
Users Guide for Corrfunc

Manodeep Sinha,
Department of Physics & Astronomy,

Vanderbilt University,
Nashville, TN 37235.
manodeep@gmail.com

February 3, 2016

mailto:manodeep@gmail.com

Contents

1 Introduction 1

2 Installation 1
2.1 Getting the Source . 1
2.2 Directory Structure . 2
2.3 Compilation Options . 3
2.4 Linux . 3
2.5 Mac OSX . 4
2.6 Running the tests . 4

3 Running the Codes 5
3.1 Input File Formats . 5

3.1.1 The fast-food file format . 5
3.2 Specifying the radial bins . 6
3.3 Running DD(r) . 7
3.4 Running ξ(rp, π) . 8
3.5 Running wp(rp) . 8

4 Code Design 9
4.1 Partitioning the Particles based on rmax . 10
4.2 How to Maintain Cache Locality within the Grid 10
4.3 The Pair-Counting Algorithms . 13

4.3.1 Pair-counting for DD(r) . 16
4.3.2 Pair-separations for the projected correlation functions ξ(rp, π),wp(rp) 17
4.3.3 Pair-counting for ξ(rp, π) . 17
4.3.4 Pair-counting for wp(rp) . 18

4.4 AVX intrinsics to update the npairs histogram 19

5 Calling the C Libraries 20
5.1 C bindings . 20

5.1.1 API for DD(r) . 20
5.1.2 API for ξ(rp, π) . 22
5.1.3 API for wp(rp) . 24

5.2 Python Bindings . 25

6 Benchmarks & Scaling 26
6.1 Scaling with Number of Particles . 26
6.2 Scaling with rmax . 26
6.3 Scaling with OpenMP threads . 26

I

7 Extending the Code 31
7.1 Different Type of Input Data File . 31
7.2 Computing a different type of correlation function 31
7.3 Using SSE instead of AVX . 32

8 License 32

1 Introduction

Correlation functions are a statistical measure of a density field and are widely used in large-
scale structure formation. Generally, the measurements are done once1 on survey data and
compared with model predictions in a Monte-Carlo Markov Chain. As such, the correlation
functions have to be measured repeatedly during an MCMC. The codes presented here are
meant to cover the typical scenarios of measuring correlation functions in theory-land. The
primary consideration in writing these codes is speed2– the codes presented here should
outperform any other CPU based correlation functions codes by a wide margin.
Cache locality and hand-written AVX intrinsics are the reasons why the code is very fast.
However, that also means that the code is not very portable. I have tried my best to ensure
that the codes work on Linux and MAC OSX. If it does not work for you, particularly if you
are on a reasonable Linux install, please email me. The API for the codes can be considered
frozen; I will not change the API without changing the MAJOR release version.
The paper associated with the codes is being (slowly) written by me. I hope to submit the
paper to Astronomy & Computing and release the codes simultaneously. Once I submit the
paper to arXiv, there will be an actual paper arXiv link here.

2 Installation

The only requirements for the code to install is a valid C compiler, with OpenMP support.
The AVX instruction set can only be used for CPU’s later than 2011 (Intel Sandy Bridge/
AMD Bulldozer or later).

2.1 Getting the Source

You can obtain the source in two ways: i) Clone the git repo (git clone https://github/

manodeep/Corrfunc/) or ii) Download the tar archive (Corrfunc.$MAJOR.$MINOR.$PATCH.tar.gz)
and unpack it in the directory where you wish to keep the files (tar xvzf

Corrfunc.$MAJOR.$MINOR.$PATCH.tar.gz). Here, $MAJOR, $MINOR and $PATCH refer to the

1which is why I have not bothered with releasing the codes to measure correlation functions on data
2The secondary consideration was maintainability and ease of use for others. I have versions of these

codes that are even faster but are much harder to modify/maintain by any one other than me !

1

http://en.wikipedia.org/wiki/Advanced_Vector_Extensions
mailto:manodeep@gmail.com
https://github/manodeep/Corrfunc/
https://github/manodeep/Corrfunc/
https://github.com/manodeep/Corrfunc/releases/latest

major, minor and patch release versions (current $MAJOR=0, $MINOR=2, $PATCH=0). I will
only change the $MAJOR version in the highly unlikely event that the API changes.

2.2 Directory Structure

The directory structure for the code looks like this:
corrfunc

paper

io...............................Source files for reading in data.

utils............................Source files for creating grids and

helper routines.
bin..............................Will be created to copy executable

files when you run ‘make install’.
include..........................Header files for static libraries.

lib..............................Will be created to copy static

libraries and python library after

you run ‘make’.
xi theory

benchmarks.....................IDL scripts to run benchmarks.

examples.......................Source files for example C bindings

using the static libraries.
python bindings................Source files to generate python

bindings.
tests..........................Correct outputs for tests.

data........................Mock galaxy catalogs for tests.

xi of r........................Source files for getting pair-counts

to compute ξ(r).
xi rp pi.......................Source files for ξ(rp, π).
wp.............................Source files for wp(rp).
xi.............................Source files for ξ(r) directly on a

periodic cube.
vpf............................Source files to compute the

counts-in-spheres statistic.
xi mocks

benchmarks.....................IDL scripts to run benchmarks for

mocks.
examples.......................Source files for example C bindings

using the static libraries for

mocks.
python bindings................Source files to generate python

bindings for mocks.
tests..........................Correct outputs for tests for mocks.

