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Abstract—Peak shaving applications provided by energy stor-
age systems enhance the utilization of existing grid infrastructure
to accommodate the increased penetration of renewable energy
sources. This work investigates the provision of peak shaving
services from a flywheel energy storage system installed in a
transformer substation. A lexicographic optimization scheme is
formulated to define the flywheel power set-points by minimizing
the transformer power limit violations and the flywheel energy
losses. Convex functions that represent the flywheel power losses
and its maximum power are derived and integrated in the
proposed scheme. A two-level hierarchical control framework
is introduced to operate the transformer-flywheel-system in a
way that handles prediction errors and modelling inaccuracies.
At the higher level, a model predictive controller is developed
that solves the lexicographic optimization scheme using linear
programming. At the lower-level, a secondary controller corrects
the power set-points of the model predictive controller using real-
time measurements. A software platform has been developed for
integrating the proposed controllers in an experimental setup
to test their effectiveness in a realistic testbed setting, and
the flywheel system characteristics are experimentally identified.
Simulation and experimental results validate and verify the
modelling, identification, control and operation of a real flywheel
system for peak shaving services.

Index Terms—Active distribution grids, FIWARE, flywheel en-
ergy storage system, lexicographic optimization, model predictive
control, peak shaving services, secondary control.

I. INTRODUCTION

THE increasing penetration of Photovoltaic (PV) genera-
tion into the distribution grid along with the load demand

growth can cause reverse and direct power flow violations in
distribution transformers. As a result, the distribution grids
can operate outside of their safely limits, particularly in cases
with extensive integration of PVs and electric vehicle charging
stations. Nevertheless, the safe and reliable operation of dis-
tribution grids can be maintained by energy storage systems
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(ESSs) that provide peak shaving services [1]. ESSs enhance
the capacity of existing distribution grids to accommodate
the load and PV generation growth in order to avoid any
violations of the maximum power limit of the distribution
transformers [2]. Towards this direction, this work develops
an energy management and control scheme for a flywheel
energy storage system (FESS) to provide peak shaving services
to the distribution grid. Among the different types of ESSs,
FESSs are suitable for applications that require short-time
power quality services and peak-load regulation, since they
are characterized by full depth discharge capability, 85-90%
efficiency rate, very long lifetime, environmental friendliness,
lower maintenance cost and high charging-discharging abilities
compared to battery energy storage systems (BESS) [3].

Peak shaving applications are investigated in [4]-[5] for
planning purposes, to examine the location, sizing and cost-
benefit of the ESSs. In addition, peak shaving services pro-
vided to distribution grids using BESSs are proposed in [6]-
[11] for operational purposes using optimization methods.
These services are provided by minimizing the daily peak
power [6]-[9] or the square of the power drawn from the
feeder [10]. Also, in [8] and [9] predicted load uncertain-
ties are addressed using stochastic formulations. Note that
weighted multi-objective functions are used in [8]-[10] where
a first objective is associated with peak shaving and a sec-
ond objective with the health and longevity of a BESS. In
these formulations, an improvement in the first objective can
deteriorate the second objective; however, the optimal trade-
off between the conflicting objectives has not been considered.
The BESS health objective can be ignored when using a FESS,
because FESSs have very high number of cycles and high
charging/discharging rate.

A peak shaving application using a FESS is presented in
[12] to reduce the maximum power demand of shore-to-ship
cranes. Power smoothing applications in wind power plants
using FESSs are presented in [13]-[14]. These are short-
time applications that smooth the power injected to the grid
and compensate power disturbances. Note that FESSs are not
suitable for long term energy storage because they suffer from
high standby losses, as the self-discharge can reach 20% per
hour [3]. However, hybrid wind-FESS energy management
schemes are presented in [15]-[16] to compensate the main
drawback of the FESSs by formulating optimization schemes
that minimize the FESS standby losses. Specifically, a model
predictive controller and a secondary real-time controller are
used in [16], to shift the surplus wind energy and to com-
pensate the wind-power prediction error. The aforementioned
works control a FESS using models that are dependent on
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technical characteristics such as the angular speed and the
stator current and voltage. Nevertheless, these characteristics
are not always available through commercial FESS interfaces.
The available measurements in commercial interfaces are the
State-of-Charge (SoC) and the instant charging/discharging
rate, while users can command the FESS to maintain a
constant charging/discharging power or SoC. In addition, the
associated FESS models can lead to non-convex optimization
problems which are challenging to solve [15].

This work aims to eliminate the power violations of a
distribution transformer using a FESS and minimize the FESS
power losses for a cost-effective operation of the distribution
grid. A novel lexicographic optimization scheme is formu-
lated that derives the FESS power set-points to minimize
the transformer power limit violations and the FESS energy
losses. Functions that represent the power losses and maximum
power of a FESS are derived and integrated in the proposed
scheme. In detail, two linear functions that model the FESS
power losses based on the charging mode are derived as a
function of the charging/discharging power and the SoC. Also,
a nonlinear function is derived to associate the FESS maximum
charging/discharging power with the SoC due to the rated
current limit imposed by the power electronics converter.

A two-level hierarchical control scheme is proposed that
minimizes the objectives of the lexicographic optimization
problem and deals with demand prediction errors and mod-
elling uncertainties. At the higher-level, a model predictive
controller is developed that handles the considered problem by
sequentially solving four linear optimization problems. At the
lower-level, a secondary controller corrects the control signals
using real-time measurements at a shorter time-scale.

The proposed hierarchical control scheme is integrated and
validated in an experimental setup. Towards this direction, a
software platform based on FIWARE [17] has been developed
that enables the monitoring and control of a flywheel system
in a smart grid environment. Model validation and parameter
identification is experimentally performed for the prototype
FESS, indicating the high accuracy of the derived functions
to estimate the FESS power losses and maximum power.
In addition, simulation and experimental results validate the
effectiveness of the proposed energy management and control
scheme to provide peak shaving services, enabling the active
management of smart distribution grids. In summary, this work
has four main contributions.

1) FESS power losses and maximum power functions are
constructed to be dependent on parameters that are readily
available through commercial FESS interfaces (charg-
ing/discharging power and SoC). Moreover, the derived
FESS functions are modelled with convex constraints that
enable the formulation of convex optimization problems.

