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Brief Introduction

Following the emergence of a novel coronavirus (SARS-CoV-2) and its spread outside of China, Europe is now

experiencing large epidemics. In response, many European countries have implemented unprecedented non-

pharmaceutical interventions including case isolation, the closure of schools and universities, banning of mass

gatherings and/or public events, and most recently, wide-scale social distancing including local and national

lockdowns.

In this technical update, we extend our semi-mechanistic Bayesian hierarchical model that infers the impact of

these interventions. Our methods assume that changes in the reproductive number – a measure of transmission

- are an immediate response to these interventions being implemented rather than broader gradual changes in

behaviour. Our model estimates these changes by calculating backwards from the deaths observed over time to

estimate transmission that occurred several weeks prior, allowing for the time lag between infection and death.

In this update we extend our original model [2] to include (a) population saturation effects, (b) prior uncertainty

on the infection fatality ratio and (c) a more balanced prior on intervention effects. We also (d) included another

3 countries (Greece, the Netherlands and Portugal).

The model code is available at https://github.com/ImperialCollegeLondon/covid19model. We are now re-

porting the results of our updated model online at https://ImperialCollegeLondon.github.io/covid19estimates/.

We estimated parameters jointly for all M = 14 countries in a single hierarchical model. Fitting was done in

the probabilistic programming language Stan [1] using an adaptive Hamiltonian Monte Carlo (HMC) sampler.

1 Model description

We observe daily deaths Dt,m for days t ∈ {1, . . . , n} and countries m ∈ {1, . . . ,M}. These daily deaths are

modelled using a positive real-valued function dt,m = E[Dt,m] that represents the expected number of deaths

attributed to COVID-19. The daily deaths Dt,m are assumed to follow a negative binomial distribution with

mean dt,m and variance dt,m +
dt,m
φ , where φ follows a positive half normal distribution, i.e.

Dt,m ∼ Negative Binomial

(
dt,m, dt,m +

dt,m
φ

)
,

φ ∼ N+(0, 5).

In this report, N (µ, σ) denotes a normal distribution with mean µ and standard deviation σ. We say that X

follows a positive half normal distribution N+(µ, σ) if X ∼ |Y |, where Y ∼ N (µ, σ).

The expected number of deaths d in a given country on a given day is a function of the number of infections c

occurring in previous days. At the beginning of the epidemic, the observed deaths in a country can be dominated

by deaths that result from infections that are not locally acquired. To avoid biasing our model by this, we only

include observed deaths from the day after a country has cumulatively observed 10 deaths in our model.

To mechanistically link our function for deaths to infected cases, we use a previously estimated COVID-19

infection-fatality-ratio ifr (probability of death given infection) together with a distribution of times from in-
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fection to death π. The ifr is derived from estimates presented in Verity et al [4] which assumed homogeneous

attack rates across age-groups. To better match estimates of attack rates by age generated using more detailed

information on country and age-specific mixing patterns, we scale these estimates (the unadjusted ifr, referred to

here as ifr′) in the following way as in previous work. Let ca be the number of infections generated in age-group

a, Na the underlying size of the population in that age group and ARa = ca
Na

the age-group-specific attack rate.

The adjusted ifr is then given by:

ifra =
AR50−59

ARa
ifr′a,

where AR50−59 is the predicted attack-rate in the 50-59 year age-group after incorporating country-specific

patterns of contact and mixing. This age-group was chosen as the reference as it had the lowest predicted

level of underreporting in previous analyses of data from the Chinese epidemic[4]. We obtained country-specific

estimates of attack rate by age, ARa, for the M = 14 European countries in our analysis from a previous study

which incorporates information on contact between individuals of different ages in countries across Europe.[5]

We then obtained overall ifr estimates for each country adjusting for both demography and age-specific attack

rates.

From the above, every country has a specific mean infection-fatality ration ifrm. In our model, we will allow

the ifr for every country to have some additional noise around this. Specifically we assume that

ifr∗m ∼ ifrm ·N(1, 0.1).

Using estimated epidemiological information from previous studies[4, 5], we assume the distribution of times from

infection to death π (infection-to-death) to be the sum of two independent random times: the incubation period

(infection to onset of symptoms or infection-to-onset) distribution and the time between onset of symptoms

and death (onset-to-death). The infection-to-onset distribution is Gamma distributed with mean 5.1 days and

coefficient of variation 0.86. The onset-to-death distribution is also Gamma distributed with a mean of 18.8

days and a coefficient of variation 0.45. The infection-to-death distribution is therefore given by:

π ∼ Gamma(5.1, 0.86) + Gamma(18.8, 0.45).

The expected number of deaths dt,m, on a given day t, for country, m, is given by the following discrete sum:

dt,m = ifr∗m

t−1∑
τ=0

cτ,mπt−τ ,

where cτ,m is the number of new infections on day τ in country m and where π is discretized via πs =∫ s+0.5

s−0.5 π(τ)dτ for s = 2, 3, ..., and π1 =
∫ 1.5

0
π(τ)dτ , where π(τ) is the density of π.

