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Abstract

In the framework of geometrical optics, let us study meridional and skew rays, those rays
that we can find in optical fibres. The study is based on the book by Keigo lizuka, entitled

Engineering Optics.
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1. Introduction

Geometrical optics, or ray optics, puts the emphasis on the light paths. A particular focus is in
the calculation of the light path in inhomogeneous media and in the design of optical instru-
ments [1]. Here we will study in particular the meridional ray and the skew ray that we can find
in optical fibers. The study is based on the book by Keigo lizuja, entitled Engineering Optics
[1].
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Before the specific study, let us remember some useful calculus.

2. Tangent unit vector and curvature
Some mathematical expressions are necessary for the description of the path of light.

Let us consider the following figure, where the position vector R is given.

The unit tangent vector is given by:

(_dR
ds

Curvilinear coordinate S is

used.

Using rectangular coordinates: R=ix+jy+kz , and then he unit tangent vector is:

._2dx ~dy »dz
=i—+j>+k—
> lds st ds

In cylindrical coordinate: R=rr+kz , r=icos¢+jsing , ¢=—ising+jcosg

(odr, di d di i a de_sdg
S=F 1 +kds ,where =( 151n¢+]cos¢)d =9

The tangent expressed in cylindrical coordinates becomes:

a_adr s d¢
s_rds ¢rds +kds

The curvature of a curve is: 1;:|d §/ds| or 1?:|d2f2/d52|
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Ly

a¢

The inverse of the radius of curvature is the magnitude of the first derivative of the tangent vec-

tor, or the second derivative of the position vector.

The Frenet- Serrat formula is:

B

ds _N
P

A

where vector N is the unit normal vector to the curve.

3. Level surfaces and gradients

Let us consider a level surface L (x, y, z):C . An example is the equipotential function in

electrostatics. Let us move the observation point P so that we have an increment:

AL= S—L A x+ oL Ay +2—L Az +infinitesimals of higher order

X oy z
The directional derivative VSL is:

V L= A}-)o ilL g_i i_;(-bg_ii_ly 2_5 i—lzﬂnfinitesimals of higher order

AxIAL, Ay/Al, Az/Al are the direction cosine cos, cos 3, cosy of the move-

ment Al
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dL _OL oL oL
L=——"—=— - =
V., I —x cosa+ay cos/3’+az cos y

We have also:

VL=ﬁ2—£+}'g—§+l}g—f , M:§COSO{+}' cos/)’+lzcosy
Then:
V.L Z(VL)M , so we have: ALZ(VL)-Md 1=(VL)dl
VSL varies with the choice of the direction of the movement. The change of L becomes

a maximum when the movement is selected in the same direction as that of VL . Then,
VL is the direction that gives the maximum change in L for a given length of the move-

ment.

The normal N to the equi-level surface is:

VL

N=YL
VI

In optics, this formula is particularly useful because it determines the optical path from the

equi-phase surface.

4. Eikonal equation
Let E ( X,y, z) representing a light wave that needs to satisfy the wave equation:
(V2+w?ue)E(x,y,z)=0

In the case of an isotropic medium, E,, E ) E, equations are identical.
(Vi+o? ue)u(x,y,z)=0 (%

where  ? we=lkn (X V.2 )]2 , k is the free space propagation constant and n the re-

fraction index.
Let us assume the solution: u(x,y,z)=A(x,y,z)exp{j[kL(x,y,z)—wt]}
Functions A(x,y,z) and L(x,y,z) areunknown. They have to be determined in such
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a way to satisfy (*). Then:
n’k*u+V?u =
M0t (122 | VLP]A+V2 A+ jkAV? L+ j2k(V A)-(V L)} =0
|V LI* means the sum of the squares of i,j,k componentsof V'L

If the wavelength of light is much shorter that the dimensions of the associated structure:

2_ 2 (oL Y (LY, (oL _ 2
IV L|°=n" , then: (6x ) +(6y) +(az ) =n

This is the eikonal equation of the optical path. The wave front L itself is called the eikonal
or optical path.

Let us remember that A L=(V L)-dI . Then:
L=[(VL)dl

If the movement is restricted to the normal of the equi-level surface:

L= f |V L|ds= f nds

along normal along normal

The direction of the normal to the equi-phase surface is V L/|V L| . The normal is called

the "wave normal".

5. A glass slab

Consider a glass slab whose index of refraction is variable in the x-direction but is constant in

both the y- and z- directions, so that n=n(x) . L(x,y,z) isassumed to be separable so
that L(x,y,z)=f(x)+g(y)+h(z)
IVLP=n* ,then ([f"(x)F~[n(x)F)+[g'(y)F+[h"(z)]'=0

Let us consider: {[f'(x)P=[n(x)P]=a® . [g'(y)}'=b" . [h'(z)f'=

|
a
w2
)
5
o
2

a’+b*+c’=0

Solutions are:
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X

f(x):ig\/[n(x)]z—(b%cZ) dx , gly)=tby+m; , h(z)=%cz+m,

L(x,y,z):if \/[n(x)]z—(b2+c2) dx+by+cz

Constants m,; and m, are considered in the lower limit of the integration. b, ¢ are
determined by boundary condition, such as launch position and angle.

The direction of the propagation is the direction of the wave normal: N=V L/n . The nor-

mal is in the same direction of the unit tangent vector § to the light path.

dR_VL . dx_0L  dy_0L  di_oL
ds n " ds 0x 7 ds Oy ° ds 0z

Let us consider the optical path of light launched into a medium having n=n (x)

dx _ 2 (2.2 dy _ dz _
) E P L n0%b =
dy _b _b x
Ix c , then y—c z+d (%)

There exists a unique plane perpendicular to the y-z plane, defined in (*).