2

Table I. List of compilations options, what the options mean and their dependencies for the codes.

Option Type Option Name Default State Requires Notes

PERIODIC Enabled None Enables periodic boundary conditions.

Science OUTPUT RPAVG Disabled DOUBLE PREC
Outputs the average pair-separation in each bin. DD(r)
and wp(rp) can be slower by more than 2×, ξ(rp, π) is
less affected.

DOUBLE PREC Disabled None
Computations are done using double precision. Slower
and requires more RAM.

Code USE AVX Enabled CPU and compiler with AVX support
CPUs later than 2011 have AVX support. Code will run
much faster with this option.

USE OMP Enabled OpenMP capable compiler
Since clang does not support OpenMP yet, common.mk
will stop compilation with clang when this flag is
enabled.

data........................Mock galaxy catalogs for tests on a

sphere.
DDrppi.........................Source files for getting pair-counts

to compute ξ(rp, π) on mocks.

wtheta.........................Source files for getting pair-counts

to compute ω(θ) .

vpf............................Source files to compute the

counts-in-spheres statistic on

mocks.

2.3 Compilation Options

There are a few code options that control both the Science case and the code compilation.
All of these options are located in ‘common.mk’ in the base directory (‘corrfunc’). Edit the
first few lines to set these options (see Table. I for details) :

• Science options – PERIODIC, OUTPUT RPAVG

• Code options – DOUBLE PREC, USE AVX and USE OMP

Depending on your Science use-case and the cpu/compiler, you will want to set the different
options. Once you set those options, you should set the C compiler, CC (available options are
icc, gcc, clang). Once you have set the compiler, installing should be as simple as typing
‘make’ and ‘make install’ in the xi theory directory. All the libraries are intentionally
chosen to be static libraries just to avoid any path conflicts. However, on MAC OSX, you
may have to do more to get the library to work – so I have outlined some of the scenarios in
Section 2.5.

2.4 Linux

If the installation went well, you should have an executable called run correlations in the
examples directory. Type ./run correlations in the examples directory and you should
see the code in action. The C source file run correlations.c also serves as an example to
use the DD(r), ξ(rp, π) and wp(rp) libraries in C.

3

2.5 Mac OSX

There can be two issues on MACs. One is that the default gcc assembler supplied by XCode

or macports is too old and does not support AVX instructions even when the CPU does.
One way to get around this is by using the clang assembler even when compiling with
gcc. The easiest way to do it is by replacing the default assembler with the as script in
the paper directory (taken from this url). Copy this as script to the appropriate directory
(/opt/local/bin/ for me since I use macports gcc on my laptop).
Another problem might come with running the python example codes in the python bindings

directory. If you get an error message:

• Fatal Python error: PyThreadState Get: no current thread

when you run python call correlation functions.py, then the following steps might fix
the problem (these are also noted in the FAQ). This error occurs when the python library
used at compile time is not the same as the runtime python library. In all cases that I have
seen, this error occurs when using the conda package manager for python3.

• Change the relative path for the shared python library countpairs.so. You can change
the relative path by issuing the command:
install name tool -change libpython2.7.dylib `python-config --prefix`/lib/libpython2.7.dylib countpairs.so

• Add to the fallback library path environment variable.
export DYLD FALLBACK LIBRARY PATH=`python-config --prefix`/lib:$DYLD FALLBACK LIBRARY PATH

• If both of the above methods fail, then create a symbolic link
ln -s `python-config --prefix`/lib/libpython2.7.dylib

If all went well, then you should be able to run the run correlations code in the examples

directory as well as execute python call correlation functions.py in the python bindings

directory. In all of the above examples, I have assumed that the relevant python library is
libpython2.7.dylib (the default under conda) – you may have to replace it with your
python library version.

2.6 Running the tests

If installation went fine, then run make tests to run a suite of tests. If any of the tests
fail, then please email me. I have never seen the tests fail unless I made some coding error
while modifying the source. Once the tests pass successfully, type make install to install
the binaries into the bin directory.

3This behaviour is by design according to conda

4

https://gist.github.com/ancapdev/8059572
mailto:manodeep@gmail.com

3 Running the Codes

The codes should run straight out of the box. Note, the DD(r) and ξ(rp, π) can compute
both auto and cross-correlations with and without PERIODIC boundary conditions whereas
the wp(rp) code only computes the auto-correlation with PERIODIC boundary conditions.
Also, since both the DD(r) and ξ(rp, π) codes compute cross-correlations, pairs are double-
counted in both DD(r) and ξ(rp, π) codes. You could, in theory, make the auto-correlation
bit faster by only computing unique pairs (as is done in wp(rp), see Section 4.3.4 for details).
However, since the total run-time will dominated by the cross-correlation (the number of
randoms is typically an order of magnitude larger than the number of data points), I have
not implemented those optimizations for the auto-correlation calculations.

