometers and lidar systems		≪0000000			

Cup-Cup Uncertainty - Time Example

Even without wind evolution and perfect alignment, the uncertainty is in average 0.24 m/s.

David Schlipf, Feng Guo, Yiyin Chen WETI&SWE	Introduction	To Cup	To Rotor	Conclusions	6/20
Comparison of uncertainties in measurements from cup anemometers and lidar systems		0⊴000000			

Cup-Cup Uncertainty - Frequency Model

Time domain equation

$$e = u_1 - u_2$$

$$\bar{e}(t) = e(t) * \operatorname{rect}\left(\frac{t - T/2}{T}\right)$$

Coherence

$$\gamma_{u1u2} = \underbrace{\exp\left(-i2\pi f \frac{\Delta x}{\bar{u}}\right)}_{\text{time shift}} \underbrace{\exp\left(-\frac{a}{2} f \frac{\Delta x}{\bar{u}}\right)}_{\text{wind evolution}}$$

Error spectrum

$$S_{ee} = S_{u1u1} + S_{u2u2} - 2\Re(S_{u1u2})$$
$$S_{ee} = 2S_u - 2S_u\Re(\gamma_{u1u2})$$
$$S_{\bar{e}\bar{e}} = S_{ee}\operatorname{sinc}^2(fT)$$

Uncertainty by integration
$$U_{\sf cc} = 2 \sqrt{\int_0^\infty S_{\bar{e}\bar{e}} {\sf d}f}$$

▶ We can calculate the error spectrum considering effects such as time shift and wind evolution!

- We multiply the error spectrum with $\operatorname{sinc}^2(fT)$ to get the 10-minute-averaged error!
- We calculate the uncertainty via the variance, which is the integral of a spectrum!

Cup-Cup Uncertainty - Results

David Schlipf, Feng Guo, Yiyin Chen | WETI&SWE Comparison of uncertainties in measurements from cup anemometers and lidar systems Introduction To Cup 000 000∢0000

To Rotor C

8/20

How can we model the lidar-cup uncertainty?

- commercial pulsed lidar system with 4 beams
- horizontal half opening angle $\alpha = 15 \deg$
- vertical half opening angle $\beta = 5 \deg$
- probe volume (Full Width at Half Maximum): 60 m
- cross contamination: in every point i all 3 wind components impact line-of-sight wind speed v_{los,i}
- standard wind field reconstruction:

$$u_{\mathsf{L}} = \sum_{i=1}^4 \frac{v_{\mathsf{los},i}}{4\cos(\alpha)\cos(\beta)}$$

Lidar-Cup Uncertainty - Results

- higher uncertainty compared to cup ⁽²⁾
- less impact of wind evolution compared to cup ⁽²⁾
- But this is only valid for the north wind direction! ⁽²⁾

David Schlipf, Feng Guo, Yiyin Chen WETI&SWE	To Cup		10/20
Comparison of uncertainties in measurements from cup anemometers and lidar systems	00000400		

Lidar-Cup and Cup-Cup Uncertainty - Setup

- wind direction is the same at both cups and the lidar system
- lidar system is always perfectly aligned with the wind

David Schlipf, Feng Guo, Yiyin Chen WETI&SWE	Introduction	To Cup	To Rotor	Conclusions	11/20
Comparison of uncertainties in measurements from cup anemometers and lidar systems		00000040			

Lidar-Cup and Cup-Cup Uncertainty - Results

- lidar uncertainty around 0.8 m/s, independent on wind direction
- cup uncertainty up to 1.6 m/s
- ▶ lidar much better outside ±7 deg 😂

David Schlipf, Feng Guo, Yiyin Chen WETI&SWE	Introduction	To Cup	To Rotor	Conclusions	12/20
Comparison of uncertainties in measurements from cup anemometers and lidar systems		000000			