2) The derived FESS functions are used to develop a new
optimization formulation for the peak-shaving problem
that minimizes the transformer power limit violations and
FESS power losses in a lexicographic fashion.

3) A two-level hierarchical control scheme is developed to
solve the peak-shaving problem fast and reliably, while
handling prediction errors and modelling inaccuracies.

4) A software platform is developed for managing smart grid

configurations and utilized for the integration of a proto-
type FESS system into a smart-grid testbed used for the
experimental evaluation of the proposed control scheme.
In addition, model validation and parameter identification
is experimentally performed for the prototype FESS.

The remainder of this paper is organized as follows. Section
II explains the concept of lexicographic optimization. Section
III states the problem and Section IV models the maximum
power and power losses of a FESS. The two-level hierarchical
solution methodology is then described in Section V. The
proposed solution methodology is evaluated both in simula-
tion and experimentally in Sections VI and VII, respectively.
Finally, Section IX concludes the paper.

II. PRELIMINARIES - LEXICOGRAPHIC OPTIMIZATION

In lexicographic optimization L objective functions, ψl(x)
l = 1, ..., L, are to be optimized on a feasible set x ∈ X
in a lexicographic order such that ψl(x) has higher priority
than ψl+1(x) [18]. This means that low priority objectives
are optimized as far as they do not affect the optimization
of higher priority objectives. Let us denote the L-objective
lexicographic optimization problem by

lexmin {ψ1(x), ψ2(x), ..., ψL(x)} (1)
s.t. x ∈ X .

Optimizing problem (1) requires the solution of L optimization
subproblems with the l-th one defined as

min ψl(x) (2)
s.t. ψm(x) ≤ ψm(x∗m), m = 1, ..., l − 1, (3)

x ∈ X ,

where x∗m denotes the optimal solution of the m-th subprob-
lem. Then, the optimal solution to problem (1) is x∗L.

III. PROBLEM STATEMENT

This work considers the provision of peak shaving services
to a medium voltage/low voltage (MV/LV) transformer sub-
station. At the LV side, the substation bus with an installed
FESS is connected to an LV distribution grid with consumer
and PV installations, as illustrated in Fig. 1. Peak shaving is
achieved by managing the FESS power set-points to minimize
in a lexicographic fashion: (i) the transformer peak power
violation, (ii) the transformer energy violation, (iii) the SoC
energy violations to sustain a minimum desirable SoC in
the FESS and (iv) the FESS power losses. The considered
problem, denoted by PLEX , is given by

lexmin
{
fV (x), fE(x), fU (w), fL(PL)

}
(PLEX) (4a)

s.t. PF − xt ≤ PFt ≤ P
F

+ xt, ∀t ∈ T , (4b)

CSt + wt ≥ Cdt , ∀t ∈ T , (4c)

PFt + PSt = DA
t , ∀t ∈ T , (4d)

CSt+1 = CSt + ∆T (−PSt − PLt ), ∀t ∈ T , (4e)

CS0 = Ic, 0 ≤ CSt ≤ C
S
, ∀t ∈ T , (4f)

PS ≤ PSt ≤ P
S
, ∀t ∈ T , (4g)

|PSt | ≤ g(CSt ), ∀t ∈ T , (4h)

PLt ≥ h(CSt , P
S
t ), ∀t ∈ T , (4i)
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Fig. 1. Peak shaving services to a LV distribution grid.

where T = {1, ..., T/∆T}, T is the time-horizon and ∆T is
the time-step duration considered.

In problem PLEX , variable PFt denote the transformer
power, PSt the FESS charging (negative values) and discharg-
ing power (positive values), PLt the FESS power losses, xt
the transformer maximum power violation, while CSt and
wt denote the SoC and the SoC energy violation of the
FESS at time t, respectively. PL, x and w are vector forms
of PLt , xt and wt, ∀t ∈ T , respectively; for example,
x = [x1, ..., xt, ..., xT ]. Parameters PF [P

F
] and PS [P

S
]

denote the minimum [maximum] transformer and FESS power,
respectively, C

S
the maximum SoC, while Ic denotes the

initial FESS state. Parameter DA
t is the actual net load demand

of the LV grid defined as

DA
t = DP

t + ξt, ∀t ∈ T , (5)

where DP
t is the predicted net load of the LV grid and ξt is

the prediction error at time-step t. DA
t is generally unknown;

hence, the predicted load is used in practical applications.
The first objective of PLEX is to minimize a function

fV (x) of transformer maximum power violations, while the
second objective, fE(x), is to minimize the transformer energy
violations. To achieve this, soft constraint (4b) is introduced
to restrain the transformer power within its limit; variables xt
obtain non-zero values when transformer power limit viola-
tions are unavoidable. The third objective is to minimize the
SoC energy violations, fU (w), to sustain a minimum desirable
SoC in the FESS, Cdt , according to soft constraint (4c). This
minimum SoC of the FESS is used in Section V to address the
transformer power limit violations that are caused by the load
demand uncertainty. The fourth objective is to minimize the
FESS power losses fL(PL). Note that low priority objectives
are optimized as far as they do not affect the optimal solution
of higher priority objectives. In Section V, the four objectives
are mathematically defined and the reasons for the selected
lexicographic order are explained.

In addition to constraints (4b) and (4c) which relate to
the objectives of PLEX , the problem includes six more
constraints. The power balance equation (4d) aims to se-
lect the FESS charging/discharging power to compensate for
load demand exceeding the transformer maximum power to
avoid transformer power limit violations. The FESS SoC
dynamic state equations are defined in (4e) - (4f) and the
charging/discharging power limits in (4g). Eq. (4e) takes into
consideration the FESS power losses defined in (4i). Finally,
Eq. (4h) restricts the maximum charging/discharging power as
a function of the SoC.

Problem PLEX is convex when functions fV (x), fE(x),
fU (w), fL(PL) and h(CSt , P

S
t ) are convex and function

g(CSt ) is concave. Section IV details the modelling and
derivation of standard-form convex expressions of the FESS
functions g(CSt ) and h(CSt , P

S
t ) that appear in Eqs. (4h)

and (4i), respectively. Then, Section V proposes a two-level
hierarchical control scheme to handle Problem PLEX under
demand uncertainty.