3.1 Input File Formats

The codes currently can handle these types of input data files:

• ascii – White-space separated columns, format code is ‘a’.

• csv – Comma-separated values, format code is ‘c’.

• fast-food – Fast-food, fortran binary format, format code is ‘f’. The fast-food file
format is described in detail in Section 3.1.1.

For the ascii and csv files, the code reads in the first three columns as the co-moving X/Y/Z

arrays. Note, that more columns can be present but the code will ignore those columns.

3.1.1 The fast-food file format

The fast-food format is a fortran binary format – all fields are surrounded with 4 bytes
padding. These value of these padding bytes is the number of bytes of data contained in
between the padding bytes. For example, to write out 20 bytes of data in a fast-food file
format would require a total of 4 + 20 + 4 = 28 bytes. The first and last 4 bytes of the file
will contain the value 20 – showing that 20 bytes of real data are contained in between the
two paddings.
The fast-food file consists of a header:

Listing 3.1 The header format for fast-food files

int idat [5];

float fdat [9];

float znow;

For the purposes of these correlation function codes, the only useful quantity is idat[1]

which contains N – the number of particles in the data file.

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

20 Int N 3 Integers 20

The next 56 bytes contain two other fields (10 floats + 4 padding bytes of 4 bytes each) and
their corresponding paddings. Since these bytes do not contain any data that are useful in
the context of these codes we will skip over the contents of these bytes. In io.c, I actually
fseek over these bytes.
After this header, the actual X/Y/Z values are stored. The first 4 bytes after the header
contains N*4 for float precision or N*8 for double precision where N=idat[1], is the number
of particles in the file. After all the X values there will be another 4 bytes containing N*4 or
N*8. Note, that even when the X/Y/Z arrays are written out in double-precision, the padding
is still 4 bytes. The blocks for Y/Z follow after the X block.

Byte-structure of the X/Y/Z arrays in a fast-food file

floats

0 1 2 3

N*4

X[0]

X[1]

...

X[N-1]

N*4

doubles

0 1 2 3 4 5 6 7

N*8

X[0]

X[1]

...

X[N-1]

N*8

3.2 Specifying the radial bins

The codes were intentionaly designed to read in a set of (somewhat) arbitrary4 set of bin
specifications from a file. This way, you can specify disjoint bin-edges as well as use 0.0 as a
bin edge (which would be impossible if log bins are assumed). The bins are to be specified
in a (white-space separated) text file in this manner:

r low[0] r high[0]

r low[1] r high[1]
...

r low[nbins-1] r high[nbins-1]

where, r low[i] and r high[i] are the left and right edges of the i’th bin respectively.
The text files should contains as many lines as the number of bins desired. The logbins

4I assume bins are non-overlapping

6

executable can be used to create such a text file containing log bins. The syntax for running
logbins is:
./logbins rmin rmax nbins > filename

An example of such a file with radial bins is the file bins in the tests directory. Note, all
of the three codes print the correlation function to stdout – so be sure to redirect stdout to
an output file.

3.3 Running DD(r)

To run the correlation function in 3-D, you will need to run the executable DD from either
the bin or xi of r directory. Note, that DD(r) double-counts the pairs (as does ξ(rp, π)).
The inputs to DD are:

• file1 – the file name for the first file.

• format1 – the file format for the first file. Options are a,c,f – see Section 3.1.

• file2 – the file name for the second file.

• format2 – the file format for the second file. Options are a,c,f – see Section 3.1.

• binfile – the file name for the file containing the bins (see Section 3.2)

• nthreads – the number of OpenMP threads to use (only required when the Makefile
option USE OMP is enabled)

Thus, the code can compute an auto-correlation (when file1,format1 and file2,format2

are identical) or a cross-correlation (when file1 and file2 are different). Out of the box,
some sample DD call directory) can be:

• auto-correlation – ./DD ../tests/data/gals Mr19.ff f ../tests/data/gals Mr19.ff f ../tests/bins 4 > Mr19 output.DD

• cross-correlation – ./DD ../tests/data/cmassmock Zspace.ff f ../tests/data/random Zspace.ff f ../tests/bins

4 > cmass output.DR

The output (printed to stdout) has nbins rows; each row contains the columns <Npairs>

<rpavg> <rmin> <rmax>, where the <rpavg> column contains 0.0 unless the Makefile option
OUTPUT RPAVG has been enabled. Here, each line of the output represents the i’th radial
bin.

7

3.4 Running ξ(rp, π)

To run the correlation function in 2-D for ξ(rp, π), you will need to run the executable DDrppi
from either the bin or xi rp pi directory. Note, that ξ(rp, π) double-counts the pairs (as
does DD(r)).The inputs to DDrppi are:

• file1 – the file name for the first file.

• format1 – the file format for the first file. Options are a,c,f – see Section 3.1.

• file2 – the file name for the second file.

• format2 – the file format for the second file. Options are a,c,f – see Section 3.1.

• binfile – the file name for the file containing the bins (see Section 3.2)

• pimax – the maximum distance to consider in the π direction. The code uses Z axis as
the π (line-of-sight) direction.

