

S. Christe¹, S. Mumford², SunPy Board, SunPy Development Team
 ¹NASA Goddard Space Flight Center, Greenbelt, MD
 ²University of Sheffield, UK

sunpy.org
github.com/sunpy/sunpy

Twitter: ehsteve Github: ehsteve

Background 🔀 IDL

- SolarSoft (SSW) is a set of integrated software libraries, databases, and system utilities which provide a common programming and data-analysis environment for solar physics.
- SSW is modular, core package provides core tools and utilities users can add other packages which contain specialised software for different instruments or tools.
- SSW relies upon IDL (89% IDL code, 5.4% Perl)
- According to SLOCCount gen SSW is composed of 289,724 lines of code with a total approximate value of \$10M (COCOMO model).
 - SDO Package 11k lines of code (\$360k)
 - SOHO package 100k lines of code (\$3M)
- Hosted and distributed by Lockheed Martin Solar and Astrophysics Laboratory

What problem is SunPy trying to solve

IDL + SolarSoft	Corollaries
Platform (IDL) is not free or open source	Limits access
Solarsoft development is not open	 No easy or clear way for most users to contribute
Solarsoft is not version controlled	 Random code can change whenever you update. Not easy to reproduce past results. No history and can't easily revert
Solarsoft development is not coordinated or organized	 Much duplicated code (File conflicts: 1879 Conflicts where the code differs: 713) No standard way of doing things. No testing.
IDL is NOT used by other fields	 Students are not taught how to code in IDL Not marketable skill outside our community Cannot leverage work by other communities
Documentation is not standardized or discoverable	 People often waste time re-writing functions that already exists

What is SunPy

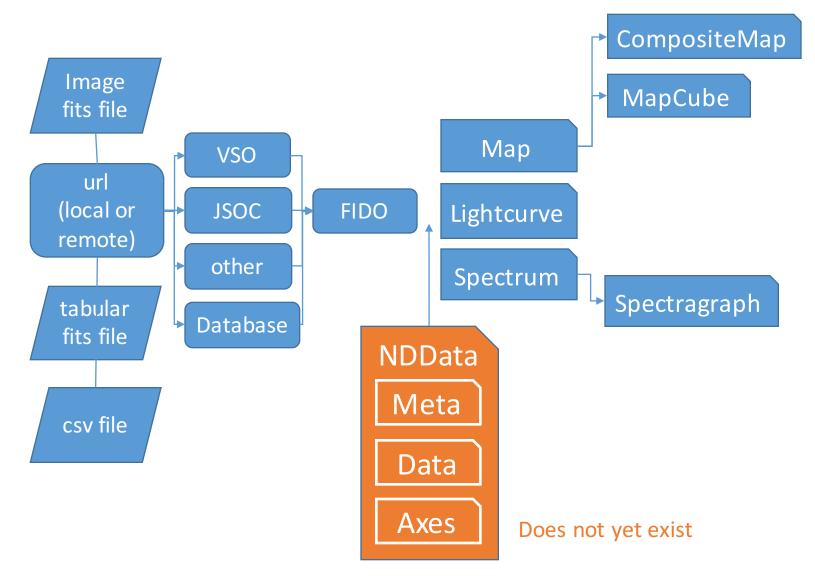
- Goal: To provide the fundamental software to make Python a free and viable platform for solar data analysis.
- Scientific Python stack is very powerful and maturing.
- New start means we can reorganize and rethink how we develop and share software.
 - Open source movement is now very mature.
 - Version control systems are very powerful (git and github) and social.

Where is SunPy now

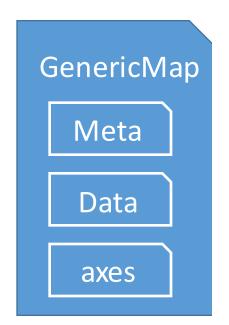
- Project began March 28, 2011 five years ago!
- 25,000 lines of code (6500 commits)
- 83 contributors
- COCOMO cost: \$350k
- 209 Issues
- 43 outstanding pull requests
- Released 0.6.2 (still beta, API in flux)
- Refereed Paper https://iopscience.iop.org/article/10.1088/1749-4699/8/1/014009