Lidar-Rotor and Cup-Rotor Uncertainty - Setup

- wind direction is the same at rotor, cup, and lidar system
- rotor with lidar system is always perfectly aligned with the wind
- no wake impact considered
- rotor-effective wind speed is the mean of all u wind speed components hitting the rotor

Lidar-Rotor and Cup-Rotor Uncertainty - Frequency Model

Main idea

- common in lidar-assisted control
- calculate the error spectrum and then multiply it with the sinc²
- more complex: every grid point of rotor needs to be considered

David Schlipf, Feng Guo, Yiyin Chen WETI&SWE	Introduction	То Сир	To Rotor	Conclusions	14/20
Comparison of uncertainties in measurements from cup anemometers and lidar systems			040		

Lidar-Rotor and Cup-Rotor Uncertainty - Results

lidar uncertainty improved to 0.5 m/s e

- cup uncertainty up to 1.5 m/s
- ▶ lidar up to 3 times better than cup ⊖

David Schlipf, Feng Guo, Yiyin Chen WETI&SWE	Introduction	To Cup	To Rotor	Conclusions	15/20
Comparison of uncertainties in measurements from cup anemometers and lidar systems			001		

Conclusions

Does a cup really outperform a lidar system estimating the wind speed of another cup?

- Presumable not! Here, cup is only better in a small section $(\pm 7 \text{ deg})!$
- Main reason: lateral de-correlation is usually stronger than longitudinal.

Is a cup or a lidar system better to estimate the rotor-effective wind?

- ▶ Lidar! Here, lidar uncertainty is up to 3 times smaller than cup uncertainty!
- Main reason: lidar is collecting more relevant information.

Outlook

More detailed analysis and publish it in a Journal paper

- using more realistic Mann spectral model and horizontal wind speed
- addressing perfect alignment of turbine, precision versus accuracy

"Smart Lidar" collaboration with sowento and MOVELASER Evaluate the "Moving Horizon Lidar Data Processing" on our smart lidar system." Smaller uncertainty expected using several distances, optimal filtering, and time shifting!

Collaboration within MSCA LIKE

- checking the results with real data
- combining it with measurement uncertainty

Opportunities for Collaboration within the IEA Wind Task 32

Work together to make lidar the best and preferred wind measurement tool!

- We should stop trying to be as good as a cup, since most likely lidar is much better!
- Make lidar more adjustable and adaptive following the "smart lidar" concept!
- Think on how we can convince others!

References

- R. Wagner, T. Pedersen, M. Courtney, I. Antoniou, S. Davoust, and R. Rivera. "Power curve measurement with a nacelle mounted lidar". In: *Wind Energy* 17.9 (2014), pp. 1441–1453. DOI: 10.1002/we.1643.
- D. Schlipf, M. Koch, and S. Raach. "Modeling Uncertainties of Wind Field Reconstruction Using Lidar". In: *Journal of Physics: Conference Series* 1452 (2020), p. 012088. DOI: 10.1088/1742-6596/1452/1/012088.
- [3] IEC 61400-1. *Wind turbines Part 1: Design requirements*. International Electrotechnical Commission, 2005.
- [4] R. A. Pielke and H. A. Panofsky. "Turbulence characteristics along several towers". In: Boundary-Layer Meteorology 1 (2 1970), pp. 115–130. ISSN: 0006-8314.
- Y. Chen, D. Schlipf, and P. W. Cheng. "Parameterization of wind evolution using lidar". In: Wind Energy Science 6.1 (2021), pp. 61–91. DOI: 10.5194/wes-6-61-2021.

Please contact us if you have further questions!

David Schlipf David.Schlipf@HS-Flensburg.de

Feng Guo Feng.Guo@HS-Flensburg.de

Yiyin Chen Chen@IFB.Uni-Stuttgart.de

Acknowledgement

This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 858358 (LIKE – Lidar Knowledge Europe). Thanks to Flemming Ohlsen for his help with the TikZ figures.