• nthreads – the number of OpenMP threads to use (only required when the Makefile
option USE OMP is enabled)

Thus, the code can compute an auto-correlation (when file1,format1 and file2,format2

are identical) or a cross-correlation (when file1 and file2 are different). Out of the box,
some sample DDrppi call directory) can be:

• auto-correlation – ./DDrppi ../tests/data/gals Mr19.ff f ../tests/data/gals Mr19.ff f ../tests/bins 40.0

4 > Mr19 output rppi.DD

• cross-correlation – ./DDrppi ../tests/data/cmassmock Zspace.ff f ../tests/data/random Zspace.ff f ../tests/bins

80.0 4 > cmass output rppi.DR

The output (printed to stdout) has nbins rows; each row contains the columns <Npairs>

<rpavg> <log(rmin)> <pi upper>, where the <rpavg> column contains 0.0 unless the
Makefile option OUTPUT RPAVG has been enabled. The code bins in 1 Mpc/h in the π di-
rection by default. Therefore, the total number of bins in the output file will be nbins×πmax,
where each radial bin is further broken into πmax bins along the π direction.
There is a code wprp in the xi rp pi directory that can combine the output of DDrppi for
DD, DR and RR counts and use Landy-Szalay estimator to produce a projected correlation
function.

3.5 Running wp(rp)

To run the projected correlation function, you will need to run the executable wp from either
the bin or wp directory. The inputs to wp are:

• boxsize – the boxsize for the periodic box.

8

• file – file name.

• format – file format. Options are a,c,f – see Section 3.1.

• binfile – the file name for the file containing the bins (see Section 3.2)

• pimax – the maximum distance to consider in the π direction. The code uses Z axis as
the π (line-of-sight) direction.

• nthreads – the number of OpenMP threads to use (only required when the Makefile
option USE OMP is enabled)

The wp code only computes an auto-correlation with PERIODIC boundary conditions, irre-
spective of the options set in common.mk.

• ./wp 420.0 ../tests/data/gals Mr19.ff f ../tests/bins 40.0 4 > Mr19 output.wp

The output (printed to stdout) has nbins rows; each row contains the columns <wp> <rpavg>

<rmin> <rmax> <Npairs>, where the <rpavg> column contains 0.0 unless the Makefile
option OUTPUT RPAVG has been enabled.

4 Code Design

The following sections are taken directly from the associated paper. The fundamental idea
behind the code can be broken down into the following steps:

• Given the max. separation, rmax, for the correlation function, grid the entire the
particle distribution with cell width rmax. In case of ξ(rp, π) and wp(rp), the X/Y bins
are rmax while the Z bins is πmax.

• In each 3-D cell, store all the particles that are located in that cell in contiguous X/Y/Z
arrays (see Listing 4.4). The particle data are contained in a structure defined in
Listing 4.1.

• Loop over all particles in every cell (this loop uses OpenMP parallelization if USE OMP
is enabled). This is the index1 loop in countpairs.c, countpairs rp pi.c and

countpairs wp.c. The loop variable for the loop over each particle is i.

• Now, for every particle in the input list, we only need to look at particles in the
neighbouring cells (see Fig. 1).

• Loop over neighbouring cells in all 3 dimensions. Corresponding variables are iiix,

iiiy, iiiz. These variables are constructed from the loop variables iix, iiy, iiz

to account for periodic boundary conditions. 5

5I apologize for this atrocious variable naming scheme.

9

• Once we have a triplet of iiix, iiiy, iiiz, we can construct the index for the
neighbouring cell. Variable index2 gives the index for the neighbouring cell.

• Compute the distances between target particle and some particle bunch (where a chunk
is 4 double or 8 floats) using AVX intrinsics. The slower, non-AVX version of the code
computes the distances serially and does not take advantage of the CPU architecture.
This is the j loop in countpairs.c, countpairs rp pi.c, countpairs wp.c.

• Check if any of the distances are less than rmax. If not, continue processing the data.
If yes, then update the histograms using AVX bit-masks and popcount.

• Continue until all particles in neighbouring cell are done.

4.1 Partitioning the Particles based on rmax

We need to compute pairwise distances to get the correlation function. A naive imple-
mentation of a correlation function would compute all possible pairwise separations with a
complexity O(N2). However, for almost all correlation functions, we are only interested in
separations less than a certain rmax, where rmax is much smaller than the domain of the point
distribution itself. We can then immediately see a way to prune pairs that can not possibly
be within rmax. If we impose a 3-d grid, with cell-size rmax, then two points separated by
more than one cell size (rmax) in any one dimension can not be within rmax of each other
(see Fig. 1 for a 2-D representation). Thus, given one point which is the target galaxy and a
grid with cell-size rmax, immediately allows us to prune all of the points that are not within
1 cell offset in each dimension. However, even with this pruning, the actual implementation
of the algorithm matters. For instance, the non-AVX version of the codes tend to run 2−3×
slower than the AVX version.

4.2 How to Maintain Cache Locality within the Grid

For all pairs around a given target galaxy, we need to compute distances to all points within
all neighbouring 3-d cells. We ensure that the particle locations are contiguous by moving
them into the following C struct in the order in which they arrive.