IV. FESS MODELLING

A. FESS Power Losses
A FESS is a kinetic energy storage technology composed

of mechanical components, an electrical machine and a power
converter. The stored energy in kinetic form is given by

CS(t) = 0.5Jω2
r(t), ∀t ∈ T , ⇒ CS ∼ ω2

r , (6)

where J is the moment of inertia and ωr is the angular
speed [3]. Notice that the stored energy is analogous to
ω2
r . Power losses occur at all components depending on the

operational condition of a FESS. Specifically, windage and
bearing friction losses occur in the mechanical components;
hysteresis losses, eddy currents and copper losses occur in
the electrical machine; conduction and switching losses occur
in the power electronics converter [19]. The windage and
eddy currents losses are proportional to ω2

r ; while bearing and
hysteresis losses are proportional to ωr [19]. Therefore, the
power losses in a FESS are usually described by polynomial
functions of ωr, such as c1ω2

r [20], and c1ω
2
r + c2ωr [15]-

[16], [19], where c1 and c2 are constants. A more accurate
representation considers different FESS power losses functions
for the charging and discharging modes [21].

In this work, two linear functions are proposed to represent
the FESS power losses based on the charging mode. The power
losses of each mode are described by a linear function of the
charging/discharging power and the SoC as shown in Table
I. In Eqs. (7b) and (7c), P dt and P ct denote the power losses
of the discharging and charging mode, respectively, while b̂c,
b̂d, ĉc and ĉd are positive constants depended on the FESS
structure and characteristics. In the proposed representation,
term CS corresponds to ω2

r according to (6); thus, the terms
ĉdCSt and ĉcCSt represent the polynomial term c1ω

2
r . Note that

c1ω
2
r is the dominant power losses term of the polynomial

function c1ω
2
r + c2ωr, especially at high speeds and with

reduced bearing friction losses (since low-friction magnetic
bearings are typically used in flywheel applications) [19],
[22]-[23]. In addition, the terms b̂dPSt and b̂dPSt consider
the FESS power losses for the charging and discharging
modes. Logical constraints in (7a) and (7d) are introduced to
select the appropriate function based on the charging mode.
The power losses parameters in Eqs. (7b) - (7c) can be
experimentally estimated for any real FESS system using the
proposed methodology presented in Section VII-B. Moreover,
when the round-trip efficiency, er, and the standby losses per
hour, ls, of a commercial FESS are given by the manufacturer
datasheet, e.g, er = 85% and ls = 20% [3], then the FESS
power losses can be represented using Eqs. (7b) - (7c) by
setting b̂c=b̂d=(100%− er)/2 and ĉc=ĉd=ls.

Incorporating Eqs. (7a) - (7d) into Problem PLEX leads to
non-convex optimization formulations due to the presence of
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TABLE I
FESS POWER LOSSES AND FESS MAXIMUM POWER LIMIT

Derived Constraints

PL
t = δP d

t + (1− δt)P c
t (7a)

P d
t = b̂dPS

t + ĉdCS
t (7b)

P c
t = −b̂cPS

t + ĉcCS
t (7c)

δt =

{
1, PS

t ≥ 0

0, PS
t < 0

(7d)

|PS
t | ≤ α̂+ β̂

√
CS

t (7e)

Convex Affine Constraints

PL
t ≥ b̂dPS

t + ĉdCS
t , ∀t ∈ T

(8a)

PL
t ≥ −b̂cPS

t + ĉcCS
t , ∀t ∈ T

(8b)

PS
t ≤ αi + βiC

S
t , ∀t,∀i ∈ N

(8c)

PS
t ≥ −αi − βiCS

t , ∀t, ∀i ∈ N
(8d)

binary variables. To avoid this issue, notice that when PSt ≥ 0
it is true that P dt ≥ P ct since b̂c, b̂d, ĉc, ĉd and CSt are positive;
conversely, when PSt ≤ 0 it is true that P ct ≥ P dt . These
imply that h(CSt , P

S
t ) = max{P dt , P ct }. Hence, constraint

(4i) is convex and can be equivalently represented by affine
constraints (8a) and (8b). Constraints (8a) and (8b) are binding
when PSt ≥ 0 and PSt ≤ 0, respectively.

The derived functions of the FESS power losses enable:
1) Accurate approximation of the FESS losses, capturing the

dominant losses term c1ω
2
r and the power losses from

the charging/discharging modes. The high accuracy of the
approximated FESS losses is experimentally validated for
a real prototype FESS in Section VII-B.

2) Easy integration of commercial FESSs in practical appli-
cations because the FESS power losses are dependent on
the SoC and charging/discharging power, independent of
ωr and J , which are readily available through a FESS
interface.

3) Effective incorporation into mathematical programs as
linear constraints that can be efficiently handled by ap-
propriate optimization tools.

B. FESS Maximum Power

Constraint (7e) aims to restrict the maximum charg-
ing/discharging power through function g(CSt ). The depen-
dence on CSt is explained below. The maximum charg-
ing/discharging power of a FESS system depends on the
rated current limit (Î) of the machine side power electronics
converter. For given Î , the rated converter power P̂ is directly
related to the stator voltage V of the FESS electrical machine
[24], and expressed as

P̂ (t) = 3V (t)Î , ∀t ∈ T , ⇒ P̂ ∼ V. (9)

In permanent magnet synchronous machines (widely used in
FESS applications), the stator voltage is directly related to the
angular speed, given a constant magnetic flux, and given by

V (t) = KΦωr(t), ∀t ∈ T , ⇒ V ∼ ωr, (10)

where K is a machine constant and Φ is the magnetic flux.
Thus, V is directly related to ωr such that P̂ ∼ ωr [25].
Since CS ∼ ω2

r , according to Eq. (6), it can be concluded
that the maximum power is directly related to the square
root of the SoC, i.e, P̂ ∼

√
CS . Hence, we consider that

g(CSt ) = α̂ + β̂
√
CSt , where α̂ and β̂ are positive constants,

such that the maximum FESS power is constrained by (7e).
The constants α̂ and β̂ can be identified using linear regression
either directly based on the maximum power curve provided

in the FESS datasheet, or indirectly through measurements ob-
tained from the FESS interface as presented in Section VII-B.
Function g(CSt ) is monotonically increasing and concave, such
that Eq. (7e) is convex. To avoid the introduction of general
convex constraints in Problem PLEX , a piecewise linear
approximation with N segments is constructed for g(CSt ). Let
the i-th linear segment be αi + βiC

S
t , ∀i ∈ N = {1, ..., N}.

