
SW ROD

Generated by Doxygen 1.8.5

Fri Apr 30 2021 17:10:56

ii CONTENTS

Contents

1 SW ROD 1

2 Hierarchical Index 15

2.1 Class Hierarchy . 15

3 Class Index 16

3.1 Class List . 16

4 Class Documentation 17

4.1 swrod::BadConfigurationException Class Reference . 17

4.1.1 Detailed Description . 17

4.2 swrod::Component Class Reference . 18

4.2.1 Detailed Description . 18

4.2.2 Member Function Documentation . 18

4.3 swrod::Core Class Reference . 19

4.3.1 Detailed Description . 20

4.3.2 Constructor & Destructor Documentation . 20

4.3.3 Member Function Documentation . 20

4.4 swrod::CustomProcessingFramework Class Reference . 23

4.4.1 Detailed Description . 23

4.4.2 Constructor & Destructor Documentation . 23

4.4.3 Member Function Documentation . 23

4.5 swrod::CustomProcessor Class Reference . 24

4.5.1 Detailed Description . 25

4.5.2 Member Function Documentation . 25

4.6 swrod::ROBFragment::DataBlock Class Reference . 25

4.6.1 Detailed Description . 26

4.6.2 Constructor & Destructor Documentation . 26

4.6.3 Member Function Documentation . 26

4.7 swrod::DataInput Class Reference . 28

4.7.1 Detailed Description . 28

4.7.2 Member Function Documentation . 28

4.8 swrod::DataInputHandler Class Reference . 31

4.8.1 Detailed Description . 32

4.8.2 Member Function Documentation . 32

4.9 swrod::DataInputHandlerBase Class Reference . 33

4.9.1 Detailed Description . 34

4.9.2 Constructor & Destructor Documentation . 34

4.9.3 Member Function Documentation . 35

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

CONTENTS iii

4.10 swrod::Exception Class Reference . 38

4.10.1 Detailed Description . 38

4.11 swrod::Factory< Product > Class Template Reference . 38

4.11.1 Detailed Description . 39

4.12 swrod::helper::FragmentCollator Class Reference . 39

4.12.1 Detailed Description . 40

4.13 swrod::GetParameterException Class Reference . 40

4.13.1 Detailed Description . 40

4.14 swrod::ROBFragmentBuilderBase::hash_compare Struct Reference 40

4.15 swrod::GBTChunk::Header Struct Reference . 40

4.15.1 Detailed Description . 40

4.16 swrod::IsUnique< T > Struct Template Reference . 41

4.17 swrod::IsUnique< L1AInputHandler > Struct Template Reference 41

4.18 swrod::L1AInfo Struct Reference . 41

4.18.1 Detailed Description . 41

4.19 swrod::L1AInputHandler Class Reference . 41

4.19.1 Detailed Description . 42

4.19.2 Constructor & Destructor Documentation . 42

4.19.3 Member Function Documentation . 42

4.20 swrod::ROBFragmentBuilderBase::L1ID Class Reference . 43

4.21 swrod::DataInputHandlerBase::Link Struct Reference . 43

4.21.1 Detailed Description . 43

4.22 swrod::Factory< Product >::Registrator Struct Reference . 43

4.22.1 Constructor & Destructor Documentation . 44

4.23 swrod::ROBFragment Class Reference . 45

4.23.1 Detailed Description . 45

4.23.2 Constructor & Destructor Documentation . 45

4.23.3 Member Function Documentation . 46

4.24 swrod::ROBFragmentBuilder Class Reference . 46

4.24.1 Detailed Description . 47

4.24.2 Member Function Documentation . 47

4.25 swrod::ROBFragmentBuilderBase Class Reference . 47

4.25.1 Detailed Description . 49

4.25.2 Member Function Documentation . 49

4.26 swrod::ROBFragmentConsumer Class Reference . 51

4.26.1 Detailed Description . 52

4.26.2 Member Function Documentation . 52

4.27 swrod::ROBFragmentConsumerBase Class Reference . 53

4.27.1 Detailed Description . 54

4.27.2 Member Enumeration Documentation . 54

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

1 SW ROD 1

4.27.3 Constructor & Destructor Documentation . 55

4.27.4 Member Function Documentation . 56

4.28 swrod::ROBFragmentProvider Class Reference . 57

4.28.1 Detailed Description . 57

4.28.2 Member Function Documentation . 57

4.29 swrod::ROBFragmentWorkerBase Class Reference . 58

4.29.1 Detailed Description . 58

4.29.2 Constructor & Destructor Documentation . 58

1 SW ROD

This package provides the implementation of the SW ROD readout application for the ATLAS TDAQ system that
followed the Phase-I SW ROD Architectural Analysis and Design document, which in turn is
based on the requirements collected from detector community, which are described in the Phase-I SW ROD
User Requirements document. The package is distributed as part of the ATLAS TDAQ software release.

Introduction

The SW ROD is envisaged to act in the ATLAS data flow chain as the data-handling interface between the FELIX
readout system and the ATLAS High-Level Trigger (HLT). The SW ROD implements ROB fragment building and
formatting, which in the Run-1/2 systems were done by the detector specific Readout Driver (ROD) components.
The SW ROD also furnishes the same buffering and HLT request processing capabilities as provided by the Readout
System (ROS) of the legacy DAQ.

SW ROD Application

SW ROD functionality is provided by a number of homogeneous SW processes running on a cluster of commodity
computers. All processes originate from the same binary executable, called swrod_application, but they diverge
by using different configuration parameters such as a set of FELIX E-Links for receiving data, data processing
algorithms, HLT request processing parameters and so on.

The SW ROD application is fully integrated with the TDAQ online infrastructure. It implements the Run Control
Finite State Machine (FSM) and is configured using the standard TDAQ Configuration service. It also implements
the Event Monitoring Sampler interface and publishes its operational statistics to the TDAQ Information Service.

Integrating Custom Processing into the SW ROD Application

The SW ROD Application provides a framework for executing detector specific code that is required for:

• extracting TTC information (L1ID and BCID) from input data packets;

• verifying the integrity of input data packets;

• applying custom processing to fully assembled ROB fragments.

These procedures have to be implemented by a custom detector specific shared library, which should provide three
functions with well-defined signatures as described in the following sections. Such a library is advertised to the
SW ROD Application via an object of the SwRodCustomProcessingLib OKS configuration class that shall define
the names of the custom functions. Such an object has to be linked with each data channel, aka ROD, that is
represented by an instance of the SwRodDataChannel OKS class.

NOTE: Custom functions must be declared using extern "C" specifier that guarantees that the
functions run-time symbolic references will be the same as the function names.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

https://cds.cern.ch/record/2671987
https://edms.cern.ch/document/1832704/1.10
https://edms.cern.ch/document/1832704/1.10

2 CONTENTS

TTC Information Extraction Function

A function that implements TTC information extraction is mandatory and shall be implemented along the lines
demonstrated by the following example:

extern "C"
std::tuple<uint32_t, uint32_t, uint16_t> testTriggerInfoExtractor(const uint8_t * data, uint32_t size) {

uint32_t type = *((uint32_t*)data) & 0x3;
if (type == 3) {
throw swrod::Exception(ERS_HERE, "Data packet is corrupt - incorrect packet type");

}
if (type == 1) {
return std::tuple(

((uint8_t)(data + 1)), // L1ID
0xff, // L1ID size is 8 bits
0xffff); // no BCID

}
else {
return std::tuple(

((uint16_t)(data + 2)), // L1ID
0xffff, // L1ID size is 16 bits

((uint16_t)data) >> 4); // BCID
}

}

A TTC information extraction function has two parameters - a pointer to the memory block that contains data packet
to be processed and the size of this data packet in bytes. The first parameter points to the beginning of the data
packet payload meaning that any extra data like for example FELIX header or communication protocol header are
omitted. This function has to return a 3-tuple with the values taken from the given data packet:

• 32-bit value that contains all available bits of the extended L1ID from the data packet.

• 32-bit mask that defines how many bits of extended L1ID are provided by the given data packet. The bits
which are present in the current L1ID value shall be set to 1 in this mask, while all other bits have to be set to
0. For example if the data packet contains only the 8 least significant bits of the extended L1ID then the mask
value has to be set to 0xFF. If a full extended L1ID is present in the given packet then the mask has to be set
to 0xFFFFFFFF

• 16-bit BCID value from the given data packet. If no BCID is present in the data packet the value must be set
to 0xFFFF.

This function may also throw swrod::Exception if TTC information can not be reliably extracted from the given
packet. Any implementation of the SW ROD fragment assembling algorithm has to handle such an exception
gracefully. A custom TTC information extraction function may use existing swrod::Exception class that is declared
in the swrod/exceptions.h file or it can declare a custom exception that must inherit from swrod::Exception.

Data Integrity Check Function

Optionally a custom plugin library can provide a function that can be used to check integrity of a given data packet.
If data packet format contains some kind of CRC value that was calculated using a known algorithm then such a
function can apply the same algorithm to the given packet and compare its result with that value:

extern "C"
std::optional<bool> testDataIntegrityChecker(const uint8_t * data, uint32_t size) {
if (!contains_checksum_value(packet)) {
return std::nullopt; // packet has no checksum

}
else {
return (calculate_checksum(packet) == get_checksum_value(packet));

}
}

It is up to the fragment building algorithm implementation how to use this function. For performance reasons the
default algorithm implementations call this function only in case of a TTC information mismatch between data and
L1A packets.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

1 SW ROD 3

Custom Processing

The last function that may be provided by the custom plugin library is also optional and should be implemented
only if a detector specific processing has to be applied to the ROB fragments produced by the fragment building
algorithm. In this case such such a function has to provide a factory for the instances of a detector specific class
that implements swrod::CustomProcessor interface. The following code shows a possible implementation of such
a function:

extern "C"
swrod::CustomProcessor * createTestCustomProcessor(const boost::property_tree::ptree

& config) {
return new TestCustomProcessor(config.get<int64_t>("CustomLongIntAttribute"));

}

Note: The config object passed to this function contains configuration parameters declared in the
corresponding instance of the SwRodDataChannel OKS class. It is possible to add arbitrary number
of custom parameters to the config object by creating a new OKS class that inherits SwRodData-
Channel and declares these parameters as its attributes. To get the value of a custom attribute one
should use the boost::property_tree::ptree::get() function providing the corresponding attribute type as
template parameter and the attribute name as the function argument.

A custom class that inherits the swrod::CustomProcessor interface has to implement the processROB-
Fragment(swrod::ROBFragment &) pure virtual function. For scalability reasons SW ROD may create multiple
instances of the swrod::CustomProcessor class as defined by the WorkersNumber attribute of the corresponding
SwRodCustomProcessor configuration object. Each instance will be used in a dedicated thread that implies that
a swrod::CustomProcessor interface implementation should not worry about thread safety unless it uses some
global resources. It is guaranteed that each object of the custom class will be used by exactly one thread so there
is no need to protect access to the object’s local attributes.

The processROBFragment(swrod::ROBFragment &) function will be called for every ROB fragment produced by the
fragment building algorithm of the corresponding ROB. The ROB fragment is passed to this function as a reference
to an instance of the swrod::ROBFragment class. This class contains a number of constant attributes, which
describe read-only properties of this fragment. There is also a number of mutable attributes, which can be freely
modified by the function implementation, namely:

• m_detector_type - 32-bit value that will go to the Detector Event Type field of the ROD header

• m_rod_minor_version - 16-bit value that will go to the lower 2 bytes of the Format Version Number field of
the ROD header

• m_status_front - if set to true the ROD fragment status words will be placed right after the ROD header,
otherwise they will be put at the end of the ROD fragment. Default value is true.

• m_status_words - an originally empty vector of status words. Custom processor may add any number of
32-bit words to this vector. All these words will be added at the end of the ROD fragment header.

• m_data - this vector contains the data payload of the ROD fragment that may be split into a number of
memory blocks. Normally this number is equal to the number of data receiving threads, but this is not always
guaranteed as this may depend on a particular fragment building algorithm implementation. Each memory
chunk is represented by an object of swrod::ROBFragment::DataBlock class that provides API to access
and modify the data it contains. A format of the memory chunk depends on the fragment building algorithm
that produced this ROB fragment. Detailed information about format of the data fragments produced by the
default SW ROD algorithm implementations is given in the next chapters.

ROB Fragment Memory Management

A custom processing function may need to reformat the ROB fragment payload in a way that would increase the size
of the data blocks. In such a case it is strongly recommended to set the corresponding MaxMessageSize parameter
of the SwRodFragmentBuilder configuration object such that the memory blocks allocated by the algorithm will
have enough space to accommodate the extra amount of data. The size of the memory blocks allocated by default
algorithm implementations is equal to a product of the MaxMessageSize parameter and the number of input links

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

4 CONTENTS

that have been used to build this memory block. If, by any reason, such configuration can not be done, then the
custom processing function may allocate a new contiguous memory block of sufficient size using either the standard
C++ new operator or a custom memory management routine and copy reformatted data into the new block. The
following example shows how that can be done.

class TestCustomProcessor: public swrod::CustomProcessor {
public:

explicit TestCustomProcessor(uint64_t tag) {
m_tag = tag;

}
void processROBFragment(swrod::ROBFragment & fragment) override {

fragment.m_status_words.push_back(0x0a);
fragment.m_status_words.push_back(0x0b);
fragment.m_status_words.push_back(0x0c);
fragment.m_rod_minor_version = 15;
fragment.m_detector_type = 0x222;
fragment.m_status_front = false;

for (auto & block : fragment.m_data) {
swrod::GBTChunk::Header header{0, 0, 0, 0xffffffff};
if (!block.append(header, &m_tag, sizeof(m_tag))) {

// The memory block is not large enough to accommodate extra data
// Allocate a new memory block of sufficient size, copy the
// original data there and add the custom tag at the end

// The size is in 4-byte words
uint32_t size = block.dataSize() +

((sizeof(m_tag) + sizeof(swrod::GBTChunk::Header))>>2);
uint32_t * data = new uint32_t[size];
memcpy(data, block.dataBegin(), block.dataSize());

block = swrod::ROBFragment::DataBlock(data, size, block.
dataSize());

block.append(header, &m_tag, sizeof(m_tag));
}

}
}

private:
uint64_t m_tag;

};

Custom processing function may also change the size of the m_data vector by either adding new memory blocks
or removing the obsolete ones. If for example m_data contains multiple memory blocks that would have to be
completely re shuffled, it may be more efficient to allocate a single memory block of sufficient size and copy the
content of the original memory chunks into that block using a desired translation. Finally the original memory blocks
shall be removed from the m_data vector and the new one shall be added to it.

Fragment Building Algorithms

A SW ROD fragment building algorithm implementation is supposed to collect data packets, which have the same
L1 Trigger Identifier (L1ID), from a given set of input links and combine them along with the corresponding TTC
information into a new object of the swrod::ROBFragment class. This class provides serialize() function that can
be used to convert the swrod::ROBFragment data into a number of contiguous memory chunks, which contain a
ROB event fragment that is formatted in accordance to the ATLAS Event Format specification. The
high-level structure of a ROB fragment is shown in the following table.