Listing 4.1 Definition of the cellarray structure. This structure contains the X/Y/Z positions of
all the particles that are in one 3-D cell.

typedef struct{

DOUBLE *x;

DOUBLE *y;

DOUBLE *z;

int64_t nelements;

} cellarray;

10

rmax

•

Figure 1. A 2-D grid showing the bin-lattice partitioning scheme. The bigger square show
the entire domain, the red circles show a random distribution of 100 particles. Let’s say we
want to compute all pairs for the target blue point, then we would only have to consider red
points that are within one cell (the dark shaded region). A circle with radius rmax is also
drawn to shown the actual pairs that will eventually count in the correlation function.

11

The code gridlink.c takes in an input list of 3 arrays X/Y/Z and grids them into a regular
3-D grid using the specified bins parameter max x size or max y size or max z size for the
X/Y/Z axes respectively. 6 Once the number of grid cells along each axes has been determined,
we allocate memory for the struct lattice. This struct lattice is a declared as an 1-D
array; the conversion from the three indices in 3-D (ix,iy,iz) to a single index (index)
happens through the last line in Listing 4.2. Such an 1-D array for struct lattice gives
much better OpenMP scaling.

Listing 4.2 Accessing as lattice[index] rather than lattice[ix][iy][iz].

int64_t totncells = nmesh_x * nmesh_y * nmesh_z;

cellarray *lattice = my_malloc(sizeof(cellarray), totncells);

int64_t *nallocated = my_malloc(sizeof (* nallocated), totncells);

int64_t index = ix*nmesh_y*nmesh_z + iy*nmesh_z + iz;

Now that we know the total number of cells in the entire domain, we need to allocated
memory to store the particles in each cell. However, there is no way to know the exact
number of particles in each cell without processing the entire data-set; so, we pre-allocate
with an estimate of the expected number of particles from the volume of each 3-D cell
(assuming a random distribution). Then, we can allocate memory for each of the X/Y/Z

arrays inside each 3-D cell:

Listing 4.3 Pre-allocating memory for the X/Y/Z arrays in struct cellarray.

for (int64_t index =0;index <totncells;index ++) {

lattice[index].x = my_malloc(sizeof(DOUBLE),expected_n);

lattice[index].y = my_malloc(sizeof(DOUBLE),expected_n);

lattice[index].z = my_malloc(sizeof(DOUBLE),expected_n);

lattice[index]. nelements =0;

nallocated[index] = expected_n;

}

Here, nallocated is an array that keeps track of the amount of memory alread allocated
for each cell. After this step, all cells have been allocated memory for expected n particles.
Now, we can begin to process the individual particles and assigning them to the 3-D cells (if
enough memory has already been allocated to assign the new particle).

Listing 4.4 Assigning the particles to the struct cellarray in the cell.

for (int64_t i=0;i<np;i++) {

ix=(int)((x[i]-xmin)*xinv) ;

6In practice, the bins may be further subdivided using the corresponding bin refine factors. These
bin refine factors seem to influence runtime the most, you should experiment with a few values of
bin refine factor and zbin refine factor to see what produces the best runtimes for your typical sce-
nario.

12

iy=(int)((y[i]-ymin)*yinv) ;

iz=(int)((z[i]-zmin)*zinv) ;

int64_t index = ix*nmesh_y*nmesh_z + iy*nmesh_z + iz;

if(lattice[index]. nelements == nallocated[index]) {

expected_n = nallocated[index]* MEMORY_INCREASE_FAC;

lattice[index].x = my_realloc(lattice[index].x

,sizeof(DOUBLE),expected_n ,’’lattice.x’’);

lattice[index].y = my_realloc(lattice[index].y

,sizeof(DOUBLE),expected_n ,’’lattice.y’’);

lattice[index].z = my_realloc(lattice[index].z

,sizeof(DOUBLE),expected_n ,’’lattice.z’’);

nallocated[index] = expected_n;

}

int64_t ipos=lattice[index]. nelements;

lattice[index].x[ipos] = x[i];

lattice[index].y[ipos] = y[i];

lattice[index].z[ipos] = z[i];

lattice[index]. nelements ++;

}

The loop goes over all of the particles and calculates the corresponding 3-D cell indices —
ix,iy,iz. With these 3 variables, the corresponding 1-D index, index, can be calculated.
The next lines check (and reallocate memory, if necessary) to ensure that enough memory has
been allocated to the struct lattice[index] to accommodate this new particle. The last
5 lines are simply assigning the particle into the appropriate struct lattice[index]. Once
all the particles have been assigned, the cells contain contiguous X/Y/Z arrays describing the
original particle distribution.

4.3 The Pair-Counting Algorithms

After running through gridlink, the particle distribution is stored in contiguous X/Y/Z

inside the 1-D array of struct cellarray. To find all possible pairs, we first need to loop
over all particles in the first data-set.