Then, the affine constraints (8c)-(8d) provide the maximum
values for |PSt |.

V. SOLUTION METHODOLOGY

This section presents the proposed methodology for the
solution of the peak shaving problem under demand prediction
errors, described in Section III.

A. Control Architecture

To deal with demand prediction errors, a two-level hier-
archical control architecture is proposed, as shown in Fig.
2. At the higher level, a model predictive controller (tertiary
level control) optimizes the FESS power set-points, PSt , over
a moving time horizon, T , based on the transformer predicted
net load demand, DP

t , and the measured FESS SoC, Ic. At
the lower level, a secondary controller (SC) compensates the
net load prediction error by revising the FESS set-points at
a shorter time-scale. A primary controller is embedded in the
FESS (in the plant) that drives the power converters to regulate
FESS operation in real time.

The time sequence of events of the considered control
architecture is depicted in Fig. 3. The MPC control step
duration is set to TMPC. Measurements are collected every
Tm time-units for system monitoring and used as input to the
controllers. The MPC controller solves Problem PLEX , using
the latest SoC measurement, at the end of every MPC control-
step, aiming to define the next FESS power set-point. The SC
controller updates the MPC-defined FESS set-point every TSC
time-units using the latest load measurement.

In multi-level control architectures, the inner loop needs to
be significantly faster than the outer loop, TMPC > TSC, to de-
couple the dynamics between the two controllers. In addition,
the maximum execution time needed for the solution of the
MPC problem, Tex, should be smaller than the MPC control-
step such that TMPC > Tex. For monitoring both the dynamic
and steady state operation of the FESS, measurements with
higher sampling rate are required, yielding Tm < TSC < TMPC.

B. Model Predictive Controller

The MPC controller elaborates on the definition of Problem
PLEX to define a convex lexicographic optimization problem
with four objectives. The first and second objectives mini-
mize the transformer maximum power and energy violations,
respectively, based on the predicted load. The third objective
aims to sustain a minimum desirable SoC in the FESS that can
be used by the SC controller to compensate the transformer
power violations due to the load uncertainty. Therefore, the
third objective minimizes the SoC energy violations. The
fourth objective minimizes the FESS energy losses. This
lexicographic order gives first priority to the transformer
safety; thus, the first and second objectives minimize the
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Fig. 2. Hierarchical level control architecture.
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Tm  . TMPC Tex
Fig. 3. Time sequence of events in each cycle of the MPC framework.

“expected” violations. The third objective aims to address
“unexpected” violations. Last, the cost-effective operation is
achieved by minimizing the FESS losses. According to the
general principles of lexicographic optimization outlined in
Section II, the 4-objective Problem PLEX can be solved by
sequentially solving four single-objective problems, PV , PE ,
PU and PL, associated with objectives fV (x), fE(x), fU (w)
and fL(PL), respectively.

Problem PV aims to eliminate the transformer power limit
violations by minimizing the peak power violation of the trans-
former defined as fV (x) = maxt∈T . Towards this direction,
Problem PV is defined as:

min fV (x) = max
t∈T
{xt} (PV ) (11a)

s.t. Constraints (4b), (4e)-(4g), (8a)-(8d), (11b)

PFt + PSt = DP
t , ∀t ∈ T . (11c)

Eq. (11c) has been used instead of (4d) because the ac-
tual demand is unknown. Problem PV can be converted
into a linear program by transforming the objective as:
{minimize z, s.t. 0 ≤ xt ≤ z, ∀t ∈ T }.

Let xVt denote the optimal values of xt, ∀t ∈ T , derived
from the solution of Problem PV . Then, Problem PE aims
to minimize the total energy violations of the transformer
yielding the formulation

min fE(x) =
∑
t∈T

xt∆T (PE) (12a)

s.t. Constraints (4b), (4e)-(4g), (8a)-(8d), (11c), (12b)

0 ≤ xt ≤ max
t∈T

{
xVt
}
, ∀t ∈ T . (12c)

Note that there is no need to solve Problem PE when
maxt∈T

{
xVt
}

= 0 because there are no transformer power
limit violations. Simulation results in Section VI-A indicate
that the combination of the first and second objectives, fV (x)
and fE(x), in this lexicographic order provides better results
compared to the case that only one objective is used.

Problem PU aims to handle demand prediction uncertainty
by minimizing the SoC energy violations, wt, to sustain a

Fig. 4. Minimum Desirable FESS SoC as a function of the predicted demand.

minimum desirable SoC, Cdt , according to Eq. (4c). Parameter
Cdt is a function of the predicted demand, DP

t , that aims
to maintain enough stored energy in the FESS when the
transformer operates close to its maximum limit. This amount
of stored energy can be utilized by the SC controller to
prevent direct power flow violations due to demand prediction
uncertainty. We define Cdt as

Cdt =


0, if DP

t ≤ ηP
F
,

µ

(1−η)PF (DP
t − ηP

F
), if ηP

F ≤ DP
t ≤ P

F
,

µ, otherwise.
(13)

Notice that Cdt = 0 when the predicted demand is small,
DP
t ≤ ηP

F
, to avoid unnecessary FESS energy losses; further

increase of the predicted demand increases linearly Cdt , until
a maximum value µ is reached. The specific definition of Cdt
creates a desirable region of the FESS SoC, as shown in Fig.
4. Hence, Problem PU aims to manage demand prediction
uncertainty by minimizing the total SoC energy violations,
yielding the formulation:

min fU (w) =
∑
t∈T

wt∆T (PU ) (14a)

s.t. Constraints (4b)-(4c), (4e)-(4g), (14b)
(8a)-(8d), (11c), (14c)

0 ≤ xt ≤ xEt , ∀t ∈ T . (14d)

In Problem PU , xEt denotes the optimal values of variables
xt, ∀t ∈ T obtained from the solution of Problem PE .