Field Description
ROB Header Information is mostly taken from L1A packet
ROD Header Some information is duplicated from the ROB header.

Other information can be added by detector custom
processing

ROD Data The format is detector specific and may also depend
on the fragment building algorithm implementation

ROD Trailer Contains detector specific information that can be
added by by detector custom processing

Data for the ROB and ROD headers are mostly taken from the Level 1 Trigger Accept (L1A) message that corre-
sponds to the given L1ID and are normally independent of the algorithm implementation. The ROD data portion
of the fragment contains an assembly of the data chunks received from the detector Front-End electronics, which

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

https://cds.cern.ch/record/683741

1 SW ROD 5

internally use detector specific format. The way in which these data chunks are combined depends on the algorithm
implementation.

SW ROD package provides two fragment aggregation algorithms that can be used to handle data received from
FELIX in the following ways:

• GBT mode algorithm aggregates data chunks from all e-links associated with the given SwRodDataChannel
object into a single ROD Data block using chunks’ L1IDs for alignment. The algorithm takes at most one data
chunk from a given e-link for the same ROB fragment. Receiving more than one data chunk in a raw with
the same L1ID from the same e-link is considered an error. The algorithm expects that every individual data
chunk has a size that is a multiple of 4 bytes. If this is not the case for a given data chunk then the algorithm
adds padding zeros at the end of the chunk to make it 4-byte aligned.

• FULL mode algorithm treats every individual data chunk from any e-link associated with the given SwRod-
DataChannel as a completely built ROD Data, that may also optionally contain ROD Header and Trailer. This
algorithm also expects that every incoming data chunk has a size that is multiple of 4 bytes. If this is not the
case the algorithm adds padding zeros at the end of the chunk to make it 4-byte aligned.

A new custom algorithm can be implemented and added to the SW ROD as a plugin if required.

Both GBT and FULL mode algorithms can be used either in TTC-driven or in data-driven mode. For the latter no
Level1 Accept packets are required by the algorithms. The mode of operation depends on the state of the L1A-
Handler relationships of the SwRodConfiguration and SwRodModule configuration objects. If both relationships
are empty then event builders will not expect to receive L1A messages and will run in data-driven mode. Otherwise
they will subscribe for L1 Accept messages and use them for fragment building.

SwRodFragmentBuilder configuration class

This is an abstract class that defines a number of parameters that are common for any fragment building algorithm
implementation. These parameters are:

• BuildersNumber - The number of threads that are notified when a fragment data aggregation is complete and
take care of creating a new instance of swrod::ROBFragment class for this data and passing it to the ROB
Fragment Consumers. These threads are used to disentangle fragment builders from fragment consumers
and reduce a possible impact of slow consumers on fragment building performance. If BuildersNumber
number is set to zero, then no building threads are created, in which case one of the fragment builder’s
working threads will execute the above procedure.

• FlushBufferAtStop - Defines fragment builder behavior at the Stop-of-Run command. If set to 1, the algo-
rithm stops data processing immediately upon receiving the SoR command. The data which were present in
the internal buffers are flushed. If set to 0, the algorithm keeps processing data from its internal buffers until
they get empty.

• L1AWaitTimeout - Building a ROB fragment may require information from the corresponding L1 Accept
packet. The timeout defines the maximum time in milliseconds to wait for L1A packet when some information
from this packet is required. If the required L1A packet does not arrive within this timeout fragment building
procedure continues using default values for the missing information.

• MaxMessageSize - The maximum size in bytes of a single data hunk that may arrive from an individual input
link. The algorithm will use this value to preallocate memory blocks for the ROB fragments to be built. The
size of these blocks is equal to a product of the MaxMessageSize and a number of input links which provide
data to be aggregated to a single ROB fragment. A value of this parameter has to be carefully chosen. If
it is too low this can cause ROB fragments truncation. If it is too high this may result in excessive memory
footprint, which may affect the algorithm performance.

• ReadyQueueSize - The size of the queue that is used to hold references to completely aggregated data
blocks. This queue is used by the building threads that are defined via BuildersNumber parameters. The
building threads take the references from this queue and use them to create new instances of the swrod::R-
OBFragment class. If BuildersNumber is set to zero, this parameter is ignored as no queue will be used in
this case.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

6 CONTENTS

• ResynchTimeout - This value defines time in milliseconds to wait for building of the ROB fragments that
correspond to the last L1ID produced before the Trigger was put on hold. This timeout is used for the stopless
recovery procedure to make sure that the fragment builder will be properly synchronized with the rest of the
read-out system when the Trigger is resumed.

GBT Fragment Building Algorithm

The ROD data produced by this algorithm is split into a number of a contiguous memory blocks, with each block
containing copies of data packets received from a subset of the E-Links associated with the given ROB in the SW
ROD configuration. The number of such blocks is equal to the number of data receiving threads defined in the
respective configuration via the WorkersNumber attribute of the SwRodModule class. By default the algorithm
uses one reader thread for all the E-Links and therefore puts all data packets into a single memory block. A memory
block contains a sequence of data packets received from the associated E-Links with each packet preceded with a
meta-information header that has the following structure:

• size - 16-bit value that contains a total size (in 4-byte words) of the data packet including the size of the
header itself.

• felix_status - 8-bit status of the data packet provided by FELIX

• swrod_status - 8 bit status of the data packet assigned by the fragment building algorithm. This status may
contain a combination of the following flags:

– swrod::GBTChunk::Status::Ok (0) - no errors detected for this packet

– swrod::GBTChunk::Status::Corrupt (1) - the custom TTC information extraction has thrown exception
for this packet

– swrod::GBTChunk::Status::CRCError (2) - the custom data integrity checking function return false for
this packet

– swrod::GBTChunk::Status::L1IdMismatch (4) - the packets L1 ID does not match L1 ID from the L1A
packet

– swrod::GBTChunk::Status::BCIdMismatch (8) - the packets BC ID does not match BC ID from the
L1A packet

• link_id - 32-bit detector resource ID that identifies the origin of the data packet

Note: The link_id field contains DetectorResourceId value that corresponds to the FELIX E-Link
ID as defined by the respective instance of the SwRodInputLink OKS configuration class.

SwRodGBTModeBuilder configuration class

This OKS configuration class inherits from the SwRodFragmentBuilder and adds a few configuration parameters
that are specific for the FULL mode algorithm, namely:

• BufferSize - Defines the maximum size of the main aggregation buffer in terms of a number of ROB frag-
ments, which can be built simultaneously. This parameter also indirectly defines the data input timeout - the
time to wait before terminating aggregation of a ROB fragment that misses chunks from one or more input
links. The timeout value is not explicitly defined in the SW ROD configuration but can be estimated by dividing
the BufferSize value by the average input data rate for the current data taking session:

Timeout(seconds) = BufferSize / InputRate(Hz)

• MinimumBufferSize - Defines the minimum size of the main aggregation buffer in terms of a number of ROB
fragments. The buffer will always try to shrink itself to this value (but not beyond) whenever the number of
concurrently built events goes down.

• DropCorruptedPackets - This parameter defines what to do with data chunks that can not be unanimously
attributed to any ROB fragment due to containing corrupt data or arriving too late. If this parameter is set to
1 then such data chunks will be dropped. Otherwise the chunks will be assigned to the fist of the currently
being built ROB fragments, in which case the corresponding error bits, that explain the origin of the error, will
be set to the swrod_status status word of the chunk’s local header and a corresponding error bits will be set
to status word of the ROB fragment header.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

1 SW ROD 7

• RecoveryDepth - If an incoming data chunk contains L1ID and BCID values that don’t match the algorithm’s
expectations, the algorithm will check if this is caused by a number of previous packets from the same input
link been missed. For that it will try to match the chunk’s L1ID and BCID to one of the known L1 Accept
packets. This parameter defines a number of L1A packets to be checked as this is the only way to terminate
this procedure if no match can be found.

Error Handling

The default GBT event aggregation algorithm implements error handling as described by the SW ROD Error
Use Cases wiki page. The algorithm may produce incomplete ROB fragments, i.e. fragments that miss data
packets from one or several E-Links. This may happen if data from these E-Links did not arrive within timeout, that
is proportional to the algorithm’s buffer size.

FULL Mode Fragment Building Algorithm

This algorithm receives data packets from the given set of E-Links defined in the corresponding SW ROD con-
figuration. It assumes that each data packet contains a fully aggregated ROD data payload that may optionally
include ROD header and ROD trailer. The latter is controlled by the RODHeaderPresent attribute of the SwRod-
FullModeBuilder configuration object. The algorithm combines these data packets with the corresponding TTC
information into objects of the swrod::ROBFragment class.

SwRodFullModeBuilder configuration class

This OKS configuration class inherits from the SwRodFragmentBuilder and adds the RODHeaderPresent con-
figuration parameter. If this parameter is set to 1 then the algorithm assumes that each incoming data packet will
already contain ROD header and ROD trailer and therefore will not add these pieces by itself. Otherwise the
algorithm will generate both ROD header and ROD trailer for every incoming data packet.

Configuring a SW ROD Application

A SW ROD application has to be configured using OKS configuration service. For convenience all OKS classes
that can be used for that have their names started with SwRod prefix. These classes are defined in the
daq/schema/swrod.schema.xml OKS schema file that has to be included by any SW ROD OKS configuration
file. A fully functional example of a SW ROD configuration can be found in the data/SwRodSegment.data.-
xml file located in the swrod package.

SW ROD configuration schema facilitates splitting of a SW ROD application configuration between a number of
files, which can be maintained independently by detector and TDAQ experts. The aim is to make a clear distinction
between detector specific part of the configuration and the common part that has to be maintained centrally by the
TDAQ. The following diagram shows a recommended way of handling a SW ROD configuration. The green boxes
in this diagram represent classes that should be instantiated in the detector specific part of configuration. The boxes
with yellow background denote the classes which have to be used for creating the TDAQ portion of the SW ROD
configuration that will be under responsibility of the TDAQ team. More details will be given in the following sections.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

https://twiki.cern.ch/twiki/bin/viewauth/Atlas/SWRodInputErrors
https://twiki.cern.ch/twiki/bin/viewauth/Atlas/SWRodInputErrors
data/SwRodSegment.data.xml
data/SwRodSegment.data.xml

8 CONTENTS

Figure 1: SW ROD configuration

Note: SwRodApplication, SwRodModule and SwRodRob classes inherit from the legacy read-
out configuration classes to make the new SW ROD configuration compatible with the legacy one.

Detector Specific Configuration

Detector experts are expected to maintain objects of three classes for a given SW ROD configuration. These
classes are:

• SwRodInputLink is used to define a set of E-Links for receiving data

• SwRodDataChannel defines a mapping of E-Links to ROB fragments

• SwRodCustomProcessingLib class provides configuration of a detector specific custom processing plugin

SwRodInputLink class

This class is used to describe a set of input E-Links for a particular detector. It also implements the mapping of
FELIX-based E-Link IDs to detector specific Resource IDs. This class has three attributes:

• FelixId - ID of this link as defined by FELIX system. Such an ID shall be unique within ATLAS.

• DetectorResourceId - ID of the detector read-out element that is connected to this FELIX link. Detector ID
shall be unique for a given sub-detector.

• DetectorResourceName - human-readable name of the detector read-out element

It is recommended to put all instances of this class into a dedicate OKS configuration file (or a set of files), which
then can be effectively shared by different configurations.

SwRodDataChannel class

An object of this class defines a set of input links for a given ATLAS data channel (ROD) as well as a custom
processing plugin that has to be used for this channel. It has the following relationships:

• Contains - this relationships is inherited from ResourceSetAND class and has to contain references to the
objects of the SwRodInputLink class that represent the corresponding E-Links

• CustomLib - a link to an instance of the SwRodCustomProcessingLib class

It is recommended to put all instances of this class into a separate OKS configuration file, which has to include files
defining objects of the SwRodInputLink class.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

1 SW ROD 9

SwRodCustomProcessingLib class

This class should be used for configuring custom detector specific plugins for the SW ROD. It declares the following
attributes:

• LibraryName - the name of the shared library that implements the custom detector specific functions.

• TrigInfoExtractor - a name of the mandatory trigger information extraction function.

• DataIntegrityChecker - a name of the optional data integrity checking function. If the custom library does
not provide this function then this attribute shall be left empty.

• ProcessorFactory - a name of the optional custom processor factory function. If the custom library does not
provide this function then this attribute shall be left empty.

Each instance of the SwRodDataChannel class has to be linked with an appropriate instance of the SwRod-
CustomProcessingLib to provide the necessary information for data processing. It is recommended to keep an
instance of this class in the same OKS configuration file that declares the corresponding data channels.

TDAQ Specific Configuration

TDAQ configuration defines a number of TDAQ specific parameters for all SW ROD applications, in particular:

• computers where the SW ROD applications will be running

• a mapping of the data channels (RODs) to the SW ROD applications

• HLT request handling and Event Monitoring configuration parameters

SwRodApplication Class

An instance of the SwRodApplication class is an entry point to a SW ROD configuration. It serves multiple
purposes:

• defines the standard Run Control Application parameters for the swrod_application process

• points to an instance of the SwRodConfiguration class that defines the TDAQ specific portion of the SW
ROD configuration

• contains a set of SwRodRob objects which are used to associate ATLAS ROBs with the corresponding
instances of the SwRodDataChannel class that are declared by the detector specific portion of the SW ROD
configuration

SwRodConfiguration Class

An instance of the SwRodConfiguration class provides the following parameters:

• Plugins - a list of SwRodPluginLib objects, which reference shared libraries that provide implementation of
the SW ROD interfaces. By default this list should contain a reference to the libswrod_core_impl.so library,
which provides default implementations of these interfaces.

• L1AHandler - a pointer to an instance of a class that inherits SwRodL1AInputHandler interface. By default
this relationship should point to an instance of the SwRodDefaultL1AHandler class, which provides default
implementation of L1 Accept message handler.

• Consumers - a list of objects implementing SwRodFragmentConsumer interface. Consumers from this
list will get all fragments for all ROBs produced by the current SW ROD application. Note that the order of
objects in this list matters. ROB fragments will be passed to the consumers in the same order as they are
linked to the SwRodConfiguration instance. For example if the SwRodEventSampler consumer precedes
the SwRodCustomProcessor one then any monitoring task connected to the current SW ROD application
will ROB fragments without custom processing been applied.

• InputMethod - a reference to an object implementing SwRodInputMethod interface. For getting data from
FELIX one should reference to an instance of the SwRodNetioInput or SwRodNetioNextInput class de-
pending on the version of the FELIX software being used.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

10 CONTENTS

Figure 2: DAQ specific SW ROD Configuration

SwRodFragmentConsumer interface implementations

SwRodFragmentConsumer is an abstract base class for any resource that deals with fully built ROB fragments. It
declares three attributes:

• Type - this is a string ID of a specific fragment builder type that is used to create an instance of the respective
consumer at run time. Each sub-class of the SwRodFragmentConsumer shall provide an appropriate type
name to be used for its instantiation.

• WorkersNumber - number of worker threads for this consumer

• CPU - affinity of the worker threads of this consumer will be set to the given CPU cores. This is a string
parameter that contains numbers separated by commas and may include ranges. For example: 0,5,7,9-11.