Governance

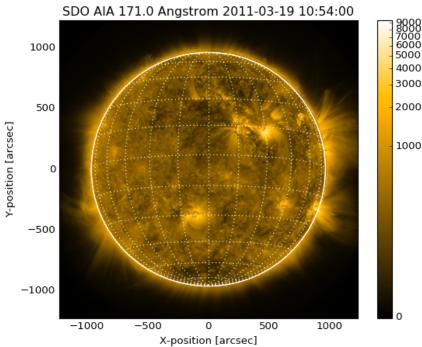
- The primary role of the organization is to facilitate and promote the use and development of a community-led, free and open-source solar data-analysis software based on the scientific Python environment.
- Accomplishes this by voting on SunPy Enhancement Proposals (which can be proposed by anyone)
- Elect a lead developer
- Founding document (https://github.com/sunpy/sunpy-SEP/blob/master/SEP-0002.md)
- Membership (10 members)
 - Steven Christe (chair) NASA GSFC
 - Russell Hewett self
 - Andrew Inglis (secretary) NASA GSFC
 - Jack Ireland NASA GSFC
 - Stuart Mumford U. of Sheffield
 - Juan Carlos Martínez Oliveros UCB SSL
 - David Perez-Suarez (vice-chair) U. College London
 - Kevin Reardon DKIST
 - Thomas Robitaille self
 - Albert Shih NASA GSFC


Mile-High Overview

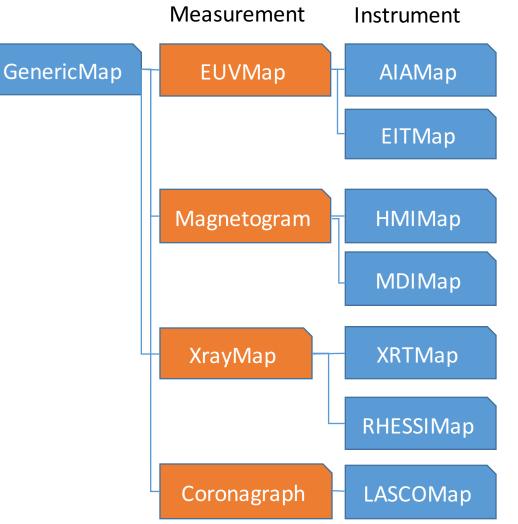
- Focusing on calibrated (high level) data
- Focus on high level objects
- Provide a standardized and coordinated interface across data types and instruments
- Going after low hanging fruit to provide most amount of functionality with the least effort
 - Retrieving data
 - Reading data (little to no standardization in data)



SunPy Structure



GenericMap


- Currently most mature data structure, as it is most often used.
- Standard interface to coordinate-aware images
 - Meta data
 - Data (NDData)
 - Axes
- Plotting
- Functions
 - resample
 - rotate
 - save
 - Submap
 - superpixel
 - data_to_pixel
 - pixel_to_data
 - Max/min
- Subclassing
- Shortcuts to meta parameters

Subclassing GenericMap

Does not yet exist

Instrument classes provide

- Placeholder for
 instrument specific
 tasks like data
 prepping
- Provides proper data scaling and colormaps for plotting
- <u>Relevant</u>
 documentation
- Backend uses it to standardize the data input (makes it easier for new devs to add new instrument support)

MapCube & CompositeMap

- MapCube
 - An ordered list of same subclass of maps. By default, the maps are ordered by their observation date, from earlier maps to later maps.
 - Plotting provides animation
 - Provides alignment capabilities
- CompositeMap
 - An unordered list of any map (usually from the same time)
 - Provides tools to overplot data

Utilities

- Solar constants (using astropy units)
- GUI
- Database (for local files)
- Solar Event information search (HEK)
- Coordinate transformations

The Future

- More needed on other data objects
- Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope, ATST) support likely
- Google Summer of Code 2016!
- Conference Ideas
 - NDData structure discussion
 - WCS update discussion
 - Astropy models discussion
 - Add emission mechanisms (black-body, free-free bremsstrahlung, etc.)
 - Spectrum Sprint or Project
 - Meta object Sprint or Project