Finally, Problem PL aims to achieve economic efficiency for
the FESS by minimizing its total energy losses while ensuring
minimum transformer power violations and minimum total
SoC energy violations:

min fL(PL) =
∑
t∈T

PLt ∆T (PL) (15a)

s.t. Constraints (4b)-(4c), (4e)-(4g), (15b)
(8a)-(8d), (11c), (14d), (15c)
0 ≤ wt ≤ w∗t , ∀t ∈ T . (15d)

In Problem PL, w∗t denotes the optimal values of variables wt,
∀t ∈ T obtained from the solution of Problem PU .

In sum, every TMPC the MPC controller sequentially solves
Problems PV , PE , PU , and PL. All four problems can be fast
and reliably solved using linear programming.
C. Secondary Controller

Algorithm 1 describes the operation of the SC controller
that compensates the transformer power limit violations by
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Algorithm 1 : FESS power set-point correction every 30 s
1: Input: PS , PF and D̂A.
2: if (D̂A − PS) > max(PF , P

F
) then

3: Set PR = D̂A −max(PF , P
F

);
4: else if (D̂A − PS) < min(PF , PF ) then
5: Set PR = D̂A −min(PF , PF );
6: else
7: Set PR = PS ;
8: end if
9: Output: PR.

handling the load uncertainty. This controller takes as input the
FESS power set point, PS , and transformer operating power,
PF , predicted from the MPC controller for the current 3-
minute time cycle, as well as the latest measurement of the
actual net load D̂A. The aim of the SC controller is to operate
the transformer between the minimum and maximum permissi-
ble power points defined as min(PF , PF ) and max(PF , P

F
),

respectively. Hence, the SC controller provides a revised FESS
power set-point PR every TSC s by considering three cases:

1) The transformer is set to operate at the maximum per-
missible point if this point is violated considering the
MPC-based set-points and the latest measured net load
(Lines 2-3).

2) The transformer is set to operate at the minimum permis-
sible point if this point is violated (Lines 4-5).

3) Otherwise, the FESS power set-point remains unaltered
(Lines 6-7).

Note that the FESS power and energy limits are ensured by
the embedded primary controller in the real FESS. In the
simulations, the power and energy limits are ensured in the
Plant by projecting1 parameter PR to its feasible set defined
by Eqs. (4e) - (4g) and (7e).

VI. SIMULATION RESULTS

The simulation setup is comprised of a FESS installed in
a transformer substation with direct and reverse power flow
limits of 500 kW and −200 kW, respectively. For comparison
purposes two FESSs are considered:
• The scaled-up prototype FESS is a 100-times scaled-

up version of a real prototype FESS2. The scaled-up
prototype FESS has a rated capacity of 185 kWh and
600 kW charging/discharging power. Its power losses and
maximum power coefficients are b̂c = 0.106, ĉc = 0.394,
b̂d = 0.223, ĉd = 0.419, α̂ = 0.172 and β̂ = 0.622. These
coefficients correspond to the ones identified experimen-
tally for the real prototype FESS in Section VII-B.

• The commercial FESS has the same rated capacity and
maximum charging/discharging power with the scaled-up
prototype FESS. Its power losses and maximum power
coefficients are b̂d = b̂c = 0.075, ĉd = ĉc = 0.2, α̂ =
0.172 and β̂ = 0.622. These power losses coefficients

1The projection of point x0 on a set C, is defined as the point xP ∈ C
that is closest to x0 according to some distance metric ‖ • ‖, i.e., xP =
argmin{‖x− x0‖ |x ∈ C}. For example, the projection of x1 on the set
[x, x] is simply xP = max(x,min(x, x1)) [26].

2The real prototype FESS is employed in Section VII for experimental
validation.

correspond to 85% round-trip efficiency and 20% standby
losses per hour [3].

Unless otherwise stated, N = 10 segments are used for the
piecewise linear approximation of the FESS maximum power
of both FESSs, according to Eqs. (8c) - (8d).

Section VI-A investigates the performance of the proposed
methodology in two 6-hour scenarios, T = 6 hours, where
Scenario 1 has no uncertainty, while Scenario 2 has model and
net load demand uncertainty. Section VI-B provides aggregate
results on the capability of the proposed controllers to provide
peak shaving services under net load demand uncertainty,
using historical data from a real distribution grid. The time-
horizon is set to T = 24 hours. The timing parameters of
the control architecture for both sections are set to: ∆T = 3
min, TMPC = 3 min, TSC = 30 s, Tm = 5 s, and Tex = 10
s. The solution of Problem PLEX takes place in the interval
[165, 175] s of each MPC control-step. The allowed 10-second
interval for the solution of the MPC Problem PLEX is more
than enough, as Problems PV , PE , PU , and PL are medium-
scale linear programs. These problems are solved using Gurobi
[27]. Note that the predicted demand is usually available for
15-minute time intervals [6]; however, this work considers
∆T = TMPC = 3 min to provide updated control actions
in shorter times, because the model uncertainty and the SC
operation can affect the FESS SoC.

A. Performance Evaluation - Synthetic Data

Scenario 1: This scenario investigates the capability of the
proposed MPC controller to provide peak shaving services to
the distribution grid. Because there is no uncertainty, the SC
controller is not utilized in this scenario. Therefore, the control
actions of the MPC controller are passed directly to the Plant,
without revision by the SC controller (see Fig. 2). Regarding
the minimum desirable SoC, it is set that µ = 15% and η =
70%.

Fig. 5(a) presents the net load demand and the transformer
operation using the two FESSs. To induce reverse and direct
power violations, the net load is selected to have excessive PV
generation and low load demand during noon and the opposite
during afternoon hours. The results illustrate that the MPC
controller successfully shaves the power peaks to maintain
operation within safety limits. In detail, the reverse power
violations, observed during [0.5 h, 1.25 h], are eliminated by
charging the two FESSs from the excess PV production, as can
be seen in Fig. 5(b). Notice in Fig. 5(c) that the surplus energy
stored and re-injected into the grid is larger for the commercial
FESS because it has lower standby losses compared to the
prototype FESS. Due to the standby losses, the stored energy
during [0.5 h, 1.25 h] is not maintained to address direct power
violations, observed during [4.75 h, 6 h]. However, direct
power violations are eliminated by charging the two FESSs
from the grid prior to the violation period and reusing the
stored energy to satisfy the excess load demand. As expected,
the SoC at T = 6 h is 15% due to the minimum desirable
SoC.