Listing 4.5 Looping over all cells in the first data-set.

for (int64_t index1 =0; index1 <totncells;index1 ++) {

const cellarray *first = &lattice1[index1];

const DOUBLE *x1 = first ->x;

const DOUBLE *y1 = first ->y;

const DOUBLE *z1 = first ->z;

13

}

Now, we have the target cell pointer and the associated x1/y1/z1 array pointers. Next, we
need to get the indices for the neighbouring cells in 3-D. In order to do that, first the 1-D
index, index1 needs to be converted into a set of three 3-D indices, ix, iy, iz. Listing 4.6
shows the conversion from the 1-D index to the corresponding 3-D indices.

Listing 4.6 Reconstructing 3-D index for first cell in the first data-set.

const int iz = index1 % nmesh_z ;

const int ix = index1 / (nmesh_z * nmesh_y) ;

const int iy = (index1 - iz - ix*nmesh_z*nmesh_y)/nmesh_z ;

After executing the code segment in Listing 4.6, we have the full 3-D indices for the target
cell. Now, we have to find all of the indices for the neighbouring cells that can poten-
tially satisfy the rmax constraint. This requires considering all 3-D cells that are located
within bin refine factor of the target cell (for each dimension). Since the target cell,
first has a 3-D X index of ix, this means all cells that have X indices in the range ix ±
bin refine factor can potentially have pairs that satisfy the rmax constraint. However, in
case of PERIODIC boundary conditions, we also have to ensure that the indices (and the
actual particle positions) wrap around on the other side of the cube. Listing 4.7 shows how
the looping over neighbouring cells is done for the X dimension. Similar segments follow in
the actual code for the Y/Z dimensions.

Listing 4.7 Looping over all the neighbouring cells and taking care of PERIODIC boundary
conditions.

for(int iix=-bin_refine_factor;iix <= bin_refine_factor;iix++){

int iiix;

#ifdef PERIODIC

DOUBLE off_xwrap =0.0;

if(ix + iix >= nmesh_x) {

off_xwrap = -xdiff;

} else if (ix + iix < 0) {

off_xwrap = xdiff;

}

iiix=(ix+iix+nmesh_x)%nmesh_x;

#else

iiix = iix+ix;

if(iiix < 0 || iiix >= nmesh_x) {

continue;

}

#endif
...

14

Similar chunks of code for Y/Z.
...
const int64_t index2 = iiix*nmesh_y*nmesh_z + iiiy*nmesh_z +

iiiz;

Once all of the three 3-D indices for the neighbouring cell has been determined, we can
reconstruct the 1-D index, index2 for that cell. With this 1-D index, we can create a pointer,
second, that contains the cellarray pointer to the neighbouring cell. In Listing 4.8, we
show how the neighbouring cell and the associated x2/y2/z2 array pointers are defined.

Listing 4.8 Dereferencing the pointers for the neighbouring (second) cell under consideration.

const cellarray *second = &lattice2[index2];

const DOUBLE *x2 = second ->x;

const DOUBLE *y2 = second ->y;

const DOUBLE *z2 = second ->z;

At this point, we have a set of x1/y/1/z1 arrays with first->nelements elements represent-
ing the first data-set. We also have another set of x2/y2/z2 arrays with second->nelements

elements representing the second data-set. Now, we have to compute all possible pair-wise
separations between these two data-sets. We begin with a loop over the elements in first:

Listing 4.9 Looping over all particles in the first cell and accounting for PERIODIC boundary
conditions.

for(int64_t i=0;i<first ->nelements;i++) {

DOUBLE x1pos=x1[i];

DOUBLE y1pos=y1[i];

DOUBLE z1pos=z1[i];

#ifdef PERIODIC

x1pos += off_xwrap;

y1pos += off_ywrap;

z1pos += off_zwrap;

#endif

If PERIODIC boundary conditions are enabled, then off xwrap, off ywrap and off zwrap

have been declared and initialized in Listing 4.7. By wrapping the elements if the first
data-set, we can avoid the wrapping operations in the j-loop over all particles in second.

Listing 4.10 AVX intrinsics for looping over all particles in the second cell. PERIODIC boundary
conditions have already been accounted for in x1pos,y1pos,z1pos variables.

const AVX_FLOATS m_x1pos = AVX_SET_FLOAT(x1pos);

const AVX_FLOATS m_y1pos = AVX_SET_FLOAT(y1pos);

const AVX_FLOATS m_z1pos = AVX_SET_FLOAT(z1pos);

15

int64_t j;

for(j=0;j<=(second ->nelements -NVEC);j+=NVEC) {

const AVX_FLOATS x2pos = AVX_LOAD_FLOATS_UNALIGNED (&x2[j]);

const AVX_FLOATS y2pos = AVX_LOAD_FLOATS_UNALIGNED (&y2[j]);

const AVX_FLOATS z2pos = AVX_LOAD_FLOATS_UNALIGNED (&z2[j]);

const AVX_FLOATS m_xdiff = AVX_SUBTRACT_FLOATS(m_x1pos ,x2pos);

const AVX_FLOATS m_ydiff = AVX_SUBTRACT_FLOATS(m_y1pos ,y2pos);

const AVX_FLOATS m_zdiff = AVX_SUBTRACT_FLOATS(m_z1pos ,z2pos);

The three codes DD(r), ξ(rp, π) and wp(rp) diverge somewhat after this point. For DD(r),
we need to calculate the full 3-D separation, whereas for ξ(rp, π) and wp(rp) the separation
is the projected distance. I will discuss further implementations in the following sub-sections
dedicated to each code.