SW ROD provides multiple default implementations of the SwRodFragmentConsumer interface that can be con-
figured by using the following OKS classes:

• SwRodFileWriter - an instance of this class writes data produced by the SW ROD application to a standard
ATLAS raw data file in a form of standard ATLAS events that combine fragments from all ROBs handled by
this SW ROD application based on their L1IDs.

• SwRodHLTRequestHandler - an instance of this class responds to the standard HLT data and clear requests
in the same way as ROS. From the HLT point of view a SW ROD application is indistinguishable from a ROS
one.

• SwRodEventSampler - can be used to create an instance of Event Sampler for the given SW ROD appli-
cation. Event Sampler collates fragments from all ROBs handled by this SW ROD application into a single
ATLAS event based in their L1IDs and serves such events to a monitoring application via the standard TDAQ
Event Monitoring interface. The monitoring application can connect to the Event Sampler using it’s Sampler-
Type and SamplerName attributes. The SamplerType attribute for the SW ROD Event Sampler is always set
to the "SWROD" string while the SamplerName attribute is set to the ID of the SW ROD application (i.e. the
ID of the corresponding SwRodApplication instance in the OKS configuration).

• SwRodCustomProcessor - an instance of this class applies detector specific custom processing to ROB
fragments.

Fragment Consumers can be attached to the SW ROD application at two levels: per ROB via SwRodRob:-
:Consumers relationship as well as per application via the SwRodConfiguration::Consumers relationship. However
there are some restrictions that should be taken into account when configuring consumers. They are summarized
in the following table.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

1 SW ROD 11

SwRodConsumer SwRodRob SwRodConfiguration
SwRodFileWriter Yes Yes
SwRodHLTRequestHandler Yes No
SwRodEventSampler No Yes, limited to one instance per

SW ROD
SwRodCustomProcessor Yes No

SwRodInputMethod interface implementations

SwRodInputMethod is an abstract class that defines interface for getting input data into SW ROD. SW ROD
provides several implementations of this interface:

• SwRodInternalDataGenerator - in memory data generator that is used for tests

• SwRodNetioInput - is used to get data via NetIO API.

The latter has a number of attributes which can be used to configure NetIO communication protocol

• Backend - it has to be either _"posix"_ or "fi_verbs" which define low level communication protocol to be used
by NetIO

• BufferPages - a number of buffer pages

• BufferPageSize - size of a buffer page in bytes

• FelixBusGroupName - FELIX Bus group name

• FelixBusInterface - name of the network interface which is used for communication with the FFELIX Bus
service. Default value is ZSYS_INTERFACE, in which case the actual network name will be taken from
ZSYS_INTERFACE environment variable.

• FelixBusTimeout - time to wait (in milliseconds) for a link ID resolution in the FelixBus.

SwRodRob Class

As it was explained earlier the objects of this classes are referenced by a SwRodApplication instance via a Sw-
RodModule object. Each instance of the SwRodRob class provides configuration for a specific ROB or in another
words defines how to produce ATLAS event fragments for a given slice of the detector. This class has the following
parameters:

• Id - ROB identifier that must be unique across all SW ROD and ROS systems. This ID is used by HLT for
requesting the corresponding ROB fragments.

• FragmentBuilder - a pointer to an instance of a class that inherits SwRodFragmentBuilder interface. Such
an object provides configuration to the given data assembling algorithm, which builds ROB fragments from
incoming data packets.

• Consumers - a list of objects implementing SwRodFragmentConsumer interface. Consumers from this list
will get all fragments for this ROB immediately after they are produced.

• Contains - this relationship is inherited from the ResourceSetAND class and is used to reference an instance
of the SwRodDataChannel class. This relationship provides the sole link between the detector and TDAQ
specific portions of the SW ROD application configuration.

Note: For compatibility with the legacy read-out system configuration Contains is a multi-value
relationship that potentially could reference more than one Resource object. However for a valid SW
ROD configuration this relationship must point to exactly one unique SwRodDataChannel instance.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

12 CONTENTS

SwRodModule Class

An object of this class provides input data configuration for a given set of SwRodRob objects, which are referenced
via its Contains relationship. This class has the following parameters:

• WorkersNumber - number of DataInput objects created for this module. Each input object will use a dedi-
cated thread for receiving input data.

• CPU - a string that defines affinity for the data receiving threads. This string contains CPU numbers separated
by commas and may optionally include ranges. For example: 0,5,7,9-11. If this string is empty then no affinity
will be assigned.

• L1AHandler - if this relationship is not empty then the referenced object will be used to create an private
receiver of L1 Accept data to be used exclusively by the ROBs that belong to this SwRodModule. If this
relationship is empty then these ROBs will use the global L1 Accept receiver that is created from the object
referenced by the L1AHandler relationship of the SwRodConfiguration instance. If that relationship is empty
as well then the fragment building algorithms for the ROBs belonging to this model will operate in data-driven
mode.

• Contains - this relationship is inherited from the ResourceSetAND class and is used to reference objects of
the SwRodRob class. The fragment builders of the corresponding ROBs will share the same input objects
that are created with respect to the configuration provided by this SwRodModule class instance.

Customizing SW ROD application

SW ROD declares a number of abstract interfaces which define interactions between its internal components:

• DataInput interface can used for reading input data from different sources, e.g. from FELIX

• ROBFragmentBuilder interface can used for implementing assembling of ROB fragments from the data
packets received via DataInput interface

• ROBFragmentConsumer interface can used for implementing post-processing of fully assembled ROB frag-
ments

Default implementations of these interfaces are provided by the libswrod_core_impl.so library and can be used out
of the box. SW ROD also provides a way of integrating any number of custom implementations of these interfaces
into the standard SW ROD application.

Providing a Custom Interface Implementation

The following example shows how a custom ROBFragmentConsumer can be implemented.

class ROBFragmentCounter : public swrod::ROBFragmentConsumer {
public:

ROBFragmentCounter(const boost::property_tree::ptree & config, const
swrod::Core & core)
: m_counter(0),
m_ROB_id(-1) {
m_output_frequency = config.get<uint32_t>("OuputFrequency");
if (config.count("RobConfig")) {

m_ROB_id = config.get<uint32_t>("RobConfig.Id");
}

}

void insertROBFragment(const std::shared_ptr<swrod::ROBFragment> & fragment) override
{
if ((++m_counter % m_output_frequency) == 0) {

std::cout << m_counter << " fragments have been built for ROB " << m_ROB_id << std::endl;
};
forwardROBFragment(fragment);

}

void runStarted(const RunParams & run_params) {
m_counter = 0;

}
private:

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

1 SW ROD 13

uint32_t m_output_frequency;
uint32_t m_ROB_id;
uint64_t m_counter;

};

This class implements a simple counter of ROB fragments. It can be used at the level of an individual ROB as well as
at the level of a whole SW ROD application. Each time a new ROB fragment is produced it is passed to the instance
of the ROBFragmentCounter class via the insertROBFragment() function. In this example the implementation of
this function increments the fragment counter and then forwards the given ROB fragment to the other consumers by
calling the forwardROBFragment() function. In addition every m_output_frequency fragments the function prints
the fragment counter counter to the standard output. The value of the m_output_frequency parameter is taken
from the OKS configuration. The next section explains how that was done.

Configuring Custom Interface Implementation

The ROBFragmentCounter class constructor gets a reference to the ptree object that represents parameters
taken from the corresponding OKS class. For a new type of consumer a new OKS class that inherits from the
SwRodFragmentConsumer has to be created. TO do this one should use the following procedure:

• run the OKS schema editor and create a new OKS schema file

• add include of the daq/schema/swrod.schema.xml OKS schema file into the new file

• create a new class ROBFragmentCounter inheriting it from the SwRodFragmentConsumer class

• add a new attribute called OuputFrequency to the new class

• save the new schema file

The new schema file has to be included by the SW ROD configuration. After that one can create a new instance
of the ROBFragmentCounter class and add it either to a SwRodRob or to a SwRodConfiguration class instance
depending on whether counting has to be done at the level of an individual ROB or for a whole SW ROD application.

Note: ROBFragmentCounter constructor implementation uses the "RobConfig" configuration ob-
ject that is obtained by calling config.get_child("RobConfig") function on the given configuration object.
Note that the "RobConfig" is available only if consumer configuration object was linked to an instance
of the SwRodRob class via its Contains relationship. In this case the _"RobConfig"_ parameter will
contain the corresponding SwRodRob object configuration. If the consumer was attached to the Sw-
RodConfiguration object, which means that it has to be used for all ROBs of the given SW ROD
application, the _"RobConfig"_ configuration parameter will not be set and an attempt to call the boost-
::property_tree::ptree::get_child("RobConfig") function will yield an exception.

Registering Custom Interface Implementation with the SW ROD

Finally the SW ROD has to be made aware of the new interface implementation in order to be able to use it at run
time. To achieve this the corresponding interface implementation class has to be registered with the swrod::Core
singleton as shown in the following example.

using namespace swrod;

namespace {
Factory<ROBFragmentConsumer>::Registrator __reg_custom plugin_

(
"ROBFragmentCounter",
[](const boost::property_tree::ptree& config, const Core& core) {

return std::make_shared<ROBFragmentCounter>(config, core);
});

}

This code creates a new factory object that will be used for producing new instances of the ROBFragmentCounter
class. The factory will be associated with the "ROBFragmentCounter" name. This name will be used in the OKS
configuration as described in the next section. Note that the base class of the new component (ROBFragment-
Consumer) must be used as template parameter of the Factory class.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

14 CONTENTS

This code has to be compiled and linked together with the ROBFragmentConsumer class implementation into
a shared library that can be dynamically loaded by the SW ROD application. Let’s assume that such a library is
called libswrod_custom_test.so. To make this library known to the SW ROD application a new instance of the
SwRodPluginLib class has to be created in the corresponding OKS configuration and the new shared library name
has to be set to its LibraryName attribute. One can either use a full path-name of the shared library or use a short
file-name and put the library location to the LD_LIBRARY_PATH environment variable. Finally the new instance of
the SwRodPluginLib class has to be linked with the SwRodConfiguration object via the Plugins relationship.

Testing SW ROD Custom Processing library

A custom implementation of the DataInput interface can be used to validate detector specific custom processing
plugins. This chapter explains how that can be done.

Implementing internal data generator for SW ROD

The simplest way of providing custom input to SW ROD is to implement internal data generator that produces
data with desired formatting in memory of the SW ROD application. The swrod package contains an example
of such generator in test/core/InternalDataGenerator.h(cpp) files. One can customize internal data generation
by declaring a new class that inherits swrod::test::InternalDataGenerator and overrides the generatePacket(-
InputLinkId link, uint32_t l1id, uint16_t bcid) virtual function. This function is called for every new packet to be
produced and has to make a new packet and pass it to the dataReceived(InputLinkId link, const uint8_t ∗ data,
uint32_t size, uint8_t status) function. The following example shows how this can be done.

void MyDataGenerator::generatePacket(InputLinkId link, uint32_t l1id, uint16_t bcid) {
// For efficiency m_packet memory block had been preallocated in the constructor
// Here we just calculate the size of the new packet.
// It must not exceed the size of the m_packet memory block
uint32_t new_packet_size = ...;

// set TTC values to the appropriate places of the new packet, for example

((uint32_t) (m_packet + 2)) = l1id;

((uint16_t) (m_packet + 6)) = bcid;

dataReceived(link, m_packet, new_packet_size, 0);
}

Note that if a custom implementation produces packets of fixed size it can calculate packet size only once in the
constructor. A custom implementation that needs to generate packets of varying size has to calculate a new packet
size each time a new packet is produced. Finally the new packet has to be passed to the dataReceived() function
that in turn will pass it to the SW ROD fragment builder.

The swrod::test::InternalDataGenerator class provides another virtual function that is named beforeStart(). This
function is called each time a new run is about to be started and can be used to reset internal counters of the custom
data generator.

The new data generator has to be advertised to the SW ROD by creating and registering a new object factory as
shown by the following example.

namespace {
Factory<DataInput>::Registrator __reg__(

"MyDataGenerator",
[](const boost::property_tree::ptree& config, const Core&) {

return std::make_shared<MyDataGenerator>(config);
});

}

Finally the new generator class has to be compiled and linked to a new shared library and the library name has to be
set to the LibraryName attribute of the new instance of the SwRodPluginLib object created in OKS configuration.
This OKS object has to be linked with the SwRodConfiguration via the Plugins relationship. This will make the
new input method implementation known to the SW ROD application.

In order to use the new generator a new instance of the SwRodInternalDataGenerator class has to be created
and its Type attribute has to be set to the "MyDataGenerator" string, that was used for registering the generator
class with the SW ROD plugins factory. Finally this object has to be linked with the SwRodConfiguration or Sw-
RodModule via the InputMethod relationship.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

2 Hierarchical Index 15

Note: An internal data generator has to be used in conjunction with InternalL1AGenerator class
provided by the swrod package. The InternalL1AGenerator produces L1A packets which are passed
to the SW ROD fragment builder and are used as seeds for data packets generation guaranteeing
coherence of the generated TTC and data packets.

Using Felix Emulator application

A SW ROD application can be tested by getting input data via network like this is done for real data taking. This
can be achieved by using the FelixEmulator application that can send data produced by internal data generator via
NetIO protocol to a given SW ROD application. This can be done by creating a new FelixEmulator Segment object
and associating it with the SW ROD application that has to be tested. The swrod package contains an example
of such a segment in the data/FelixEmulatorSegment.data.xml file. Here are some important high-lights of the
FelixEmulator configuration:

• FelixEmulator is an instance of the SwRodApplication class that uses a special DataInput interface imple-
mentation provided by the libswrod_felix_emulator.so library. This is achieved by linking the FelixEmulator-
Implementation object located in the daq/sw/swrod-common.data.xml file with the SwRodConfiguration
object that is used the FelixEmulator application.

• FelixEmulator object has to be linked with all instances of the SwRodModule class that are used by the SW
ROD application, for which the emulated input has to be produced.

• FelixEmulator application has to use internal data generator that can produce data with the format expected
by the SW ROD to be tested. See the previous chapter for an explanation of how to implement a custom
input generator.

• FelixEmulator object has to be linked with a Variable object that must provide a value of ZSYS_INTERFACE
environment variable that is appropriate for the machine where the FelixEmulator application will be running.

• FelixEmulator object has to be linked with a Variable object that must provide an initial port number to
be used by the NetIO protocol for publishing data. The name of this environment variable must be set to
SWROD_FELIX_EMULATOR_PORT.