We further consider a case where the transformer maximum
limit is reduced from 500 to 470 kW such that the safety limits
cannot be satisfied, considering only the scaled-up prototype
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Fig. 5. Power scheduling using the scaled-up prototype and the commercial
FESS: (a) Predicted net load demand and transformer power using the two
FESSs, (b) FESS power set-points of the MPC controller, and (c) Stored
energy in the prototype and commercial FESS.

Fig. 6. Transformer energy violations for different number of segments, N ,
when the scaling factor γ is equal to 100%, 70%, 50% and 30%.

TABLE II
OBJECTIVES EFFECTIVENESS IN MINIMIZING POWER VIOLATIONS

Objectives Peak power violation Total energy violations

MinMax 4.1 kW 18.8 kWh
MinEnergy 85.1 kW 5.4 kWh

Lexicographic 4.1 kW 8.3 kWh

FESS. Table II presents the transformer peak violations and
total energy violations under three objectives:

1) MinMax minimizes the transformer peak power violation
as defined in Eq (11a).

2) MinEnergy minimizes the total energy violations as de-
fined in Eq (12a).

3) Lexicographic combines the above two objectives and is
defined as lexmin{fV (x), fE(x)}.

From the results is it evident that the Lexicographic objective
is the best as it achieves the smallest possible peak violation

Fig. 7. Power scheduling using the scaled-up prototype FESS under un-
certainty: (a) Actual and predicted net load demand, (b) Actual (Plant) and
predicted (MPC) transformer power, (c) FESS power set-points of the MPC
and SC controllers, and (d) Stored energy in the FESS.

(4.1 kW or 0.8% overloading) with only a small increase in
the transformer total energy violations (2.9 kWh).

The Lexicographic objective is also used to investigate the
impact of the piecewise linear approximation of Eq. (7e) on the
total energy violations when the transformer maximum limit is
470 kW. As shown by the solid orange line of Fig. 6, there is
no impact of N on the total energy violations under the FESS
maximum power is 600 kW (γ = 100%). For this reason, we
re-scale the FESS maximum power limits in Eqs. (4g) and
(7e) by a scaling factor γ, yielding the new constraints

γPS ≤ PSt ≤ γP
S
, ∀t ∈ T ,

|PSt | ≤ γ(α̂+ β̂
√
CSt ), ∀t ∈ T ,

and examine the performance for γ = {70%, 50%, 30%}. In-
terestingly, the energy violations are considerably, moderately
and marginally reduced when N increases from 2 to 5, 5 to
10 and 10 to 20, respectively. Hereafter, it is considered in all
experiments that N = 10.

Scenario 2: Scenario 2 extends the simulation setup of
Scenario 1 for the scaled-up prototype FESS by considering
model and net load demand uncertainty. As a result, both
controllers are utilized; the MPC controller computes the FESS
power set points using the predicted demand and estimated
model, while the SC controller corrects the provided points
based on real-time measurements. Modelling uncertainty is
introduced by increasing the FESS power losses by +5%.
To introduce demand uncertainty, the predicted demand is
computed as the 15-minute piecewise constant approximation
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of the actual demand; the mean, standard deviation, minimum
and maximum demand prediction error is 1.5 kW, 38.6 kW,
-91.7 kW and 115 kW, respectively.

Fig. 7(a) illustrates the actual and predicted demand and
Fig. 7(b) presents the actual and predicted transformer power,
produced by the Plant and the MPC controller. Despite the
introduced uncertainty, the proposed controllers can still han-
dle well the reverse and direct power violations. This is also
indicated in Fig. 7(c) by the revised FESS power set-points of
the SC controller which correct the set-points of the MPC
controller. The minimum desirable SoC is vital in making
these corrections; for example, the unpredicted extra demand
experienced in the period [5h, 6h] is compensated using the
FESS minimum desirable SoC, resulting in almost 0% SoC at
the end of the 6-hour scenario.

B. Performance Evaluation - Real Data

This section examines the capability of the proposed con-
trollers to provide peak shaving services under net load de-
mand uncertainty, using historical data from a real distribution
substation in Larnaca, Cyprus. Fig. 8 demonstrates 31 actual
net load curves that are obtained from the distribution trans-
former for July 2019, as provided by the Cyprus Distribution
System Operator (DSO). It also presents a predicted net load
curve constructed as the average of the actual net load curves
of July 2018. The distribution grid includes mainly residential
loads of a rural area and there is intense penetration of
large PV parks, causing high reverse and direct power flows
during the noon and evening hours, respectively, as can be
seen in Fig. 8. As power violations do not occur in the real
distribution transformer, due to its large size, we consider a
smaller transformer with peak reverse and direct capability
of -200 kW and 500 kW. The performance of the proposed
controllers is examined for the commercial FESS using as
input the actual and predicted net load curves of Fig. 8 for the
Plant and the MPC, respectively, according to Fig. 2.

Figs. 9 (a) and (b) illustrate the energy violations of the 31
actual curves, in box-plot form3, that are caused due to the
direct and reverse power flow violations, when no control and
MPC control are used, respectively. Although MPC control
achieves better results compared to no control, it still suffers
from high energy violations because only the “expected”
violations that are covered by the predicted net load curve
are addressed. Note that the values of µ and η do not affect
the energy violations, because the SC controller is deactivated.

When both the MPC and SC controllers are utilized, the
reverse energy violations are completely eliminated because
the SC controller stores all the “unexpected” violated en-
ergy in the FESS. Nevertheless, the “unexpected” violated
energy from the direct power flow is more challenging to
be addressed, because the FESS must be charged in advance
to provide the violated energy. Fig. 10 presents the direct
energy violations of the actual curves for different values of

3The bottom and top of each box indicate the first and third quartiles
(25% and 75%) of a ranked data set, while the horizontal line inside the
box indicates the median value (second quartile). The horizontal lines outside
the box indicate the lowest/highest datum still within 1.5 inter-quartile range
of the lower/upper quartile; for normally distributed data this corresponds to
approximately 0.35%/99.65%.