The number of deaths today is the sum of the past infections weighted by their probability of death, where the

probability of death depends on the number of days since infection and the country-specific infection-fatality-

ratio.

The true number of infected individuals, c, is modelled using a discrete renewal process. This approach has

been used in numerous previous studies and has a strong theoretical basis in stochastic individual-based count-

ing processes such as Hawkes process and the Bellman-Harris process. The renewal model is related to the
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Susceptible-Infected-Recovered model, except the renewal is not expressed in differential form. To model the

number of infections over time ,we need to specify a serial interval distribution g with density g(τ), (the time

between when a person gets infected and when they subsequently infect another other people), which we choose

to be Gamma distributed:

g ∼ Gamma(6.5, 0.62).

Given the serial interval distribution, the number of infections ct,m on a given day t, and country, m, is given

by the following discrete convolution function:

ct,m =

(
1−

∑t−1
i=1 ci,m
Nm

)
Rt,m

t−1∑
τ=0

cτ,mgt−τ

where, similar to the probability of death function, the daily serial interval is discretized by gs =
∫ s+0.5

s−0.5 g(τ)dτ

for s = 2, 3, ..., and g1 =
∫ 1.5

0
g(τ)dτ . The population of country m is denoted by Nm . We include the

population adjustment 1−
∑t−1

i=1 ci,m
Nm

to account for population saturation of susceptible: i.e even in the absence

of interventions, herd immunity will reduce the number of daily infected.

Infections today depend on the number of infections in the previous days, weighted by the discretized serial

interval distribution. This weighting is then scaled by the country-specific time-varying reproduction number,

Rt,m, that models the average number of secondary infections at a given time. The functional form for the

time-varying reproduction number was chosen to be as simple as possible to minimize the impact of strong prior

assumptions: we use a piecewise constant function that scales Rt,m from a baseline prior R0,m and is driven

by known major non-pharmaceutical interventions occurring in different countries and times. We included

6 interventions, one of which is constructed from the other 5 interventions, which are timings of school and

university closures (k = 1), self-isolating if ill (k = 2), banning of public events (k = 3), any government

intervention in place (k = 4), implementing a partial or complete lockdown (k = 5) and encouraging social

distancing and isolation (k = 6). We denote the indicator variable for intervention k ∈ {1, . . . , 6} by Ik,t,m,

which is 1 if intervention k is in place in country m at time t and 0 otherwise. The covariate “any government

intervention” (k = 4) indicates if any of the other 5 interventions are in effect, i.e. I4,t,m equals 1 at time t if any

of the interventions k ∈ {1, 2, 3, 5, 6} are in effect in country m at time t and equals 0 otherwise. Covariate 4

has the interpretation of indicating the onset of major government intervention. The effect of each intervention

is assumed to be multiplicative. Rt,m is therefore a function of the intervention indicators Ik,t,m in place at

time t in country m:

Rt,m = R0,me
−

∑6
k=1 αkIk,t,m

The exponential form was used to ensure positivity of the reproduction number, with R0,m constrained to be

positive as it appears outside the exponential. The impacts αk are shared between all M countries and therefore

they are informed by all available data.

The prior distribution for R0,m was chosen to be

R0,m ∼ N+(3.28, |κ|)

κ ∼ N+(0, 0.5)

κ is the same among all countries to share information about the variability of R0,m. The value of 3.28 was

chosen based on a previous meta analysis looking at the basic reproductive number [3].
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Figure 1: Cumulative distribution function of prior on total reduction through one intervention (left) and

through all interventions together (right).

The prior on the total reduction through one intervention (i.e. exp(−αk)) and on the reduction once all

interventions in place, i.e. on exp(−
∑6
k=1 αk), is displayed in Figure 1. Details of the individual prior choices

that result in this are below.

The impact of an intervention on Rt,m is characterised by a set of parameters α1, . . . , α6, with independent

prior distributions chosen to be

αk ∼ Gamma(1/6, 1)− log(1.05)

6
,

i.e. the prior on each effect is Gamma distribution with shape parameter 1/6 and scale parameter 1, shifted

to allow for negative values. This prior was chosen such that the probability that any individual intervention

does not reduce Rt,m, i.e. P (αk < 0), is about 48% and such that the joint effect of α1, . . . , αk on Rt,m once all

interventions are in-place (i.e. the distribution of exp(−
∑6
k=1 αk)) is a uniform distribution on [0, 1.05]. The

intuition behind this prior is that it encodes our null belief that interventions could equally increase or decrease

Rt, and the data should inform which.

We assume that seeding of new infections begins 30 days before the day after a country has cumulatively

observed 10 deaths. From this date, we seed our model with 6 sequential days of an equal number of infections:

c1,m = · · · = c6,m ∼ Exponential( 1
τ ), where τ ∼ Exponential(0.03). These seed infections are inferred in our

Bayesian posterior distribution.
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