2 Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

swrod::BadConfigurationException 17

swrod::Component 18

swrod::CustomProcessor 24

swrod::DataInput 28

swrod::DataInputHandler 31

swrod::DataInputHandlerBase 33

swrod::ROBFragmentWorkerBase 58

swrod::L1AInputHandler 41

swrod::ROBFragmentBuilder 46

swrod::ROBFragmentBuilderBase 47

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

16 CONTENTS

swrod::ROBFragmentConsumer 51

swrod::ROBFragmentConsumerBase 53

swrod::Core 19

swrod::CustomProcessingFramework 23

swrod::ROBFragment::DataBlock 25

swrod::Exception 38

swrod::Factory< Product > 38

swrod::helper::FragmentCollator 39

swrod::GetParameterException 40

swrod::ROBFragmentBuilderBase::hash_compare 40

swrod::GBTChunk::Header 40

swrod::IsUnique< T > 41

swrod::IsUnique< L1AInputHandler > 41

swrod::L1AInfo 41

swrod::ROBFragmentBuilderBase::L1ID 43

swrod::DataInputHandlerBase::Link 43

swrod::Factory< Product >::Registrator 43

swrod::ROBFragment 45

swrod::ROBFragmentProvider 57

swrod::ROBFragmentBuilder 46

swrod::ROBFragmentConsumer 51

3 Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

swrod::BadConfigurationException 17

swrod::Component 18

swrod::Core 19

swrod::CustomProcessingFramework 23

swrod::CustomProcessor 24

swrod::ROBFragment::DataBlock 25

swrod::DataInput 28

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

4 Class Documentation 17

swrod::DataInputHandler 31

swrod::DataInputHandlerBase 33

swrod::Exception 38

swrod::Factory< Product > 38

swrod::helper::FragmentCollator
Helper class to collate ROBfragments belonging to the same L1 ID 39

swrod::GetParameterException 40

swrod::ROBFragmentBuilderBase::hash_compare 40

swrod::GBTChunk::Header 40

swrod::IsUnique< T > 41

swrod::IsUnique< L1AInputHandler > 41

swrod::L1AInfo 41

swrod::L1AInputHandler 41

swrod::ROBFragmentBuilderBase::L1ID 43

swrod::DataInputHandlerBase::Link 43

swrod::Factory< Product >::Registrator 43

swrod::ROBFragment 45

swrod::ROBFragmentBuilder 46

swrod::ROBFragmentBuilderBase 47

swrod::ROBFragmentConsumer 51

swrod::ROBFragmentConsumerBase 53

swrod::ROBFragmentProvider 57

swrod::ROBFragmentWorkerBase 58

4 Class Documentation

4.1 swrod::BadConfigurationException Class Reference

#include <exceptions.h>

4.1.1 Detailed Description

This issue is used to report problems with SW ROD configuration

The documentation for this class was generated from the following file:

• swrod/exceptions.h

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

18 CONTENTS

4.2 swrod::Component Class Reference

#include <Component.h>

Inheritance diagram for swrod::Component:

swrod::Component

swrod::CustomProcessor swrod::DataInput swrod::DataInputHandler swrod::ROBFragmentConsumer

swrod::DataInputHandlerBase swrod::L1AInputHandler swrod::ROBFragmentBuilder swrod::ROBFragmentConsumerBase

swrod::ROBFragmentWorkerBase swrod::ROBFragmentBuilderBase

Public Member Functions

• virtual const std::string & getName () const =0
• virtual ISInfo ∗ getStatistics ()
• virtual void runStarted (const RunParams &run_params)
• virtual void runStopped ()
• virtual void userCommand (const daq::rc::UserCmd &cmd)

4.2.1 Detailed Description

This class defines a basic interface for SW ROD a internal component.

4.2.2 Member Function Documentation

4.2.2.1 virtual const std::string& swrod::Component::getName () const [pure virtual]

A subclass shall override this function to return a string ID of the current object. This ID has to be unique in the
scope of the current SW ROD application if getStatistics() function of the current object returns non-null pointer to
an IS information object. This will guarantee that this IS object can be published correctly. For objects that don’t
provide statistics to be published to IS this ID is not required to be unique.

Returns

The object ID

Implemented in swrod::ROBFragmentConsumerBase, swrod::DataInputHandlerBase, swrod::ROBFragment-
BuilderBase, swrod::DataInput, and swrod::CustomProcessor.

4.2.2.2 virtual ISInfo∗ swrod::Component::getStatistics () [inline], [virtual]

Returns monitoring statistics for this component. Default implementation returns null pointer.

Returns

A pointer to the IS statistics object.

Reimplemented in swrod::ROBFragmentBuilderBase.

4.2.2.3 virtual void swrod::Component::runStarted (const RunParams & run_params) [inline], [virtual]

Called to inform this component that a new run is about to be started.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

4.3 swrod::Core Class Reference 19

Parameters

in run_params The new run parameters.

Reimplemented in swrod::DataInputHandlerBase, swrod::ROBFragmentBuilderBase, and swrod::ROBFragment-
ConsumerBase.

4.2.2.4 virtual void swrod::Component::runStopped () [inline], [virtual]

Called to inform this component that the current run is being stopped.

Reimplemented in swrod::DataInputHandlerBase, swrod::ROBFragmentBuilderBase, and swrod::ROBFragment-
ConsumerBase.

4.2.2.5 virtual void swrod::Component::userCommand (const daq::rc::UserCmd & cmd) [inline], [virtual]

Called to pass a custom Run Control command to this component.

Parameters

in cmd user defined Run Control command.

The documentation for this class was generated from the following file:

• swrod/Component.h

4.3 swrod::Core Class Reference

#include <Core.h>

Public Types

• typedef std::vector
< std::shared_ptr
< ROBFragmentBuilder > > FragmentBuilders

• typedef std::vector
< std::shared_ptr
< ROBFragmentConsumer > > FragmentConsumers

Public Member Functions

• Core (const boost::property_tree::ptree &config)
• void connectToFelix ()
• void disconnectFromFelix ()
• void disableInputLinks (std::vector< InputLinkId > &link_ids)
• void disableROBs (std::vector< uint32_t > &ROB_ids)
• void enableInputLinks (std::vector< InputLinkId > &link_ids, uint32_t lastL1ID)
• void enableROBs (std::vector< uint32_t > &ROB_ids, uint32_t lastL1ID)
• const FragmentBuilders & getBuilders () const
• const boost::property_tree::ptree & getConfiguration () const
• const FragmentConsumers & getConsumers () const
• const std::vector
< std::shared_ptr< DataInput > > & getInputs (uint32_t ROB_id) const

• const CustomProcessingFramework & getProcessingFramework () const
• std::vector< ISInfo ∗ > getStatistics ()
• void runStarted (const RunParams &run_params)
• void runStopped ()
• void resynchAfterRestart (uint32_t lastL1ID)
• void userCommand (const daq::rc::UserCmd &cmd)

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

20 CONTENTS

4.3.1 Detailed Description

This is a top level class of a SW ROD application. A SW ROD application shall create exactly one instance of this
class with a desired configuration.

4.3.2 Constructor & Destructor Documentation

4.3.2.1 swrod::Core::Core (const boost::property_tree::ptree & config) [explicit]

Creates a new instance of SW ROD using the given configuration.

Parameters

in config SW ROD configuration.

4.3.3 Member Function Documentation

4.3.3.1 void swrod::Core::connectToFelix ()

The Core instance passes this request to all implementations of the DataInputHanler interface instructing them to
connect to the read-out system. If any connection attempt fails this function will throw a swrod::Exception exception.
This function is expected to be called from the Run Control CONNECT transition.

4.3.3.2 void swrod::Core::disableInputLinks (std::vector< InputLinkId > & link_ids)

This function demands the Core instance to stop receiving data packets from the given input links. The Core passes
this request to all implementations of the DataInputHanler interface which typically have to unsubscribe from these
input links. The Core also informs all ROB Fragment Consumers that the given set of links has been disabled. This
function can be called at any moment and does not require putting the Trigger on hold.

Parameters

in,out link_ids A vector of input link IDs to be disabled. The function may modify this vector
by removing IDs of the links, for which recovery attempt has failed.

4.3.3.3 void swrod::Core::disableROBs (std::vector< uint32_t > & ROB_ids)

Demands the Core instance to stop producing data fragments for the given ROB(s). The Core instance passes this
request to the corresponding ROB Fragment Builder components, which typically unsubscribe from all input links
in order to stop getting data. The Core also informs all ROB Fragment Consumers that the given set of ROBs has
been disabled. This function can be called at any moment and does not require putting the Trigger on hold.

Parameters

in,out ROB_ids IDs of the ROBs that have to be disabled. The function may modify this vector
by removing IDs of the ROBs, which couldn’t be disabled.

4.3.3.4 void swrod::Core::disconnectFromFelix ()

The Core instance passes this request to all implementations of the DataInputHanler interface instructing them to
disconnect from the read-out system. This function should be called from the Run Control DISCONNECT transition.

4.3.3.5 void swrod::Core::enableInputLinks (std::vector< InputLinkId > & link_ids, uint32_t lastL1ID)

This function shall be used to request the Core instance to start getting data from the input links that had been
previously disabled. The Core passes this request to all implementations of the DataInputHanler interface which
typically have to re subscribe to the given input links. The Core also informs all ROB Fragment Consumers that the
given set of links has been re enabled. The Trigger must be put on hold before this function is called and therefore

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

4.3 swrod::Core Class Reference 21

no new data shall be produced until this function returns. A failure to respect this condition may result in a fatal
crash of the SW ROD application.

Parameters

in,out link_ids A vector of input link IDs to be re enabled. The function may modify this vector
by removing IDs of the links, for which recovery attempt has failed.

in lastL1ID The last L1ID that has been produced by the Trigger before it was put on hold.

4.3.3.6 void swrod::Core::enableROBs (std::vector< uint32_t > & ROB_ids, uint32_t lastL1ID)

Demands the Core instance to restart data fragments production for the given ROBs. The Core passes this request
to the corresponding ROB Fragment Builders, which typically re subscribe to all input links in order to start getting
data. The Core also informs all ROB Fragment Consumers that the given set of ROBs has been enabled. The
Trigger must be put on hold before this function is called and therefore no new data shall be produced until this
function returns. A failure to respect this condition may result in a fatal crash of the SW ROD application.

Parameters

in,out ROB_ids A vector of ROB IDs to be re enabled. The function can modify this vector by
removing IDs of the ROBs, for which an attempt of recovery fails.

in lastL1ID The last L1ID that has been produced by the Trigger before it was put on hold.

4.3.3.7 const FragmentBuilders& swrod::Core::getBuilders () const [inline]

Returns a reference to the vector containing all ROB Fragment Builders for the current configuration.

Returns

A vector of ROBFragmentBuilder interface implementations.

4.3.3.8 const boost::property_tree::ptree& swrod::Core::getConfiguration () const [inline]

Returns a reference to the configuration object that was passed to the constructor of this Core instance.

Returns

The original configuration object that was used for creating this Core instance.

4.3.3.9 const FragmentConsumers& swrod::Core::getConsumers () const [inline]

Returns a reference to the vector containing all ROB Fragment Consumers for the current configuration.

Returns

A vector of ROBFragmentConsumer interface implementations.

4.3.3.10 const std::vector<std::shared_ptr<DataInput>>& swrod::Core::getInputs (uint32_t ROB_id) const

Returns input objects to be used for receiving input data for the given ROB.

Parameters

in ROB_id

Returns

A vector of input objects that are used for receiving input data for the given ROB.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

22 CONTENTS

Exceptions

BadConfigurationException if no input objects are found for the given ROB ID

4.3.3.11 const CustomProcessingFramework& swrod::Core::getProcessingFramework () const [inline]

Returns a reference to the CustomProcessingFramework object.

Returns

A reference to the CustomProcessingFramework object.

4.3.3.12 std::vector<ISInfo∗> swrod::Core::getStatistics ()

Returns a vector of pointers to monitoring statistics objects for all SW ROD internal components (ROB Fragment
Builders and Fragment Consumers). It is guaranteed that this vector will contain no null pointers.

Returns

A vector of monitoring statistics objects.

4.3.3.13 void swrod::Core::resynchAfterRestart (uint32_t lastL1ID)

This function shall be used as part of TTC Restart procedure to re synch SW ROD Fragment Builders after the last
restart of the SW ROD application. The Trigger must be put on hold before this function is called and therefore no
new data shall be produced until this function returns. A failure to respect this condition may result in a fatal crash
of the SW ROD application.

Parameters

in lastL1ID The last L1ID that has been produced when the Trigger was put on hold.

4.3.3.14 void swrod::Core::runStarted (const RunParams & run_params)

This function has to be called when a new run is about to be started. It passes the new run parameters to all internal
components.

Parameters

in run_params The new run parameters.

4.3.3.15 void swrod::Core::runStopped ()

This function has to be called when the current run is being stopped. It passes this notification to all internal
components.

4.3.3.16 void swrod::Core::userCommand (const daq::rc::UserCmd & cmd)

This function passes a given Run Control user command to all internal components (ROB Fragment Builders and
Fragment Consumers).

Parameters

in cmd The Run Control user command.

The documentation for this class was generated from the following file:

• swrod/Core.h

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

4.4 swrod::CustomProcessingFramework Class Reference 23

4.4 swrod::CustomProcessingFramework Class Reference

#include <CustomProcessingFramework.h>

Public Types

• typedef std::tuple< uint32_t,
uint32_t, uint16_t >(∗ TriggerInfoExtractor)(const uint8_t ∗, uint32_t)

• typedef std::optional< bool >(∗ DataIntegrityChecker)(const uint8_t ∗, uint32_t)

Public Member Functions

• CustomProcessingFramework (const boost::property_tree::ptree &config)
• TriggerInfoExtractor getTriggerInfoExtractor (uint32_t ROB_id) const
• DataIntegrityChecker getDataIntegrityChecker (uint32_t ROB_id) const noexcept
• std::unique_ptr< CustomProcessor > createCustomProcessor (uint32_t ROB_id, const boost::property_-

tree::ptree &config) const

4.4.1 Detailed Description

This class manages custom detector procedures provided by detector plugins.

4.4.2 Constructor & Destructor Documentation

4.4.2.1 swrod::CustomProcessingFramework::CustomProcessingFramework (const boost::property_tree::ptree & config)
[explicit]

Creates a new instance of custom processing framework for the given configuration. This constructor loads all the
plugins that are defined in the given configuration and resolves the custom functions using the names provided by
the plugins configuration.

Parameters

in config SW ROD configuration.

4.4.3 Member Function Documentation

4.4.3.1 std::unique_ptr<CustomProcessor> swrod::CustomProcessingFramework::createCustomProcessor (uint32_t
ROB_id, const boost::property_tree::ptree & config) const

Creates a new instance of the custom processing procedure for the given ROB. This procedure will be applied to all
data fragments produced for the given ROB. Note that for scalability reasons multiple instances of custom processor
can be created for the same ROB.

Parameters

in ROB_id The ID of the ROB for which a new custom processor has to be created.
in config Configuration to be passed to the new custom processor constructor.

Returns

A new custom processor instance.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

24 CONTENTS

Exceptions

swrod::BadConfiguration-
Exception

This exception is thrown if no custom processor factory had been previously reg-
istered with the given ROB ID.

4.4.3.2 DataIntegrityChecker swrod::CustomProcessingFramework::getDataIntegrityChecker (uint32_t ROB_id) const
[noexcept]

Returns a pointer to the data integrity check function for the given ROB. This is an optional function that can be
implemented for a specific type of input data to be used to check a data packet of this type for corruption. If no
data integrity check function is provided by the detector plugin, this function returns a pointer to the default integrity
checker that always returns undefined result.