Fig. 8. Actual and predicted net load curves constructed from historical data
of a real distribution grid.

Fig. 9. Direct and reverse energy violations when (a) the proposed control
scheme is not utilized and (b) the MPC controller is used, but the secondary
controller is deactivated.

Fig. 10. Direct energy violations, in box-plot form, for different µ and η
when both the MPC and secondary controllers are utilized. The reverse energy
violations are eliminated in every case.

µ and η (see Eq. (13)). As expected, the energy violations are
reduced as the value of µ increases, because more energy is
maintained in the FESS to address the “unexpected” violations.
In contrast, parameter η has negligible effect on the results;
nonetheless, higher values of η are more preferable to avoid
unnecessary power losses due to the FESS operation. As
shown in Fig. 10, the proposed controllers compensate well for
the “unexpected” energy violations of the considered days for
µ = 40%. However, high energy violations are still present in
one particular day with total energy violations of 173.3 kWh
(see the Direct flow in Fig. 9 (a)). This amount of energy
cannot be compensated by the considered FESS with capacity
185 kWh, efficiency 85% and standby losses 20%. The main
conclusions of this section are summarized as:

1) In cases with high net load uncertainty, the utilization of
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both the MPC and SC controllers is essential to address
the “unexpected” power and energy violations.

2) The violations are reduced by increasing parameter µ; η
has negligible effect on the results.

3) The FESS capacity is an important factor that affects the
performance of the proposed controllers, since small val-
ues impose energy limitations that can lead to transformer
power limit violations.

VII. EXPERIMENTAL VALIDATION

In this section, the proposed controllers are evaluated in
a realistic experimental setup using a real prototype FESS.
Prior to the performance evaluation, the experimental setup is
described and used to identify the parameters of the power
losses and maximum power FESS functions.

A. Experimental Setup

As shown in Fig. 11, the experimental setup is comprised of
five main modules: (M1) the Physical System, (M2) the Core
Context Management, (M3) the Communication Context, (M4)
the Processing Context, and (M5) the Visualization Context.
The Physical System represents the considered smart-grid
configuration presented in Fig. 1. It is comprised of a prototype
FESS with 6 kW total rated power and a usable capacity of
1.85 kWh, a 4.05 kW load bank with nine equal controllable
switching steps and a 5 kW PV system, connected to the power
grid and installed in our power systems laboratory. The FESS
is based on two 150 kg flywheels with a rated speed of 14000
RPM and the PV system is based on a commercial Fronius
Symo 5.0 inverter associated with a Chroma 62150H PV
emulator. Measurements of the various system states (actual
load, grid power) are obtained through smart meters while the
PV generation and the FESS charging/discharging power and
SoC are obtained through the inverter and FESS interfaces.

To enable the interaction between the controllers and the
physical system, a software platform based on FIWARE [17]
has been developed (modules M2 - M5). FIWARE is a
framework of an open source platform modules which can be
assembled together to accelerate the development of smart so-
lutions, such as the real-time monitoring and control of a FESS
in a smart grid environment. In the developed FIWARE-based
software platform, the Core Context Management module is
responsible for creating and managing context information
elements through the Orion Context Broker sub-module, as
well as storing, querying and retrieving data using Quantum-
Leap from the back-end database (CrateDB). The exchange
of information between the Core Context Management and
the Physical System is achieved through the Communication
Context module where a Python script has been developed to
transfer real-time measurements from the smart meters to the
Core Context Management. Measurements are submitted to
the Processing Context module and are displayed graphically
on the Visualization Context (developed using Grafana web
application) to monitor the system. The Processing Context
module implements the proposed controllers in Matlab/Gurobi
and calculates the FESS commands which are submitted
for execution to the Physical System through a C# script.
Measurement and control data between the Physical System

TABLE III
REGRESSION ANALYSIS - PARAMETER IDENTIFICATION

Charg. mode - Eq. (7c) Disch. mode - Eq. (7b) Max. power - Eq. (7e)

b̂c = 0.106, ĉc = 0.394 b̂d = 0.223, ĉd = 0.419 α̂ = 0.172, β̂ = 0.622

Adjusted R2 = 0.973 Adjusted R2 = 0.961 Adjusted R2 = 0.996

RMSE = 0.046 RMSE = 0.103 RMSE = 0.081

and the Core Context Management are exchanged through
the laboratory Local Area Network (LAN). Note that the
experimental setup operates according to the three different
time scales presented in Fig. 3.

B. FESS Model Validation and Parameter Identification

This section validates the proposed model for the power
losses, Eqs. (8a)-(8b), and maximum power, Eqs. (8c)-(8d), of
the employed prototype FESS. To derive the charging power
losses, the FESS operation was regulated with a constant
charging power for varying SoC and maximum allowable
power. The power losses were then calculated at each oper-
ating condition pairs (SoC, charging power) as the difference
between the measured absorbed energy for charging and the
measured stored energy in the FESS. For example, the power
losses at 50% SoC and 2 kW charging power are derived by
the difference between the energy drawn from the grid and
the FESS stored energy for a SoC increase from 45% to 55%
using a constant charging power of 2 kW. A similar approach
was used for the discharging mode.

The FESS power losses as a function of the charg-
ing/discharging power and the SoC are illustrated in Fig. 12.
From the figure two important observations can be made.
First, the FESS power losses become higher as the charg-
ing/discharging power and the SoC increase. Second, the
maximum power depends on the SoC, as shown in Fig.
13, and thus the measurements on the power losses do not
span the entire SoC/maximum power region. Due to this
limitation, the total number of measurements were 166 instead
of 225 when the SoC and maximum power vary in the ranges
{10, 20, ..., 90%} and {−6,−5.5, ..., 5.5, 6 kW}, respectively.
The maximum charging/discharging power limitation is further
verified according to experimental measurements received
from the FESS interface, as shown in Fig. 13, which indi-
cates that the maximum power is a monotonically increasing
concave function of the SoC.

