
Description of Processor instance

The Processor implemented in the Processor.h and Processor.cxx files is an
abstract base class. It is intended to be derived into the DummyProcessor and
the HltpuProcessor classes. The former simulates processing. The later handles
connections with the real HLTPU processes.

The Processor class has been designed so that it implements the common business
logic. The Derived classes need only to implement the specific actions.

Data structure architecture

___________ _______
	1 N	
Processor	<------->	HLTPU
___________		_______

Processor is a class and HLTPU is a struct defined inside the Processor class.
The Processor class contains

• a state information
• references to the L1Source, DataCollector and EventBuilder instances
• some time points, statistics and histograms
• a vector of pointers to HLTPU strucs

There is one HLTPU struct instance per HLTPU instance. The HLTPU struct
contains

• the HLTPU name
• a time point (end of IDLE or PROCESSING time)
• the currently processed event
• some state information
• a pointer to the Processor instance

Execution logic

Processor state transition diagram

The Processor states match the run control states relatively closely. When
the run control requests a stop, the Processor states goes from Running to
Connected. The intermediate Reset transition allows faster stopping since the
EventBuilder can be stopped once the Processor is stopped.

1

| Processor instantiation
|

_____v_______
| |
| Unconnected |
|_____________|

| ^
Config | | Unconfig
______v__|_____

| |
| Connected |
|_______________|

| ^
| | (when all HLTPU are disconnected)
| ______|______
| | |

Start | | Resetting |
| |_____________|
| ^
| | Reset
| ______|______
	Stopped

^	
	(when no more events in the DCM)
____	____
	Stopping

^	
	Stop

__v_________|__
| |
| Running |
|_______________|

The state transitions is driven by the main routine following directives of the
run controller.

2

HLTPU state transition diagram

| |
| Initialized |
|_______________|

|
Attach HLTPU |

_______v_______
| |
| Idle |<-----------------+
|_______________| |

| |
event request | |

___________ _______v_______ ____________ |
Suspended	<-->	TryFetchL1R	-->	Terminated	
___________		_______________		____________	

| ^ ^ |
fetch L1R | | error | |

__v_________|__ | |
	Stop	
FetchingL1R	----------+	

______________ | |
		L1R fetched	
FetchingRobs	_______v_______		
______________	<-->		Reject

_________________ | Processing |----------------->|
	<-->	_______________	
FetchingAllRobs			
_________________		Accept or	

______________ | force accept |
FetchingRobs	_______v_______		
______________	<-->		

_________________ | Accepting | Forward event to |
| |<-->|_______________| event assembler |
| FetchingAllRobs | |__________________________|
|_________________|

HLTPU attachment will be rejected if the Processor is not in the Connected
or Running state, or if the maximum connected HLTPU is reached.

When an event is requested, the HLTPU may get into the Suspended state when
the Processor is not in the Running state, or if the backpressure quicked in.

3

The HLTPU leaves the Suspended state when the Processor is started, or the
backpressure is released.

When the Processor is requested to stop and the HLTPU is in the TryFetchL1R
or FetchingL1R states, the HLTPU is detached from the processor and goes
into the Terminated state.

Code architechture

The code is designed so that all the common business logic may be contained in
the Processor class. The DummyProcessor and HltpuProcessor contains only
their specific tasks.

HLTPU struct creation

When an HLTPU struct is created, it is in the Initialized state. The Dum-
myProcessor will automatically create the required number of HLTPU structs
when the Processor starts. The HltpuProcessor will create the structs when a
HLTPU process connects to the DCM.

An attempt to attach the HLTPU is then performed. It will be rejected if the
Processor is not in the Connected or Running state, or if the maximum number
of connected HLTPU has already been reached.

If it succeed, the method setStateIdle() is called.

setStateIdle()

This method moves the HLTPU into the Idle state. The method is abstract
because the DummayProcessor and the HltpuProcessor do different operations.

