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Full-scale measurements

Advantages:
Turbulent inflow conditions
Influence of rotational speed
Real load cases

Comparison with simulations
Comparison with controlled environment (wind tunnel)

⇒ Need to know input, properties of incoming flow (AoA and
speed)

Figure: Installation of measurement system of
DANAERO - DTU Wind Energy

Troldborg et al. 2013
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The Aerosense project
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Use cases:
• Operators: blade surface damage detection, performance
optimisation, amplitude modulation detection (increase operating
time).

• OEMs: optimisation of aeroacoustic design tools and wind turbine
designs, understanding 3D field aerodynamics

Scope:
• 3 years May 2020 – April 2023
• Funding from SNF/Innouisse BRIDGE programme: CHF 2.3 m

Partners:
• Eastern Switzerland University of Applied Sciences (OST)
• ETH Zürich Chair of Structural Mechanics and Monitoring
• ETH Zürich Center for Project-Based Learning
• Octue (UK)

Advisory board:
• RES, EKZ Renewables, Enercon, GE (LM), Brüel&Kjaer
• Fraunhofer IWES, ECN, DTU, TU Delft, NREL.

Project goal: develop a first ever MEMS-based surface pressure and acous-
tic smart measurement system that is thin, non-intrusive, robust, modular,
low power and self-sustaining, wirelessly transmitting, easy to install and
cost-effective for wind turbines.
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Angle of attack and stagnation point

Angle of attack = 5°
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Angle of attack and stagnation point

Angle of attack = 10°

At leading edge, change of angle of attack⇒ change of position of stagnation point
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Leading edge region as potential flow
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Parabola fitting the leading edge (first 5%)
Potential model with analytical solution Saini and Gopalarathnam 2018; Ramesh 2020
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Pressure and velocity at leading edge
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How to measure pressure difference at leading edge?

Prototypes with MEMS differential pressure sensors
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How to measure pressure difference at leading edge?

Prototypes with MEMS differential pressure sensors

Figure: Test section of the ETHZürich wind tunnel

40 flush pressure taps
5 of them used for next results
U0 = 10 m/s to 50 m/s / Re = 105 − 106
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Estimation of incoming wind speed
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Estimation of stagnation point position
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Estimation of stagnation point position
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Estimation of angle of attack using XFOIL
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Estimation of angle of attack using XFOIL
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Look-up table with XFOIL quite limited
Error of less than 2.5° for AoA < 10°
Error of less than 5° when no stall
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Influence of external conditions
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Influence of external conditions
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Influence of external conditions
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Conclusions

Experimental method to infer angle of attack and local wind speed
Based on potential flow at leading edge
Stagnation point position and incoming wind speed in wind tunnel estimated with less than 2% of error
Possibility to obtain angle of attack if careful corrections done
Robust estimation (tilted wing or LE erosion)
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Thank you for your attention
julien.deparday@ost.ch

Other presentations on the Aerosense project:
Yuriy Marykovskiy, Mini-Symposium: Digital Twin Technology, 14:25 on Tuesday
Gregory Duthé, Mini-Symposium: Structural Health Monitoring: Applications and Potential in Wind Energy, 15:05
on Tuesday
Tommaso Polonelli, Novel Sensing and New Measurement Concepts for Wind Turbines, 14:15 on Friday
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