Linear regression was used to model the FESS power losses
(kW) as a function of the SoC (kWh) and the charging
or discharging rate (kW). Table III presents the identified
parameters of the two linear models for the charging and
discharging modes, according to Eqs. (7b)-(7c) or Eqs. (8a)-
(8b), along with two coefficients to determine the goodness
of fit. The Adjusted Coefficient of Determination (Adjusted
R2) falls very close to 1 (Adjusted R2 > 0.95) in both cases;
this indicates that the derived models explain more than 95%
of the variance in the power losses. The goodness of fit is
also indicated by the small Root Mean Squared Error (RMSE)
values which are less than 0.105 kW in both cases.

The results of the linear regression are illustrated in Fig. 12
by the two intersecting planes representing the power losses for
the charging and discharging mode. As can be seen, the two
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Fig. 11. Monitoring and control of the FESS for providing distribution grid services using a software platform based on FIWARE.

Fig. 12. The FESS power losses for varying SoC and charging/discharging
power. The two intersecting planes is the result from linear regression using
the sample points and the dots indicate sample points located above the planes.

Fig. 13. The maximum charging/discharging power of the FESS as a function
of the SoC obtained from 100 experimental samples. The dashed line is the
fitted response using regression. The ten blue solid lines construct a piecewise
linear approximation of the concave function produced from the samples.

intersecting planes define a convex function which explains
the selection of Eqs. (8a)-(8b).

Similarly, the parameters of the maximum power model,
Eq. (7e), are identified using linear regression based on the

measurements depicted in Fig. 13. Table III shows an excellent
goodness of fit having an Adjusted R2 value larger than 0.99
and a RMSE smaller than 0.01 kW. The fitted model and a
10-segment piecewise linear appproximation of the model are
shown in Fig. 13. These linear segments are used to derive
convex constraints on the maximum power in (8c)-(8d).

C. Experimental Results

To experimentally evaluate the two proposed controllers, we
consider a 3-hour scenario, T = 3 hours, with power grid lim-
its of 3.3 kW and -1 kW and the experimental setup described
in Section VII-A. The timing parameters used in Section VI for
the control architecture remain the same. Fig. 14(a) shows the
PV generation and load demand of the physical system, as well
as actual and predicted net load demand. Fig. 14(b) illustrates
that the controllers successfully shave the peaks exceeding
the power limits in almost all cases. Fig. 14(c) presents the
FESS power set-points of the MPC and SC controllers. As
can be seen, major deviations between the controllers output
are experienced during the period [0h, 1h]; however, the SC
controller manages to successful compensate the unpredicted
extra net load demand and maintain the power grid limits.
Finally, the FESS SoC due to the charging/discharging power
is illustrated in Fig. 14(d).

VIII. PRACTICAL IMPLEMENTATION CONSIDERATIONS

The practical implementation of the proposed energy man-
agement and control scheme for providing peak shaving
services requires proper consideration of (a) the transformer
power limit violations, (b) the cost-effective operation of the
system, and (c) communication and cybersecurity issues.

The size (capacity) of the FESS is a key aspect that can lead
to violations of the transformer power limit. As presented in
Section VI-B, a small FESS imposes energy limits and viola-
tions can occur. Thus, before the investment, a planning study
must be carried out, considering the historical and future power
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Fig. 14. Experimental validation using the prototype FESS: (a) Input data,
(b) Actual (Plant) and predicted (MPC) transformer operation, (c) FESS
charging/discharging power based on the MPC and SC controllers, and (d)
SoC.

profiles of the transformer, to determine the adequate size of
the FESS for each application. In addition, the utilization of
an accurate predicted curve for the transformer net load is
required to enhance the performance of the proposed scheme.
This predicted curve can be constructed using forecasting
data and/or historical data, as indicated in Section VI-B. In
case the proposed scheme fails to eliminate all violations, PV
curtailments and/or load shedding must be applied to avoid
overloading the distribution transformer.

The FESS efficiency and standby losses is an important
factor that should be considered for the cost-effective op-
eration of the system in real applications. Low efficiency
and high standby losses result in significant total energy
losses that affect the sustainability of the investment. In
addition, high energy losses affect the FESS mission profile
(charging/discharging power) resulting in higher power rates
which can affect the lifetime of the FESS power electronics,
especially when the system operates near to its rate limits [28].
Such a case was illustrated in Fig. 5, where the prototype FESS
resulted in significantly higher charging power compared to the
more efficient commercial FESS.

Secure communication is also a major concern in smart
grid applications. In this work, measurement and control data
between the Core Context Management and the Physical
System are exchanged through a LAN, since all modules of
the experimental setup, presented in Fig. 11, were located
within the same building. However, in real-world applications,
the physical systems may be distributed far away from the
central Monitoring and Processing Contexts (server or cloud-
based). In this case, secure and reliable communication can

be achieved over the Internet using different methods. Two
indicative approaches are the following. The first approach is
to use a Virtual Private Network (VPN) router at the physical
system level to facilitate secure communication with a central
processing server. The second approach is to use a local
controller with firewall protection to maintain communication
between the components at the physical level through a LAN.
In the latter case, only the local controller can communicate
over the Internet with the central Processing Context in a bi-
directional way using secure Internet of Things (IoT) protocols
such as the Message Queuing Telemetry Transport (MQTT)
protocol.

IX. CONCLUSIONS

In this work, an energy management and control scheme
is proposed to provide peak shaving services to the distri-
bution grid using a FESS. Convex functions that represent
the FESS power losses and maximum power are derived and
incorporated in a novel lexicographic optimization that defines
the FESS power set-points. A two-level hierarchical control
scheme is proposed for the solution of the lexicographic
optimization to deal with demand prediction errors and mod-
elling uncertainty. In this study the proposed FESS modelling
is experimentally validated and the FESS parameters are
identified. Simulation and experimental results validate the
effectiveness of the proposed energy management and control
scheme to provide peak shaving services under realistic con-
ditions. The proposed scheme enables the active management
of distribution grids and increases the hosting capacity for PV
installations and load demand growth in existing power grids.
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