4.3.1 Pair-counting for DD(r)

Pair-counting for DD(r) is the most straight-forward. The squared 3-D separation, r2, is
simply the sum of the squared differences in each X/Y/Z dimensions.

Listing 4.11 Calculating squared separations in DD(r).

const AVX_FLOATS m_xdiff_sqr = AVX_SQUARE_FLOAT(m_xdiff);

const AVX_FLOATS m_ydiff_sqr = AVX_SQUARE_FLOAT(m_ydiff);

const AVX_FLOATS m_zdiff_sqr = AVX_SQUARE_FLOAT(m_zdiff);

const AVX_FLOATS m_xydiff_sqr_sum =

AVX_ADD_FLOATS(m_xdiff_sqr ,m_ydiff_sqr);

AVX_FLOATS r2 = AVX_ADD_FLOATS(m_zdiff_sqr ,m_xydiff_sqr_sum);

Once all the NVEC separations have been computed, we use bit-masks to check if any sep-
arations fall within the range sqr rpmin and sqr rpmax. If not, we continue with the
j-loop.

Listing 4.12 Bit-masks in DD(r).

m_mask_left = AVX_COMPARE_FLOATS(r2,m_sqr_rpmax ,_CMP_LT_OS);

if(AVX_TEST_COMPARISON(m_mask_left) == 0) {

continue;

}

const AVX_FLOATS m_mask = AVX_BITWISE_AND(m_mask_left ,

AVX_COMPARE_FLOATS(r2, m_sqr_rpmin , _CMP_GE_OS));

if(AVX_TEST_COMPARISON(m_mask) == 0) {

continue;

16

}

r2 = AVX_BLEND_FLOATS_WITH_MASK(m_sqr_rpmax , r2 , m_mask);

m_mask_left = AVX_COMPARE_FLOATS(r2,m_sqr_rpmax ,_CMP_LT_OS);

If the code reaches past this bit-mask section, then at least one separation is within range.
In that case, we use the code in Listing 4.18 to update the npairs array (and the rpavg

array if OUTPUT RPAVG is enabled).

4.3.2 Pair-separations for the projected correlation functions ξ(rp, π),wp(rp)

Listing 4.13 shows the squared distance calculation for ξ(rp, π) and wp(rp). r2 is simply the
projected separation in the X-Y plane.

Listing 4.13 Calculating squared separations in ξ(rp, π) and wp(rp).

const AVX_FLOATS m_xdiff_sqr = AVX_SQUARE_FLOAT(m_xdiff);

const AVX_FLOATS m_ydiff_sqr = AVX_SQUARE_FLOAT(m_ydiff);

AVX_FLOATS r2 = AVX_ADD_FLOATS(m_xdiff_sqr ,m_ydiff_sqr);

4.3.3 Pair-counting for ξ(rp, π)

Listing 4.14 Bit-masks in ξ(rp, π).

const AVX_FLOATS m_mask_pimax =

AVX_COMPARE_FLOATS(m_zdiff ,m_pimax ,_CMP_LT_OS);

const int test = AVX_TEST_COMPARISON(m_mask_pimax);

if(test == 0) {

continue;

}

const AVX_FLOATS m1 =

AVX_COMPARE_FLOATS(r2,m_sqr_rpmin ,_CMP_GE_OS);

r2 = AVX_BLEND_FLOATS_WITH_MASK(m_sqr_rpmax ,r2 ,m_mask_pimax);

m_mask_left = AVX_COMPARE_FLOATS(r2,m_sqr_rpmax ,_CMP_LT_OS);

const AVX_FLOATS m_mask = AVX_BITWISE_AND(m1,m_mask_left);

int test1 = AVX_TEST_COMPARISON(m_mask);

if(test1 == 0) {

continue;

}

m_zdiff = AVX_BLEND_FLOATS_WITH_MASK(m_pimax , m_zdiff , m_mask);

#ifdef OUTPUT_RPAVG

union_mDperp.m_Dperp = AVX_SQRT_FLOAT(r2);

17

#endif

union_pibin.m_ibin =

AVX_TRUNCATE_FLOAT_TO_INT(AVX_MULTIPLY_FLOATS(m_zdiff ,m_inv_dpi));

In the ξ(rp, π) code, we have to update a two dimensional npairs(rp,π) array. This means
we can not directly update the npairs matrix and instead have to use a separate loop (this
loop is typically only invoked for DD(r) and wp(rp) when OUTPUT RPAVG is enabled).
As a result of this extra loop, ξ(rp, π) is 2− 3× slower than DD(r) and wp(rp).