The DummyProcessor does nothing beside changing the state and directly calls
tryFetchL1R(). The HltpuProcessor starts waiting for an event request mes-
sage from the HLTPU Processor. When this message is received, tryFetchL1R()
is called.

tryFetchL1R()

The action of this method will depend on the state of the Processor.

If the Processor state is Connected, the HLTPU process connected and issued
an event request before the Processor was started. The HLTPU is then put
into Suspended state.

If the Processor state is Stopping or Stopped, the method noMoreEvents() is
called. It notifies the HLTPU process that it must terminate.

4

If the state is Running, the action will depend on the backpressure. If the
backpressure is active, the HLTPU will be put into Suspended state. Otherwise
the fetchL1R() is called. The backpressure is active when the number of events
accepted and not yet sent out yet is equal or above a maximum limit.

This method is not allowed to be called in any other Processor state. An assert
failure will be trggered in that case.

unsuspendAllHltpu()

This method calls tryFetchL1R() for all suspended Hltpu. It is called
when the Processor is started or stopped, or when the deletion of an event
(finalizeEvent()) releases the backpressure.

fetchL1R()

This method sets the HLTPU state into FetchingL1R, creates the event instance
and forwards the call to the L1Source. On completion, the callback method
onFetchL1R() or onFetchL1RError() is called.

onFetchL1R()

Callback called when a L1R is received from the HLTSV. The Hltpu state changes
to Processing and the Hltpu is initialized for the event processing. Some stats
is updated and time point are stored to compute processing time.

If the event was reassigned by the HLTSV, or some invalid data is detected it is
forced accepted, otherwise the method processL1R() is called.

processL1R()

This method is abstract because the DummyProcessor and HltpuProcessor have
a specific implementation. At this stage, the Hltpu is in the Processing state
depicted in the state diagram above.

The DummyProcessor calls a method that will simulate a level 2 processing
(prior gathering all robs). It will requests some robs by calling fetchRobs().

The HltpuProcessor forwards the L1R to the HLTPU process and waits for
a message from the HLTPU. When the fetchRobs message is received, the
method fetchRobs() is called. When the accept message is received, some
checking is performed. Is something bogus is detected, forceAccept() is called.
Otherwise the accept() method is called. When the reject message is received,
the reject() method is called.

5

onFetchRobs()

Callback method called when fetching robs is completed. This method may be
called in multiple conditions.

• while a forceAccept is in progress that requested to fetch all Robs. In this
case we call finalizeForecAccept().

• while an event is accepted and requires to fetch some Robs. The method
finalizeAccept() is called and setStateIdle() after it to close the state
transision loop.

• while an event is processed and robs where requested. The overriden
method processRobs() is then called.

processRobs()

This method is called when the event is processed. It is overriden by the
DummyProcessor and the HltpuProcessor to implement specific behavior.

The DummyProcessor will simulate processing of a random duration and ran-
domly chose between requesting more robs, requesting all robs, accepting or
rejecting the event. It will call the corresponding fetchRobs(), accept() or
reject() method.

reject()

This method will call in sequerce the finalizeProcessing(), the
finalizeEvent(), and the setStateIdle() methods. The later will
close the loop of state transitions.

finalizeProcessing()

This method simply update stats and histograms. It is also called when accepting
an event is completed.

finalizeEvent()

This method updates histograms and stats. It will call unsuspedAllHltpu()
when the backpressure is released. It deletes the event object and calls
tryFinalizeStop() to update the stopping satus if required.

tryFinalizeStop()

If the Processor is Stopping and we just deleted that last processed even, we
change he state of the Processor into the Stopped state.

6

accept()

This method performs some checking on the event and calls forceAccept() if a
problem is detected. It then checks if robs are missing and it should fetch all
robs in witch case it calls fetchAllRobs(), or anly a suaset of robs need to be
fetched in which case it calls fetchRobs(). If no robs need to be fetched, it calls
in sequence the finalizeAccept() and setStateIdle() methods.

7

	Description of Processor instance
	Data structure architecture
	Execution logic
	Processor state transition diagram
	HLTPU state transition diagram
	Code architechture