A ray entering a medium characterized by an x- dependent refractive index will always remain
in this plane, regardless of launching conditions. The projection of the ray to y-z plane is a

straight line. The constants are determined by the launching point and angle.

launch

Launching point (O,O,CO) . ¢, and @ asin the figure.
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z=ytan¢ +c, isthe projection line.

bdx cdx
Moreover: , Z=
& J.\/ 2—(b*+c?) f\/[n(x)]z—(b2+c2)

xA

N
)

From the figure, we have that:

ds sinflcos¢ =dy , ds sinfsin¢ =dz
n(x) sinfcosp, =b , n(x) sinfsing,=c

n(x)sin@=vb>+c® then n(x)sin®=constant

This holds true throughout the trajectory. n(x)sinH = constant is the Snell Law for a one-

dimensional stratified medium.
At x=0 , n,sin 49():\/b2+c2 , then:
X

o]

X
(x)P nsmH 0

n, sind cos¢, n sinf sing

=l

—n’sin’60
o o
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Let us introduce:

n sinf sing
% [ o

z'= dx
M

n(x)F—n’sin’6,

When the quantity inside the square root becomes negative, we have that z' becomes nega-

tive and the light does not propagate. The light will reflect at the point where
2 2.2 o .
[n(x)]*—nZsin®6, becomes negative, ie. n(x)—n_sin6,
When the refractive index is decreasing monotonically with x, the light will not propagate be-
yond Xx=Xx, ,where n (x o): n,sin® . The location of the total reflection is a function of

the launching angle 6

(o]

-—!—n(X)

6. Selfoc fiber
A distribution frequently employed is that of the Selfoc fiber:

nzzni(l—a2x2)

. adx )
z'= , a=n sin@
2_ 2 222 c 0
n.—a‘—a‘ngx

For a launching point at the origin:

sinf, dx sinf, | ax
z= —= sin 5
a \/(Cosﬁola) —x- @ cost,,
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sin y o X

o .

x= sin , Y,=90°-0,
a cosy,

The optical path in such a medium is sinusoidal with an oscillating amplitude equal to

siny /a and a one-quarter period s cosy /2a

The distribution of the Selfoc fiberis n*=n(1—a?r?) . With this distribution, light is con-
C

fined inside the fiber and propagates for a long distance with very little loss, so that Selfoc fiber

plays an important role in the fiber-optical communication.

Meridional ray

7. Cylindrical symmetric medium

Let us consider a distribution having a cylindrical symmetry:

0L, 410L oL
VL—rar +¢r 59 +k62

The eikonal equation is:

oLV (1oL\ (oL \_
(e

Let us separate variables:

If n iscylindrical symmetric:
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The eikonal in a cylindrical symmetric medium is:

L(r,¢,2)=[ V[n(r)P=c*r’—c® dr+cp+az

3 ==

All integration constants are included in the lower limit of the integral.

The following differential equations are used to derive the path from the eikonal.

nd_r:('i_L F component
ds Or P
nr%::—g—; q3 component
nd—zza—L IA( component
ds oz P

dr _ _ 222 pdf_c dz _
n— =J[n(r)P-c/r*—a® | n—o=o o, nos=a

Constants a, ¢ are to be determined from initial constants. Then:

b= cdr z=f adr
rn(r)P-c2irr—a® VIn(r)P-c*r?—d
Launching conditions are: r=r_ , ¢=¢,  , z=0 , n(ro):no , a=nycosy, ,

c:norocoséo )

We can simply assume ¢=0, 6,=90° , that is when the launch path is in the plane con-

taining the z-axis. ¢ becomes 0 and the path stays in a plane containing the z-axis. Such a
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ray is called a "meridional ray", We are back to the one-dimensional case. The ray that does not

stay in this plane, due to a non zero c, rotates around the z-axis and it is called the "skew ray".

As long as the medium is perfectly symmetric, only the initial launch conditions determines
whether the path is meridional or skew. The specific formulas for z and ¢ in the case of

the Selfoc fiber are given in [1].

8. Quantization

In [1] it is shown that only those rays that are incident at certain discrete angles can propagate

into the fiber. To simplify the discussion, [1] is using a slab (step-index guide).

ny Cladding
n 7 \
Core
"2 ny > Cladding

If the incident angle is smaller enough, we have the total reflection of the ray. The ray is taking

a zig-zag path, having a length [, . However, we have also a direct front-wave, moving of

l4, - The path difference is therefore:
n, k(lzz—ldir)z n,k4dsin@
d is the thickness of the slab. The angle 6 so that:

11
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n1k4dsin6=2NJt

where N is an integer. This condition can be turned into:
¢, =Nm

The phase difference 1, between the upper and the lower boundaries of the core glass can

take only discrete values of an integer multiple of s . The same result is true for a merid-

ional ray in an optical fiber.

In the case of a skew ray, the phase factor ¢/ must satisfy some conditions, so that:

/3:6—¢:nck\/1—2a(zu+kv) *)

0z n.

where ¢ and Vv are integers.

When the end of an optical fiber is excited by a light source, those rays which propagate are in-

cident at discrete angles. For these rays, the propagation constant in the z-direction satisfies (*).
The skew ray is designated by the pair of integers @ and Vv . The ray is in the (,u ,V)

mode of propagation.

The condition:

1_2a(2‘u+v ):O
nck

is the cut-off condition. For (0,0) mode, the cut-off is 0. The cut-off of (0,1) mode is
2a0 . In the case that kn <2a , only the (0,0) mode is excited. The optical fiber

where only a mode propagates, is a single-mode fiber.

References

[1] K. lizuka, Engineering Optics, 1986, Springer-Verlag.

12



Geometrical Optics A.C. Sparavigna

13



	[1] K. Iizuka, Engineering Optics, 1986, Springer-Verlag.