Parameters

in ROB_id The ID of the ROB for which the data integrity checking function has to be
returned

Returns

Data integrity check function for the given ROB.

4.4.3.3 TriggerInfoExtractor swrod::CustomProcessingFramework::getTriggerInfoExtractor (uint32_t ROB_id) const

Returns a pointer to the trigger information extraction function for the given ROB. Such a function shall be imple-
mented for each input data type and shall be capable of extracting L1ID and BCID values from a data packet of that
type.

Parameters

in ROB_id The ID of the ROB for which the trigger information extraction function has to
be returned

Returns

Trigger information extraction function for the given ROB.

Exceptions

swrod::BadConfiguration-
Exception

This exception is thrown if no trigger information extraction function had been
previously registered with the given ROB ID.

The documentation for this class was generated from the following file:

• swrod/CustomProcessingFramework.h

4.5 swrod::CustomProcessor Class Reference

#include <CustomProcessor.h>

Inheritance diagram for swrod::CustomProcessor:

swrod::CustomProcessor

swrod::Component

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

4.6 swrod::ROBFragment::DataBlock Class Reference 25

Public Member Functions

• const std::string & getName () const override
• virtual void linkDisabled (const InputLinkId &link_id)
• virtual void linkEnabled (const InputLinkId &link_id)
• virtual void processROBFragment (ROBFragment &fragment)=0

4.5.1 Detailed Description

This is an abstract interface for detector specific processing of fully built ROB fragments.

4.5.2 Member Function Documentation

4.5.2.1 const std::string& swrod::CustomProcessor::getName () const [inline], [override], [virtual]

A subclass shall override this function to return a string ID of the current object. This ID has to be unique in the
scope of the current SW ROD application if getStatistics() function of the current object returns non-null pointer to
an IS information object. This will guarantee that this IS object can be published correctly. For objects that don’t
provide statistics to be published to IS this ID is not required to be unique.

Returns

The object ID

Implements swrod::Component.

4.5.2.2 virtual void swrod::CustomProcessor::linkDisabled (const InputLinkId & link_id) [inline], [virtual]

Called when an input link has been disabled.

Parameters

in link_id The ID of the input link that has been disabled.

4.5.2.3 virtual void swrod::CustomProcessor::linkEnabled (const InputLinkId & link_id) [inline], [virtual]

Called when an input link has been re enabled.

Parameters

in link_id The ID of the input link that has been re enabled.

4.5.2.4 virtual void swrod::CustomProcessor::processROBFragment (ROBFragment & fragment) [pure virtual]

This function is used to pass a fully built ROB fragment to this processor. An implementation of this method can
modify any non-constant attribute of the ROBFragment object.

Parameters

in,out fragment ROB fragment to be processed.

The documentation for this class was generated from the following file:

• swrod/CustomProcessor.h

4.6 swrod::ROBFragment::DataBlock Class Reference

#include <ROBFragment.h>

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

26 CONTENTS

Public Member Functions

• DataBlock (uint32_t memory_block[]=nullptr, uint32_t memory_size=0, uint32_t data_size=0, const std-
::function< void(uint32_t[])> &deleter=[](uint32_t d[]){delete[] d;})

• bool append (GBTChunk::Header &header, const void ∗data, uint16_t size)
• uint32_t append (const void ∗data, uint32_t size)
• uint32_t ∗ dataBegin () const
• uint32_t ∗ dataEnd () const
• uint32_t dataSize () const
• uint32_t freeSpaceSize () const
• uint32_t memorySize () const
• void reset ()

4.6.1 Detailed Description

This class implements memory management for ROB fragment data and provides API for data manipulation.

4.6.2 Constructor & Destructor Documentation

4.6.2.1 swrod::ROBFragment::DataBlock::DataBlock (uint32_t memory_block[] = nullptr, uint32_t
memory_size = 0, uint32_t data_size = 0, const std::function< void(uint32_t[])> & deleter =
[](uint32_t d[]){delete[] d;}) [inline]

Creates a new object that owns the given memory block. When this object is destroyed it deletes the memory block
using the custom deleter given to this constructor.

Parameters

memory_block A pointer to the memory block that will be owned by the new object.
memory_size A size of the memory block in 4-byte words.

data_size A size of the data that is already present in the given memory block in 4-byte words.
deleter A function that will be used to delete the memory block. It will be called by the destructor of

the new object.

4.6.3 Member Function Documentation

4.6.3.1 bool swrod::ROBFragment::DataBlock::append (GBTChunk::Header & header, const void ∗ data, uint16_t size)
[inline]

Copies the given header and data chunk to the internal buffer of the data block if the buffer has enough free space.
Otherwise does nothing.

Parameters

header chunk header to be copied to the buffer in front of the data chunk.
data data chunk to be copied to the data block’s internal buffer
size number of bytes to copy

Returns

true if there was enough space in the buffer to accommodate the given header and data chunk, false otherwise.
If false is returned the data block’s internal buffer remains in the same state as it was before the function
invocation.

4.6.3.2 uint32_t swrod::ROBFragment::DataBlock::append (const void ∗ data, uint32_t size) [inline]

Copies the given data chunk to the data block internal buffer. If N is the amount of free space in the buffer and N is
smaller than the given data chunk size then only the first N bytes of the data chunk will be copied.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

4.6 swrod::ROBFragment::DataBlock Class Reference 27

Parameters

data data chunk to be copied to the data block buffer
size number of bytes to copy

Returns

the number of copied bytes

4.6.3.3 uint32_t∗ swrod::ROBFragment::DataBlock::dataBegin () const [inline]

Returns a pointer to the beginning of the memory block.

Returns

pointer to the beginning of data

4.6.3.4 uint32_t∗ swrod::ROBFragment::DataBlock::dataEnd () const [inline]

Returns a pointer to the end of data that is present in the memory block. This pointer points to the first byte after
the last one used by the data. If no data is present the function returns the same pointer as dataBegin()

Returns

end of data pointer

4.6.3.5 uint32_t swrod::ROBFragment::DataBlock::dataSize () const [inline]

Returns size of the data that is present in the memory block in 4-byte words. This size is equal to dataEnd() -
dataBegin().

Returns

data size

4.6.3.6 uint32_t swrod::ROBFragment::DataBlock::freeSpaceSize () const [inline]

Returns size of the free space in the memory block in 4-byte words. This size is equal to memorySize() - dataSize()

Returns

free space size

4.6.3.7 uint32_t swrod::ROBFragment::DataBlock::memorySize () const [inline]

Returns size of the memory block in bytes.

Returns

memory block size

4.6.3.8 void swrod::ROBFragment::DataBlock::reset () [inline]

Sets data size to zero.

The documentation for this class was generated from the following file:

• swrod/ROBFragment.h

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

28 CONTENTS

4.7 swrod::DataInput Class Reference

#include <DataInput.h>

Inheritance diagram for swrod::DataInput:

swrod::DataInput

swrod::Component

Public Types

• typedef detail::DataCallback DataCallback

• typedef std::function< void(void)> Action

Public Member Functions

• const std::string & getName () const override

• void executeSynchronousAction (const Action &action)

• void subscribe (const InputLinkId &link, const DataCallback &callback)

• void unsubscribe (const InputLinkId &link)

Protected Member Functions

• virtual void actionsPending ()=0

• virtual void subscribeToFelix (const InputLinkId &link_id)=0

• virtual void unsubscribeFromFelix (const InputLinkId &link_id)=0

• virtual uint32_t translateStatus (uint8_t status) const noexcept

• void dataReceived (InputLinkId link, const uint8_t ∗data, uint32_t size, uint8_t status)

• void executeActions ()

4.7.1 Detailed Description

This is an abstract class that defines an interface for receiving input data by SW ROD. An implementation of this
interface has to pass all data it receives to the subscribers by calling the protected DataInput::dataReceived()
function. An implementation of this interface must always call this function from a single thread or serialise the calls
if they are done from different threads. In addition an implementation of this interface has to able to execute a given
action in a synchronous way with respect to the data handling threads. This should be done by overriding the Data-
Input::actionsPending() virtual function, that is called when a new action is requested to be executed. When this
happens the implementation of this function shall be accountable for execution of the DataInput::executeActions()
function from the same thread that is used for the DataInput::dataReceived() function invocations.

4.7.2 Member Function Documentation

4.7.2.1 virtual void swrod::DataInput::actionsPending () [protected], [pure virtual]

This function is called when there are actions scheduled for execution in the context of the data receiving thread. In
response to this call an implementation of the DataInput interface has to call DataInput::executeActions() function
as soon as possible in the context of the data receiving thread.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

4.7 swrod::DataInput Class Reference 29

4.7.2.2 void swrod::DataInput::dataReceived (InputLinkId link, const uint8_t ∗ data, uint32_t size, uint8_t status)
[inline], [protected]

An implementation of the DataInput interface shall provide input data by calling this function.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

30 CONTENTS

Parameters

link input link ID for which the data has been received
data pointer to the beginning of the data
size data size

status error status that is given by the data source

4.7.2.3 void swrod::DataInput::executeActions () [protected]

This function executes all pending actions. If there are no actions pending it does nothing. It shall be called by an
implementation of DataInput interface in the context of the data receiving thread in response to a DataInput::actions-
Pending() function invocation.

4.7.2.4 void swrod::DataInput::executeSynchronousAction (const Action & action)

This function can be used to execute a given action in the context of the data handling thread. This is necessary to
avoid using locks in the data handling thread that may otherwise result in significant performance penalty.

Parameters

action The action to be executed in the context of the data handling thread.

4.7.2.5 const std::string& swrod::DataInput::getName () const [inline], [override], [virtual]

A subclass shall override this function to return a string ID of the current object. This ID has to be unique in the
scope of the current SW ROD application if getStatistics() function of the current object returns non-null pointer to
an IS information object. This will guarantee that this IS object can be published correctly. For objects that don’t
provide statistics to be published to IS this ID is not required to be unique.

Returns

The object ID

Implements swrod::Component.

4.7.2.6 void swrod::DataInput::subscribe (const InputLinkId & link, const DataCallback & callback)

Associates the given callback function with the given link and calls DataInput::subscribeToFelix(). If a callback had
been already set for the given link the function will throw swrod::SubscriptionException exception.

Parameters

in link The ID of the input link.
in callback This function will be called for any data received from the given input link.

Exceptions

swrod::Subscription-
Exception

This exception is thrown if a callback is already registered with the given link.

4.7.2.7 virtual void swrod::DataInput::subscribeToFelix (const InputLinkId & link_id) [protected], [pure
virtual]

An implementation of the DataInput interface shall override this function. This function is called by the DataInput-
::subscribe() and is responsible for establishing subscription for the given input link.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

4.8 swrod::DataInputHandler Class Reference 31

Parameters

in link_id The ID of the input link to be subscribed.

4.7.2.8 virtual uint32_t swrod::DataInput::translateStatus (uint8_t status) const [inline], [protected],
[virtual], [noexcept]

This function can be overridden to translate communication transport error status to the corresponding ROB frag-
ment header error status. Default implementation returns zero.

Parameters

status - communication transport status

Returns

ROB fragment header status

4.7.2.9 void swrod::DataInput::unsubscribe (const InputLinkId & link)

Removes the callback that had been previously set for the given input link. If no callback is associated with the given
input link the function immediately returns, otherwise calls the DataInput::unsubscribeFromFelix() function.

Parameters

in link The ID of the input link.

4.7.2.10 virtual void swrod::DataInput::unsubscribeFromFelix (const InputLinkId & link_id) [protected], [pure
virtual]

An implementation of the DataInput interface shall override this function. This function is called by the DataInput-
::unsubscribe() and is responsible for removing subscription that had been previously established for the given input
link.

Parameters

in link_id The ID of the input link to be unsubscribed.

The documentation for this class was generated from the following file:

• swrod/DataInput.h

4.8 swrod::DataInputHandler Class Reference

#include <DataInputHandler.h>

Inheritance diagram for swrod::DataInputHandler:

swrod::DataInputHandler

swrod::Component

swrod::DataInputHandlerBase swrod::L1AInputHandler swrod::ROBFragmentBuilder

swrod::ROBFragmentWorkerBase swrod::ROBFragmentBuilderBase

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

32 CONTENTS

Public Member Functions

• virtual void disable ()=0
• virtual void disableLinks (std::vector< InputLinkId > &link_ids)=0
• virtual void enable (uint32_t lastL1ID, uint64_t triggersNumber)=0
• virtual void enableLinks (std::vector< InputLinkId > &link_ids, uint32_t lastL1ID, uint64_t triggersNumber)=0
• virtual void resynchAfterRestart (uint32_t lastL1ID)=0
• virtual void subscribeToFelix ()=0
• virtual void unsubscribeFromFelix ()=0

4.8.1 Detailed Description

This is an abstract class that defines interface for data handling components of the SW ROD.

4.8.2 Member Function Documentation

4.8.2.1 virtual void swrod::DataInputHandler::disable () [pure virtual]

This function can be used to stop getting data from all input links managed by this object. A typical implementation
of this function should unsubscribe from the input links.

Implemented in swrod::DataInputHandlerBase, and swrod::ROBFragmentBuilderBase.

4.8.2.2 virtual void swrod::DataInputHandler::disableLinks (std::vector< InputLinkId > & link_ids) [pure virtual]

This function is used to inform the data handler that it shall ignore data from the given input links. A typical imple-
mentation of this function should unsubscribe from the given links.

Parameters

in,out link_ids The IDs of the input links to be disabled. If an attempt to disable a link from
the given vector succeeds an implementation of this function shall remove the
corresponding ID from the vector.

Implemented in swrod::DataInputHandlerBase, and swrod::ROBFragmentBuilderBase.

4.8.2.3 virtual void swrod::DataInputHandler::enable (uint32_t lastL1ID, uint64_t triggersNumber) [pure virtual]

This function can be called to re enable all input links handled by this object, which had been previously disabled
via DataInputHandler::disable() function. It is assumed that the Trigger is on hold and no input data may be coming
in when this function is executed.

Parameters

lastL1ID Last L1ID generated when the Trigger had been put on hold.
triggersNumber A total number of triggers received since the last restart of the SW ROD application

Implemented in swrod::ROBFragmentBuilderBase, and swrod::DataInputHandlerBase.

4.8.2.4 virtual void swrod::DataInputHandler::enableLinks (std::vector< InputLinkId > & link_ids, uint32_t lastL1ID, uint64_t
triggersNumber) [pure virtual]

This function is used to inform the data handler that it shall resume getting data from the given input links. A typical
implementation of this function should re subscribe to the given links. It is assumed that the Trigger is put on hold
and no input data can be produced when this function is executed. A failure to respect this condition may result in a
fatal crash of the SW ROD application.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

4.9 swrod::DataInputHandlerBase Class Reference 33

Parameters

in,out link_ids A vector of IDs of the input links to be re enabled. If an attempt to enable a link
from this vector succeeds an implementation of this function shall remove the
corresponding ID from the vector.

in lastL1ID The last L1ID that has been produced before the Trigger has been put on hold.
triggersNumber A total number of triggers produced since the last restart of the SW ROD ap-

plication

Implemented in swrod::DataInputHandlerBase, and swrod::ROBFragmentBuilderBase.

4.8.2.5 virtual void swrod::DataInputHandler::resynchAfterRestart (uint32_t lastL1ID) [pure virtual]

This function shall be used as part of TTC Restart procedure to re synchronise SW ROD data handlers after restart.
The Trigger must be put on hold when this function is called to guarantee that no data shall arrive to the SW ROD
until this function returns. A failure to respect this condition may result in a fatal crash of the SW ROD application.

Parameters

in lastL1ID The last L1ID that has been produced before the Trigger has been put on hold.

Implemented in swrod::DataInputHandlerBase, and swrod::ROBFragmentBuilderBase.

4.8.2.6 virtual void swrod::DataInputHandler::subscribeToFelix () [pure virtual]

An implementation of this function shall subscribe to the input links, which were assigned to this data handler with
respect to the current configuration. This function should be called during the Run Control CONNECT transition.

Implemented in swrod::DataInputHandlerBase, and swrod::ROBFragmentBuilderBase.

4.8.2.7 virtual void swrod::DataInputHandler::unsubscribeFromFelix () [pure virtual]

An implementation of this function shall unsubscribe from all input data links. This function should be called during
the Run Control DISCONNECT transition.

Implemented in swrod::DataInputHandlerBase, and swrod::ROBFragmentBuilderBase.

The documentation for this class was generated from the following file:

• swrod/DataInputHandler.h

4.9 swrod::DataInputHandlerBase Class Reference

#include <DataInputHandlerBase.h>

Inheritance diagram for swrod::DataInputHandlerBase:

swrod::DataInputHandlerBase

swrod::DataInputHandler

swrod::Component

swrod::ROBFragmentWorkerBase

Classes

• struct Link

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

34 CONTENTS

Public Types

• typedef std::vector< Link > InputLinks

Public Member Functions

• DataInputHandlerBase (const std::string &id, const InputLinkVector &links, const boost::property_tree::ptree
&config, const std::shared_ptr< DataInput > &input, detail::InputCallback callback)

• const std::string & getName () const override
• const InputLinks & getLinks () const
• void disable () override
• void disableLinks (std::vector< InputLinkId > &link_ids) override
• void enable (uint32_t lastL1ID, uint64_t triggersNumber) override
• void enableLinks (std::vector< InputLinkId > &link_ids, uint32_t lastL1ID, uint64_t triggersNumber) override
• void resynchAfterRestart (uint32_t lastL1ID) override
• void runStarted (const RunParams &run_params) override
• void runStopped () override
• void subscribeToFelix () override
• void unsubscribeFromFelix () override
• virtual void disabled ()
• virtual void enabled (uint64_t triggersCounter)
• virtual void linkDisabled (const Link &link)
• virtual void linkEnabled (const Link &link)

Protected Attributes

• const std::string m_id
• bool m_running = false
• uint32_t m_links_number
• InputLinks m_links
• detail::InputCallback m_callback
• std::shared_ptr< DataInput > m_input

4.9.1 Detailed Description

This class provides a basic reusable implementation of the InputDataHandler interface. Deriving from the Input-
DataHandlerBase is a recommended way of implementing this interface.

4.9.2 Constructor & Destructor Documentation

4.9.2.1 swrod::DataInputHandlerBase::DataInputHandlerBase (const std::string & id, const InputLinkVector & links, const
boost::property_tree::ptree & config, const std::shared_ptr< DataInput > & input, detail::InputCallback callback)

Creates a new input data handler with the given configuration.

Parameters

in id Id to be used for this data handler
in links Input links which have to be handled by this object
in config Contains configuration parameters for the new data handler.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

4.9 swrod::DataInputHandlerBase Class Reference 35

in input the object to be used for data subscription
in callback a function to be called when a new data arrive

4.9.3 Member Function Documentation

4.9.3.1 void swrod::DataInputHandlerBase::disable () [override], [virtual]

This function can be used to stop getting data from all input links managed by this object. In order to achieve this it
unsubscribes from all input links.

Implements swrod::DataInputHandler.

4.9.3.2 virtual void swrod::DataInputHandlerBase::disabled () [inline], [virtual]

Is called as part of the ROB fragment builder disabling procedure to notify the derived class that this data handler
has just been disabled.

4.9.3.3 void swrod::DataInputHandlerBase::disableLinks (std::vector< InputLinkId > & link_ids) [override],
[virtual]

This function checks the given links and unsubscribes from those that are managed by this data handler. The IDs
of the links that were successfully disabled are removed from the input vector.

Parameters

link_ids[in,out] IDs of the input links which have to be disabled

Implements swrod::DataInputHandler.

4.9.3.4 void swrod::DataInputHandlerBase::enable (uint32_t lastL1ID, uint64_t triggersNumber) [override],
[virtual]

This function can be called to re enable all input links handled by this object. It re subscribes to all input links, which
were not individually disabled by using DataInputHandler::disableLinks() function. It is assumed that the Trigger is
on hold and no input data may be coming in when this function is executed. A failure to respect this condition may
result in a fatal crash.

Parameters

in lastL1ID Last L1ID generated before the Trigger had been put on hold.
in triggersNumber A total number of triggers received since the last restart of the SW ROD appli-

cation

Implements swrod::DataInputHandler.

4.9.3.5 virtual void swrod::DataInputHandlerBase::enabled (uint64_t triggersCounter) [inline], [virtual]

Is called as part of the ROB fragment builder enabling procedure to notify the derived class that this data handler
has just been re enabled.

Parameters

in triggersCounter A total number of triggers received by the SW ROD application since the last
restart. This number can be used to synchronise this data handler with the
TTC input stream.

4.9.3.6 void swrod::DataInputHandlerBase::enableLinks (std::vector< InputLinkId > & link_ids, uint32_t lastL1ID, uint64_t
triggersNumber) [override], [virtual]

This function checks the given links and tries to re enable those that are handled by this object. The IDs of the links
that were successfully re enabled are removed from the input vector. This way when the function returns, the vector
of links IDs contains only IDs of the links which are either not handled by this worker or failed to be re enabled. It is

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

36 CONTENTS

assumed that the Trigger is on hold and no input data may be coming in when this function is executed. A failure to
respect this condition may result in a fatal crash.

Parameters

in,out link_ids IDs of the input links which have to be re enabled
in lastL1ID Last L1ID generated when the Trigger had been put on hold.
in triggersNumber A total number of triggers produced since the last restart of this SW ROD

application

Implements swrod::DataInputHandler.

4.9.3.7 const InputLinks& swrod::DataInputHandlerBase::getLinks () const [inline]

Returns a reference to the vector of input links handled by this object.

Returns

a vector of input links

4.9.3.8 const std::string& swrod::DataInputHandlerBase::getName () const [inline], [override], [virtual]

Returns unique object ID.

Returns

A unique object ID.

Implements swrod::Component.

4.9.3.9 virtual void swrod::DataInputHandlerBase::linkDisabled (const Link & link) [inline], [virtual]

Is called as part of the input links disabling procedure to notify the derived class that the given input link has just
been disabled.

Parameters

in link A reference to the object that contains description of the just disabled input
link.

4.9.3.10 virtual void swrod::DataInputHandlerBase::linkEnabled (const Link & link) [inline], [virtual]

Is called as part of the input links re enabling procedure to notify the derived class that the given input link has just
been re enabled.

Parameters

in link A reference to the object that contains description of the just re enabled input
link

4.9.3.11 void swrod::DataInputHandlerBase::resynchAfterRestart (uint32_t lastL1ID) [override], [virtual]

This function can be called after restarting the SW ROD application to re synchronise the new SW ROD instance
with the TTC system. It is assumed that the Trigger is on hold and no input data may be produced when this function
is executed. A failure to respect this condition may result in a fatal crash.

Parameters

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

4.10 swrod::Exception Class Reference 37

in lastL1ID Last L1ID generated when the trigger had been put on hold.

Implements swrod::DataInputHandler.

4.9.3.12 void swrod::DataInputHandlerBase::runStarted (const RunParams & run_params) [override], [virtual]

Is called to inform this object about starting a new run.

Parameters

in run_params New run parameters

Reimplemented from swrod::Component.

4.9.3.13 void swrod::DataInputHandlerBase::runStopped () [override], [virtual]

Is called to inform this object about the end of the current run.

Reimplemented from swrod::Component.

4.9.3.14 void swrod::DataInputHandlerBase::subscribeToFelix () [override], [virtual]

Subscribes to all input links handled by this object.

Implements swrod::DataInputHandler.

4.9.3.15 void swrod::DataInputHandlerBase::unsubscribeFromFelix () [override], [virtual]

Unsubscribes from all input links handled by this object.

Implements swrod::DataInputHandler.

The documentation for this class was generated from the following file:

• swrod/DataInputHandlerBase.h

4.10 swrod::Exception Class Reference

#include <exceptions.h>

4.10.1 Detailed Description

This is a base class for any SW ROD exception.

The documentation for this class was generated from the following file:

• swrod/exceptions.h

4.11 swrod::Factory< Product > Class Template Reference

#include <Factory.h>

Classes

• struct Registrator

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

38 CONTENTS

Public Types

• typedef std::conditional
< IsUnique< Product >::value,
std::unique_ptr< Product >
, std::shared_ptr< Product >
>::type ReturnType

• typedef std::function
< ReturnType(const
boost::property_tree::ptree
&, const Core &)> Creator

Public Member Functions

• ReturnType create (const std::string &type, const boost::property_tree::ptree &config, const Core &core)
• void registerCreator (const std::string &type, const Creator &creator)
• void unregisterCreator (const std::string &type)

Static Public Member Functions

• static Factory & instance ()

4.11.1 Detailed Description

template<class Product>class swrod::Factory< Product >

This is a helper class that can be used to register a factory of a custom implementation of a SW ROD component
interface. This can be done by declaring a global instance of the Factory::Registrator class in one of the compilation
modules.

The documentation for this class was generated from the following file:

• swrod/Factory.h

4.12 swrod::helper::FragmentCollator Class Reference

Helper class to collate ROBfragments belonging to the same L1 ID.

#include <FragmentCollator.h>

Public Member Functions

• void expected (unsigned int exp)
• unsigned int expected () const
• void maxIndex (unsigned int size)
• void close ()
• void reset ()
• bool insert (std::shared_ptr< ROBFragment > frag)
• void clear (unsigned int L1Id)
• std::vector< unsigned int > clear (std::vector< unsigned int > &L1IdVec)
• void enable (unsigned int robId)
• void disable (unsigned int robId)
• std::vector< unsigned int > latestL1 () const
• unsigned int lowestL1 () const

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

4.13 swrod::GetParameterException Class Reference 39

• const std::vector
< std::shared_ptr< ROBFragment > > & get (unsigned int l1Id)

• std::vector< std::shared_ptr
< ROBFragment > > get (unsigned int l1Id, std::set< unsigned int > ∗robs)

• std::vector< std::shared_ptr
< ROBFragment > > take (unsigned int l1Id)

• unsigned int size () const

• void dump () const

4.12.1 Detailed Description

Helper class to collate ROBfragments belonging to the same L1 ID.

The documentation for this class was generated from the following file:

• swrod/FragmentCollator.h

4.13 swrod::GetParameterException Class Reference

#include <exceptions.h>

4.13.1 Detailed Description

This issue is used to report problems with SW ROD configuration parameters

The documentation for this class was generated from the following file:

• swrod/exceptions.h

4.14 swrod::ROBFragmentBuilderBase::hash_compare Struct Reference

Static Public Member Functions

• static size_t hash (const uint64_t &a)

• static bool equal (const uint64_t &a, const uint64_t &b)

The documentation for this struct was generated from the following file:

• swrod/ROBFragmentBuilderBase.h

4.15 swrod::GBTChunk::Header Struct Reference

#include <GBTChunk.h>

Public Attributes

• uint16_t m_size

• uint8_t m_felix_status

• uint8_t m_swrod_status

• uint32_t m_link_id

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

40 CONTENTS

4.15.1 Detailed Description

This class defines a structure of the header of a data chunk within data payload of a ROB fragments produced by
the GBTModeBuilder algorithm.

The documentation for this struct was generated from the following file:

• swrod/GBTChunk.h

4.16 swrod::IsUnique< T > Struct Template Reference

Static Public Attributes

• static constexpr bool value = false

The documentation for this struct was generated from the following file:

• swrod/Factory.h

4.17 swrod::IsUnique< L1AInputHandler > Struct Template Reference

Static Public Attributes

• static constexpr bool value = true

The documentation for this struct was generated from the following file:

• swrod/Factory.h

4.18 swrod::L1AInfo Struct Reference

#include <L1AInfo.h>

Public Member Functions

• L1AInfo (uint16_t bcid, uint16_t trigger_type, uint32_t l1id, uint64_t index)
• bool isECR () const noexcept

Public Attributes

• const uint16_t m_bcid
• const uint16_t m_trigger_type
• const uint32_t m_l1id
• const uint64_t m_index

4.18.1 Detailed Description

Contains information from a L1 Accept message.

The documentation for this struct was generated from the following file:

• swrod/L1AInfo.h

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

4.19 swrod::L1AInputHandler Class Reference 41

4.19 swrod::L1AInputHandler Class Reference

#include <L1AInputHandler.h>

Inheritance diagram for swrod::L1AInputHandler:

swrod::L1AInputHandler

swrod::DataInputHandler

swrod::Component

Public Member Functions

• L1AInputHandler (const boost::property_tree::ptree &config, const Core &core)
• virtual void subscribe (const std::shared_ptr< ROBFragmentBuilder > &builder)

Protected Member Functions

• void notify (const L1AInfo &l1a_info) const

Protected Attributes

• std::vector< std::shared_ptr
< ROBFragmentBuilder > > m_builders

• std::shared_ptr< DataInput > m_data_input

4.19.1 Detailed Description

This class defines an interface and provides a default implementation of a L1 Accept data handler.

4.19.2 Constructor & Destructor Documentation

4.19.2.1 swrod::L1AInputHandler::L1AInputHandler (const boost::property_tree::ptree & config, const Core & core)

Creates a new L1 Accept handler using the given configuration.

Parameters

config A new object configuration.
core a reference to swrod::Core object

4.19.3 Member Function Documentation

4.19.3.1 virtual void swrod::L1AInputHandler::subscribe (const std::shared_ptr< ROBFragmentBuilder > & builder)
[inline], [virtual]

This function can be used to register a ROBFragmentBuilder instance to receive notifications about L1 Accept data
that this object receives. The L1A data will be passed to the fragment builder via the ROBFragmentBuilder::l1a-
Received() function.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

42 CONTENTS

Parameters

builder fragment builder that has to be notified about L1 Accept received data

The documentation for this class was generated from the following file:

• swrod/L1AInputHandler.h

4.20 swrod::ROBFragmentBuilderBase::L1ID Class Reference

Public Member Functions

• L1ID (uint32_t value=c_invalid_value)

• bool invalidOrEqual (uint32_t l1id) const

• void set (uint64_t counter, uint32_t l1id)

• uint64_t getCounter () const

• uint32_t getValue () const

The documentation for this class was generated from the following file:

• swrod/ROBFragmentBuilderBase.h

4.21 swrod::DataInputHandlerBase::Link Struct Reference

#include <DataInputHandlerBase.h>

Public Member Functions

• Link (const InputLinkId &id, const DetectorLinkId &det_id)

• void reset ()

Public Attributes

• const InputLinkId m_fid
• const DetectorLinkId m_resource_id
• bool m_enabled
• uint16_t m_last_bcid
• uint32_t m_expected_l1id
• uint64_t m_packets_counter
• uint64_t m_packets_missed
• uint64_t m_packets_corrupted
• uint64_t m_packets_dropped

4.21.1 Detailed Description

This class contains control and monitoring counters for an input link. This information is used for input data book-
keeping, error detection and monitoring.

The documentation for this struct was generated from the following file:

• swrod/DataInputHandlerBase.h

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

4.22 swrod::Factory< Product >::Registrator Struct Reference 43

4.22 swrod::Factory< Product >::Registrator Struct Reference

Public Member Functions

• Registrator (const std::string &type, const Creator &creator)

4.22.1 Constructor & Destructor Documentation

4.22.1.1 template<class Product > swrod::Factory< Product >::Registrator::Registrator (const std::string & type, const
Creator & creator) [inline]

Use this constructor to declare an instance that registers a new factory.

Parameters

type The type name of the new factory.
creator The factory procedure that can be used to create an instance of a given class.

The documentation for this struct was generated from the following file:

• swrod/Factory.h

4.23 swrod::ROBFragment Class Reference

#include <ROBFragment.h>

Classes

• class DataBlock

Public Member Functions

• ROBFragment (uint32_t source_id, uint32_t l1id, uint16_t bcid, uint32_t trigger_type, uint32_t rob_status,
uint16_t missed_packets, uint16_t corrupt_packets, std::vector< DataBlock > &&data, bool rod_header_-
present=false)

• ROBFragment (uint32_t source_id, uint32_t l1id, uint32_t status_word)
• std::vector< std::pair
< uint8_t ∗, uint32_t > > serialize (uint32_t run_number) const

Public Attributes

• const uint32_t m_source_id
• const uint32_t m_l1id
• const uint16_t m_bcid
• const uint32_t m_trigger_type
• const uint16_t m_missed_packets
• const uint16_t m_corrupted_packets
• const bool m_rod_header_present
• uint32_t m_detector_type
• uint16_t m_rod_minor_version
• bool m_status_front
• std::vector< uint32_t > m_status_words
• std::vector< DataBlock > m_data

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

44 CONTENTS

4.23.1 Detailed Description

This class contains information for a fully built ROB fragment.

4.23.2 Constructor & Destructor Documentation

4.23.2.1 swrod::ROBFragment::ROBFragment (uint32_t source_id, uint32_t l1id, uint16_t bcid, uint32_t trigger_type, uint32_t
rob_status, uint16_t missed_packets, uint16_t corrupt_packets, std::vector< DataBlock > && data, bool
rod_header_present = false)

Constructs a new ROB data fragment with the given data and parameters.

Parameters

source_id The ROB ID.
l1id The extended L1 ID.

bcid The bunch crossing ID.
trigger_type The trigger type.

rob_status ROB header status word.
missed_packets The number of missed packets in this fragment.
corrupt_packets The number of corrupt packets in this fragment.

data The data payload of this fragment.

4.23.2.2 swrod::ROBFragment::ROBFragment (uint32_t source_id, uint32_t l1id, uint32_t status_word)

Constructs a new empty ROB data fragment with the given parameters.

Parameters

source_id The ROB ID.
l1id The extended L1 ID.

status_word Usually contains the code of the error that prevents proper building of this event.

4.23.3 Member Function Documentation

4.23.3.1 std::vector<std::pair<uint8_t∗, uint32_t>> swrod::ROBFragment::serialize (uint32_t run_number) const

This function puts the content of the fragment into a number of memory chunks that can be used to send it over
network or to write it to a file.

Parameters

run_number The current run number.

Returns

The event represented as a number of memory blocks.

The documentation for this class was generated from the following file:

• swrod/ROBFragment.h

4.24 swrod::ROBFragmentBuilder Class Reference

#include <ROBFragmentBuilder.h>

Inheritance diagram for swrod::ROBFragmentBuilder:

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

4.25 swrod::ROBFragmentBuilderBase Class Reference 45

swrod::ROBFragmentBuilder

swrod::DataInputHandler swrod::ROBFragmentProvider

swrod::Component

swrod::ROBFragmentBuilderBase

Public Member Functions

• virtual uint32_t getROBId () const =0

• virtual void l1aReceived (const L1AInfo &l1a)=0

Additional Inherited Members

4.24.1 Detailed Description

An abstract class that defines interface for a ROB Fragment Builder implementation. It is not recommended to use
this class directly, but to derive a ROB Fragment Builder implementation class from the ROBFragmentBuilderBase
class.

4.24.2 Member Function Documentation

4.24.2.1 virtual uint32_t swrod::ROBFragmentBuilder::getROBId () const [pure virtual]

Returns ID of the ROB whose fragments are built by this object.

Returns

The ID of the ROB.

Implemented in swrod::ROBFragmentBuilderBase.

4.24.2.2 virtual void swrod::ROBFragmentBuilder::l1aReceived (const L1AInfo & l1a) [pure virtual]

Is called when a new L1Accept message is received.

Parameters

in l1a A new L1Accept message.

Implemented in swrod::ROBFragmentBuilderBase.

The documentation for this class was generated from the following file:

• swrod/ROBFragmentBuilder.h

4.25 swrod::ROBFragmentBuilderBase Class Reference

#include <ROBFragmentBuilderBase.h>

Inheritance diagram for swrod::ROBFragmentBuilderBase:

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

46 CONTENTS

swrod::ROBFragmentBuilderBase

swrod::ROBFragmentBuilder

swrod::DataInputHandler swrod::ROBFragmentProvider

swrod::Component

Classes

• struct hash_compare
• class L1ID

Public Types

• typedef std::function
< DataInputHandlerBase ∗(const
InputLinkVector &, const
std::shared_ptr< DataInput > &)> WorkerFactory

• typedef std::function< void(const
L1AInfo &)> L1AReceiver

Public Member Functions

• ROBFragmentBuilderBase (const boost::property_tree::ptree &robConfig, const Core &core, const L1A-
Receiver &l1a_receiver, const WorkerFactory &factory, bool header_present=false)

• const std::string & getName () const override
• uint32_t getROBId () const final
• void l1aReceived (const L1AInfo &l1a) override
• void disableLinks (std::vector< InputLinkId > &link_ids) override
• void disable () override
• void enableLinks (std::vector< InputLinkId > &link_ids, uint32_t lastL1ID, uint64_t triggersNumber) override
• void enable (uint32_t lastL1ID, uint64_t triggersNumber) override
• void resynchAfterRestart (uint32_t lastL1ID)
• void runStarted (const RunParams &run_params) override
• void runStopped () override
• void subscribeToFelix () override
• void unsubscribeFromFelix () override
• ISInfo ∗ getStatistics () override

Protected Types

• typedef
tbb::concurrent_hash_map
< uint64_t, detail::DataHolder,
hash_compare > FragmentAssembler

• typedef
tbb::concurrent_bounded_queue
< uint64_t > ReadyQueue

• typedef std::function< void(FragmentAssembler::accessor &)> FragmentReadyCallback

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

4.25 swrod::ROBFragmentBuilderBase Class Reference 47

Protected Member Functions

• void transmitter (const bool &active)
• void synchronize (uint32_t lastL1ID, const L1ID &data)
• void addToReadyQueue (FragmentAssembler::accessor &a)
• void fragmentReady (FragmentAssembler::accessor &a)
• void submitFragment (FragmentAssembler::accessor &a)

Protected Attributes

• const uint32_t m_ROB_id
• const std::string m_unique_id
• const bool m_flush_buffer
• const bool m_ROD_header_present
• const uint32_t m_l1a_wait_timeout
• const uint32_t m_resynch_timeout
• uint64_t m_buffer_size = 0
• int64_t m_queue_size = 0
• bool m_running
• bool m_enabled
• std::mutex m_built_mutex
• L1ID m_last_built_L1ID
• L1ID m_last_received_L1ID
• ROBStatistics m_statistics
• std::chrono::time_point
< std::chrono::system_clock > m_start_of_run

• std::chrono::time_point
< std::chrono::system_clock > m_last_update

• L1AReceiver m_l1a_receiver
• FragmentAssembler m_fragment_assembler
• ReadyQueue m_ready
• detail::ThreadPool m_transmitters
• std::vector< std::unique_ptr
< DataInputHandlerBase > > m_workers

• FragmentReadyCallback m_fragment_ready_callback

4.25.1 Detailed Description

This is an abstract class that provides a reusable basic implementation of the ROBFragmentBuilder interface. De-
riving custom class from the ROBFragmentBuilderBase is a recommended way of implementing a ROB fragment
building algorithm.

4.25.2 Member Function Documentation

4.25.2.1 void swrod::ROBFragmentBuilderBase::disable () [override], [virtual]

Should be used to disable event building. This function unsubscribes from all input links.

Implements swrod::DataInputHandler.

4.25.2.2 void swrod::ROBFragmentBuilderBase::disableLinks (std::vector< InputLinkId > & link_ids) [override],
[virtual]

Should be used to inform the fragment builder that it shall not use data from the given input links for event building.
This function unsubscribes from the given input links.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

48 CONTENTS

Parameters

in link_ids The IDs of the disabled input links. If an attempt to disable a link from this
vector succeeds this function removes the corresponding ID from the vector.

Implements swrod::DataInputHandler.

4.25.2.3 void swrod::ROBFragmentBuilderBase::enable (uint32_t lastL1ID, uint64_t triggersNumber) [override],
[virtual]

Called to inform the fragment builder that it has to resume fragment building. This function re subscribes to all input
links. This function assumes that the Trigger is on hold and no new data may be produced. A failure of respect this
condition may result in a fatal crash.

Parameters

in lastL1ID The last L1ID that has been produced when the Trigger was put on hold.
in triggersNumber Number of triggers that has been produced since the last restart of the SW

ROD application.

Exceptions

swrod::Exception If an attempt to re enable this fragment builder fails (e.g. subscription to one or
several input link failed) the function will throw swrod::Exception exception.

Implements swrod::DataInputHandler.

4.25.2.4 void swrod::ROBFragmentBuilderBase::enableLinks (std::vector< InputLinkId > & link_ids, uint32_t lastL1ID,
uint64_t triggersNumber) [override], [virtual]

This function is used to inform the fragment builder that it shall resume using data from the given input links for
event building. The IDs of the links that were successfully re enabled are removed from the input vector. This way
when the function returns the vector of links IDs contains only IDs of the links which are either not handled by this
worker or failed to be re enabled. It is assumed that the Trigger is on hold and no input data may be coming in when
this function is executed. A failure to respect this condition may result in a fatal crash.

Parameters

in,out link_ids A vector of IDs of the input links to be enabled. If an attempt to enable a link
from this vector succeeds the function removes the corresponding ID from the
vector.

in lastL1ID The last L1ID that has been produced when the Trigger had been put on hold.
in triggersNumber Number of triggers that has been produced when the Trigger was put on hold.

Implements swrod::DataInputHandler.

4.25.2.5 const std::string& swrod::ROBFragmentBuilderBase::getName () const [inline], [override],
[virtual]

Returns unique ID for this object. This ID will be used to publish the fragment builder’s statistics to IS.

Returns

The object’s unique ID.

Implements swrod::Component.

4.25.2.6 uint32_t swrod::ROBFragmentBuilderBase::getROBId () const [inline], [final], [virtual]

Returns ID of the ROB whose fragments are built by this object.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

4.25 swrod::ROBFragmentBuilderBase Class Reference 49

Returns

The ID of the ROB.

Implements swrod::ROBFragmentBuilder.

4.25.2.7 ISInfo∗ swrod::ROBFragmentBuilderBase::getStatistics () [override], [virtual]

Calculates average rates since the last call to this function and updates the statistics object with the new rates
before returning.

Returns

A pointer to the IS statistics object.

Reimplemented from swrod::Component.

4.25.2.8 void swrod::ROBFragmentBuilderBase::l1aReceived (const L1AInfo & l1a) [inline], [override],
[virtual]

This function is called by the L1AInputHandler implementation to inform this builder about a new L1A data.

Parameters

l1a L1 Accept information.

Implements swrod::ROBFragmentBuilder.

4.25.2.9 void swrod::ROBFragmentBuilderBase::resynchAfterRestart (uint32_t lastL1ID) [virtual]

This function shall be used as part of TTC Restart procedure to synchronise this fragment builder with the TTC
system after the restart of the SW ROD application. The Trigger must be put on hold when this function is executed
and therefore the fragment builder shall not received any data until this function returns.

Parameters

in lastL1ID The last L1ID that has been produced when the Trigger was put on hold.

Implements swrod::DataInputHandler.

4.25.2.10 void swrod::ROBFragmentBuilderBase::runStarted (const RunParams & run_params) [override],
[virtual]

Called when a new data taking session is started.

Parameters

in run_params The new run parameters.

Reimplemented from swrod::Component.

4.25.2.11 void swrod::ROBFragmentBuilderBase::runStopped () [override], [virtual]

Called when the current data taking session is terminated.

Reimplemented from swrod::Component.

4.25.2.12 void swrod::ROBFragmentBuilderBase::subscribeToFelix () [override], [virtual]

This function subscribes to all input links. This function is called during the Run Control CONNECT transition.

Implements swrod::DataInputHandler.

4.25.2.13 void swrod::ROBFragmentBuilderBase::unsubscribeFromFelix () [override], [virtual]

This function cancels all previously established input links subscriptions. This function is called during the Run
Control DISCONNECT transition.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

50 CONTENTS

Implements swrod::DataInputHandler.

The documentation for this class was generated from the following file:

• swrod/ROBFragmentBuilderBase.h

4.26 swrod::ROBFragmentConsumer Class Reference

#include <ROBFragmentConsumer.h>

Inheritance diagram for swrod::ROBFragmentConsumer:

swrod::ROBFragmentConsumer

swrod::Component swrod::ROBFragmentProvider

swrod::ROBFragmentConsumerBase

Public Member Functions

• virtual void insertROBFragment (const std::shared_ptr< ROBFragment > &fragment)=0
• virtual void linkDisabled (const InputLinkId &link_id)
• virtual void linkEnabled (const InputLinkId &link_id)
• virtual void ROBDisabled (uint32_t ROB_id)
• virtual void ROBEnabled (uint32_t ROB_id)

Additional Inherited Members

4.26.1 Detailed Description

An abstract class that defines an interface for a ROB fragment consumer implementation.

It is not recommended to use this class directly, but to derive a ROB Fragment Consumer implementation from the
ROBFragmentConsumerBase class.

4.26.2 Member Function Documentation

4.26.2.1 virtual void swrod::ROBFragmentConsumer::insertROBFragment (const std::shared_ptr< ROBFragment > &
fragment) [pure virtual]

This function is used to pass fully built ROB fragments to this consumer. A consumer has to process the given
fragment as fast as possible and pass it to the next consumer in the chain using the ROBFragmentProvider::forward-
ROBFragment() function. It is crucially important for the overall SW ROD performance to return from this function
as fast as possible as otherwise this may create back pressure to the caller of this function (e.g. the previous
consumer in the chain) and may decrease the overall event processing rate of the SW ROD application. It is
strongly recommended not to inherit the ROBFragmentConsumer class directly, but to derive a custom consumer
implementation from the ROBFragmentConsumerBase class. That class provides configurable implementation of
the ROBFragmentConsumer interface, which is simple yet efficient.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

4.27 swrod::ROBFragmentConsumerBase Class Reference 51

Parameters

in fragment ROB fragment to be processed.

Implemented in swrod::ROBFragmentConsumerBase.

4.26.2.2 virtual void swrod::ROBFragmentConsumer::linkDisabled (const InputLinkId & link_id) [inline],
[virtual]

Called to inform this consumer that the given input link has been disabled.

Parameters

in link_id The link that has been disabled.

4.26.2.3 virtual void swrod::ROBFragmentConsumer::linkEnabled (const InputLinkId & link_id) [inline],
[virtual]

Called to inform this consumer that the given input link has been re enabled.

Parameters

in link_id The link that has been enabled.

4.26.2.4 virtual void swrod::ROBFragmentConsumer::ROBDisabled (uint32_t ROB_id) [inline], [virtual]

Called to inform this consumer object that the given ROB has been disabled.

Parameters

ROB_id The ID of the isabled ROB.

4.26.2.5 virtual void swrod::ROBFragmentConsumer::ROBEnabled (uint32_t ROB_id) [inline], [virtual]

Called to inform this consumer object that the given ROB has been re enabled.

Parameters

ROB_id The ID of the re enabled ROB.

The documentation for this class was generated from the following file:

• swrod/ROBFragmentConsumer.h

4.27 swrod::ROBFragmentConsumerBase Class Reference

#include <ROBFragmentConsumerBase.h>

Inheritance diagram for swrod::ROBFragmentConsumerBase:

swrod::ROBFragmentConsumerBase

swrod::ROBFragmentConsumer

swrod::Component swrod::ROBFragmentProvider

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

52 CONTENTS

Public Types

• enum ForwardingPolicy { ForwardingPolicy::None, ForwardingPolicy::Immediate, ForwardingPolicy::After-
Processing }

• enum QueuingPolicy { QueuingPolicy::Drop, QueuingPolicy::Wait }

• typedef std::function< void(const
std::shared_ptr< ROBFragment > &)> UserFunction

Public Member Functions

• ROBFragmentConsumerBase (const UserFunction &function=[](const std::shared_ptr< ROBFragment >
&){}, QueuingPolicy queuing_policy=QueuingPolicy::Wait, ForwardingPolicy forwarding_policy=Forwarding-
Policy::Immediate, uint16_t workers_number=1, int32_t queue_size=-1, const std::string &name="Consumer")

• ROBFragmentConsumerBase (const boost::property_tree::ptree &config, const UserFunction &function=[](const
std::shared_ptr< ROBFragment > &){}, QueuingPolicy queuing_policy=QueuingPolicy::Wait, Forwarding-
Policy forwarding_policy=ForwardingPolicy::Immediate, const std::string &name="Consumer")

• ROBFragmentConsumerBase (const boost::property_tree::ptree &config, const std::vector< User-
Function > &functions, QueuingPolicy queuing_policy=QueuingPolicy::Wait, ForwardingPolicy forwarding_-
policy=ForwardingPolicy::Immediate, const std::string &name="Consumer")

• const std::string & getName () const override

• void insertROBFragment (const std::shared_ptr< ROBFragment > &fragment) override

• void runStarted (const RunParams &run_params) override

• void runStopped () override

Protected Types

• typedef
tbb::concurrent_bounded_queue
< std::shared_ptr< ROBFragment > > FragmentQueue

Protected Member Functions

• void run (const UserFunction &user_function, const bool &active)

Protected Attributes

• const ForwardingPolicy m_forwarding

• const QueuingPolicy m_queuing

• const bool m_flush_buffer

• bool m_running

• FragmentQueue m_fragments_queue

• detail::ThreadPool m_threads

4.27.1 Detailed Description

This class provides an efficient configurable implementation of the ROBFragmentConsumer interface, that uses a
given number of worker threads for data processing. Deriving a new class from the ROBFragmentConsumerBase
is a recommended way to implement a custom ROB fragment consumer.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

4.27 swrod::ROBFragmentConsumerBase Class Reference 53

4.27.2 Member Enumeration Documentation

4.27.2.1 enum swrod::ROBFragmentConsumerBase::ForwardingPolicy [strong]

Defines a policy of passing ROB fragments to the next consumer.

Enumerator

None Does not pass incoming ROB fragments to the next consumer.

Immediate Pass incoming ROB fragment to the next consumer immediately upon receiving.

AfterProcessing Pass incoming ROB fragments after finishing local processing.

4.27.2.2 enum swrod::ROBFragmentConsumerBase::QueuingPolicy [strong]

Defines what to do with the incoming ROB fragments when the internal input queue is full.

Enumerator

Drop Drop ROB fragments if the input queue if full.

Wait Wait until a place becomes available in the queue.

4.27.3 Constructor & Destructor Documentation

4.27.3.1 swrod::ROBFragmentConsumerBase::ROBFragmentConsumerBase (const UserFunction & function =
[](const std::shared_ptr< ROBFragment > &){}, QueuingPolicy queuing_policy =
QueuingPolicy::Wait, ForwardingPolicy forwarding_policy = ForwardingPolicy::Immediate, uint16_t
workers_number = 1, int32_t queue_size = -1, const std::string & name = "Consumer") [explicit]

Constructs a new ROB fragment consumer that will create the given number of worker threads that will execute the
same function.

Parameters

in function Processing function to be executed.
in queuing_policy Fragment queueing policy.
in forwarding_-

policy
Fragment forwarding policy.

in workers_number The number of worker threads.
in queue_size Size of the internal queue. Default value -1 means unlimited.
in name The ID of the new object. If the new consumer returns a non-null pointer to

IS object from the getStatistics() function then this ID must be unique in the
scope of the current SW ROD application.

4.27.3.2 swrod::ROBFragmentConsumerBase::ROBFragmentConsumerBase (const boost::property_tree::ptree & config,
const UserFunction & function = [](const std::shared_ptr< ROBFragment > &){},
QueuingPolicy queuing_policy = QueuingPolicy::Wait, ForwardingPolicy forwarding_policy =
ForwardingPolicy::Immediate, const std::string & name = "Consumer") [explicit]

Constructs a new ROB fragment consumer that will use the given number of worker threads to execute the given
processing function.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

54 CONTENTS

Parameters

in config Configuration object that contains parameters taken from the SwRod-
FragmentConsumer configuration class

in function The processing function to be executed.
in queuing_policy Fragment queueing policy.
in forwarding_-

policy
Fragment forwarding policy.

in name The ID of the new object. If the new consumer returns a non-null pointer to
IS object from the getStatistics() function then this ID must be unique in the
scope of the current SW ROD application.

4.27.3.3 swrod::ROBFragmentConsumerBase::ROBFragmentConsumerBase (const boost::property_tree::ptree & config,
const std::vector< UserFunction > & functions, QueuingPolicy queuing_policy = QueuingPolicy::Wait,
ForwardingPolicy forwarding_policy = ForwardingPolicy::Immediate, const std::string & name =
"Consumer") [explicit]

Constructs a new ROB fragment consumer creating a new worker thread for every processing function in the given
functions vector.

Parameters

in config Configuration object that contains parameters taken from the SwRod-
FragmentConsumer configuratiob class

in functions A vector of processing function to be executed. Each function will be executed
in a dedicated worker thread.

in queuing_policy Fragment queueing policy, default is -1, which means unlimited.
in forwarding_-

policy
Fragment forwarding policy.

in name The ID of the new object. If the new consumer returns a non-null pointer to
IS object from the getStatistics() function then this ID must be unique in the
scope of the current SW ROD application.

4.27.4 Member Function Documentation

4.27.4.1 const std::string& swrod::ROBFragmentConsumerBase::getName () const [inline], [override],
[virtual]

Returns the name that was given to the object constructor. This name must be unique to support publishing of
monitoring statistics to IS.

Returns

The object name.

Implements swrod::Component.

4.27.4.2 void swrod::ROBFragmentConsumerBase::insertROBFragment (const std::shared_ptr< ROBFragment > &
fragment) [override], [virtual]

This function puts the given ROB fragment into internal queue and returns. The actual processing is done by the
worker threads, which are constantly polling this queue for new fragments.

Parameters

fragment

Implements swrod::ROBFragmentConsumer.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

4.27 swrod::ROBFragmentConsumerBase Class Reference 55

4.27.4.3 void swrod::ROBFragmentConsumerBase::runStarted (const RunParams & run_params) [override],
[virtual]

Called when a new data taking session is started.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

56 CONTENTS

Parameters

in run_params The new run parameters.

Reimplemented from swrod::Component.

4.27.4.4 void swrod::ROBFragmentConsumerBase::runStopped () [override], [virtual]

Called when the current data taking session is terminated.

Reimplemented from swrod::Component.

The documentation for this class was generated from the following file:

• swrod/ROBFragmentConsumerBase.h

4.28 swrod::ROBFragmentProvider Class Reference

#include <ROBFragmentProvider.h>

Inheritance diagram for swrod::ROBFragmentProvider:

swrod::ROBFragmentProvider

swrod::ROBFragmentBuilder swrod::ROBFragmentConsumer

swrod::ROBFragmentBuilderBase swrod::ROBFragmentConsumerBase

Public Member Functions

• virtual void addConsumer (const std::shared_ptr< ROBFragmentConsumer > &consumer)
• virtual void forwardROBFragment (const std::shared_ptr< swrod::ROBFragment > &fragment)

Protected Attributes

• std::shared_ptr
< ROBFragmentConsumer > m_consumer

• std::function< void(const
std::shared_ptr
< swrod::ROBFragment > &)> m_function

4.28.1 Detailed Description

This class defines an interface for a supplier of ROB fragments and provides default implementation of this interface.
This implementation maintains a list of ROB fragment consumers by adding a new consumer to the end of the list.

4.28.2 Member Function Documentation

4.28.2.1 virtual void swrod::ROBFragmentProvider::addConsumer (const std::shared_ptr< ROBFragmentConsumer > &
consumer) [virtual]

Adds a new ROB Fragment Consumer to this provider. Default implementation adds the given consumer to the end
of the consumers list.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

4.29 swrod::ROBFragmentWorkerBase Class Reference 57

Parameters

in consumer A new ROB fragment consumer.

4.28.2.2 virtual void swrod::ROBFragmentProvider::forwardROBFragment (const std::shared_ptr< swrod::ROBFragment
> & fragment) [inline], [virtual]

Default implementation passes the given ROB fragment to the first consumer in the list.

Parameters

in fragment ROB fragment to be passed to the consumers.

The documentation for this class was generated from the following file:

• swrod/ROBFragmentProvider.h

4.29 swrod::ROBFragmentWorkerBase Class Reference

#include <ROBFragmentWorkerBase.h>

Inheritance diagram for swrod::ROBFragmentWorkerBase:

swrod::ROBFragmentWorkerBase

swrod::DataInputHandlerBase

swrod::DataInputHandler

swrod::Component

Public Member Functions

• ROBFragmentWorkerBase (const InputLinkVector &links, const boost::property_tree::ptree &config, const
Core &core, const std::shared_ptr< DataInput > &input, detail::InputCallback callback)

Protected Attributes

• const uint32_t m_ROB_id

• const uint32_t m_max_message_size

• CustomProcessingFramework::TriggerInfoExtractor m_trigger_info_extractor

• CustomProcessingFramework::DataIntegrityChecker m_data_integrity_checker

Additional Inherited Members

4.29.1 Detailed Description

This class provides a reusable basic implementation of a worker thread for a ROB fragment builder algorithm.
Deriving custom class from the ROBFragmentWorkerBase is a recommended way of implementing a worker thread
for a custom ROB fragment building algorithm.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

58 CONTENTS

4.29.2 Constructor & Destructor Documentation

4.29.2.1 swrod::ROBFragmentWorkerBase::ROBFragmentWorkerBase (const InputLinkVector & links, const
boost::property_tree::ptree & config, const Core & core, const std::shared_ptr< DataInput > & input,
detail::InputCallback callback) [inline]

Creates a new worker for the ROB fragment builder with the given configuration.

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

4.29 swrod::ROBFragmentWorkerBase Class Reference 59

Parameters

in links Input links to be used for receiving data
in config Configuration object that contains parameters for the corresponding fragment

builder (SwRodFragmentBuilder)
in core a reference to the swrod::Core object
in input the object to be used to subscribe for receiving data
in callback function to be called when new data arrive

The documentation for this class was generated from the following file:

• swrod/ROBFragmentWorkerBase.h

Generated on Fri Apr 30 2021 17:10:56 for SW ROD by Doxygen

	SW ROD
	Hierarchical Index
	Class Hierarchy

	Class Index
	Class List

	Class Documentation
	swrod::BadConfigurationException Class Reference
	Detailed Description

	swrod::Component Class Reference
	Detailed Description
	Member Function Documentation

	swrod::Core Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	swrod::CustomProcessingFramework Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	swrod::CustomProcessor Class Reference
	Detailed Description
	Member Function Documentation

	swrod::ROBFragment::DataBlock Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	swrod::DataInput Class Reference
	Detailed Description
	Member Function Documentation

	swrod::DataInputHandler Class Reference
	Detailed Description
	Member Function Documentation

	swrod::DataInputHandlerBase Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	swrod::Exception Class Reference
	Detailed Description

	swrod::Factory< Product > Class Template Reference
	Detailed Description

	swrod::helper::FragmentCollator Class Reference
	Detailed Description

	swrod::GetParameterException Class Reference
	Detailed Description

	swrod::ROBFragmentBuilderBase::hash_compare Struct Reference
	swrod::GBTChunk::Header Struct Reference
	Detailed Description

	swrod::IsUnique< T > Struct Template Reference
	swrod::IsUnique< L1AInputHandler > Struct Template Reference
	swrod::L1AInfo Struct Reference
	Detailed Description

	swrod::L1AInputHandler Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	swrod::ROBFragmentBuilderBase::L1ID Class Reference
	swrod::DataInputHandlerBase::Link Struct Reference
	Detailed Description

	swrod::Factory< Product >::Registrator Struct Reference
	Constructor & Destructor Documentation

	swrod::ROBFragment Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	swrod::ROBFragmentBuilder Class Reference
	Detailed Description
	Member Function Documentation

	swrod::ROBFragmentBuilderBase Class Reference
	Detailed Description
	Member Function Documentation

	swrod::ROBFragmentConsumer Class Reference
	Detailed Description
	Member Function Documentation

	swrod::ROBFragmentConsumerBase Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation

	swrod::ROBFragmentProvider Class Reference
	Detailed Description
	Member Function Documentation

	swrod::ROBFragmentWorkerBase Class Reference
	Detailed Description
	Constructor & Destructor Documentation