Listing 4.15 Updating the npairs matrix in ξ(rp, π).

for(int jj=0;jj <NVEC;jj++) {

int rpbin = union_rpbin.ibin[jj];

int pibin = union_pibin.ibin[jj];

int ibin = rpbin*(npibin +1) + pibin;

npairs[ibin]++;

#ifdef OUTPUT_RPAVG

rpavg [ibin] += union_mDperp.Dperp[jj];

#endif

}

4.3.4 Pair-counting for wp(rp)

Since the pair-counting in wp(rp) always assumes PERIODIC boundary conditions and only
computes an auto-correlation, extra optimizations are possible in the wp(rp) calculation.
First, each individual cell in the struct lattice elements are sorted based on their Z

arrays. The X/Y arrays are also re-ordered simultaneously. Once all the Z values inside a cell
have been sorted, we can avoid double-counting the pairs by changing the iiz loop to be:

Listing 4.16 Optimizing the loop over neighbouring cells z in wp(rp).

for(int iiz =0;iiz <= zbin_refine_factor;iiz++)

instead of

for(int iiz=-zbin_refine_factor;iiz <= zbin_refine_factor;iiz++)

Another advantage of sorting the Z values is earlier termination inside the actual calculation.
The Listing 4.17 shows how to break early from the j-loop. Since the z2 values are always
stored in increasing order, if all values of zdiff:=z2[j:j+NVEC-1]-z1 are greater than πmax,
then none of the zdiff values in future iterations of the j-loop can be smaller than πmax.
When the code encounters such a scenario, it updates the j variable to second->nelements

to ensure that the serial section of the code is not executed and breaks out the AVX j-loop.

18

Listing 4.17 AVX intrinsics for calculating separations in wp(rp) and checking for early termina-
tion.

const AVX_FLOATS m_zdiff =

AVX_SUBTRACT_FLOATS(m_z2 ,m_zpos);//z2[j:j+NVEC -1] - z1

AVX_FLOATS m_mask_pimax =

AVX_COMPARE_FLOATS(m_zdiff ,m_pimax ,_CMP_LT_OS);

const int test = AVX_TEST_COMPARISON(m_mask_pimax);

if(test == 0) {

j = second ->nelements;

break;

}

4.4 AVX intrinsics to update the npairs histogram

This section explains the AVX intrinsics used to update the pair-counts histogram, npairs.7

If the code execution reaches this loop, at least one (squared) pair separation falls within
the range sqr rpmin and sqr rpmax, where sqr rpmin is the squared lower radial limit of
the first bin and sqr rpmax is the squared upper limit of the last bin (equivalent to rmax

2 in
this user-guide). Since the pairs are more likely to occur in the largest separation bins, the
loop goes backwards from the last bin to the first and uses early loop-termination in case all
possible pairs have already been accounted for.

Listing 4.18 AVX intrinsics for updating the npairs histgram for DD(r) and wp(rp).

for(int kbin=nrpbin -1;kbin >=1;kbin --) {

const AVX_FLOATS m1 =

AVX_COMPARE_FLOATS(r2,m_rupp_sqr[kbin -1], _CMP_GE_OS);

const AVX_FLOATS m_bin_mask = AVX_BITWISE_AND(m1,m_mask_left);

m_mask_left =

AVX_COMPARE_FLOATS(r2,m_rupp_sqr[kbin -1], _CMP_LT_OS);

const int test2 = AVX_TEST_COMPARISON(m_bin_mask);

npairs[kbin] += AVX_BIT_COUNT_INT(test2);

#ifdef OUTPUT_RPAVG

m_rpbin = AVX_BLEND_FLOATS_WITH_MASK(m_rpbin ,m_kbin[kbin],

m_bin_mask);

#endif

const int test3 = AVX_TEST_COMPARISON(m_mask_left);

if(test3 == 0) break;

}

7The thread-local version in wp(rp) is called local npair.

19

Note that rupp sqr (and its AVX equivalent, m rupp sqr) contains the squared upper limits
for the bins. Thus, when considering bin kbin, m rupp sqr[kbin-1] gives the squared lower
radial limit for the bin while m rupp sqr[kbin] gives the squared upper limit for bin kbin.
Here, m1 is the mask that contains all separations that satisfy r2 ≥ rupp sqr[kbin-1],
while the mask m mask left contains those squared separations that satisfy r2 < rupp sqr[kbin].
Note, that m mask left is either computed before entering the kbin loop or during a previ-
ous iteration of the same kbin loop. The AVX variable m bin mask then contains the bitwise
and of m1 and m mask left – the mask for the squared separations that fall into kbin. The
variable test2 contains an integer composed of the upper set-bits of the mask m bin mask

– thus, contains only 4/8 useful bits for float/double precision calculations respectively.
The npairs pair-counts is then updated using a hardware popcnt instruction. The last two
lines check if there are any more pairs left that satisfy the lower bin-ranges; if not, the loop
is terminated with a break statement.

5 Calling the C Libraries

All of the correlation function codes create a corresponding static library rather than a
dynamic/shared library. This was a design decision intended to minimize path-issues for the
end-user. After the libraries have been created, it is fairly straightforward to use them in an
external C/python code. Be absolutely sure to pass arrays for the correct type – float arrays if
you did not use DOUBLE PREC (default) or double arrays if you did use DOUBLE PREC.
Also, only include headers from the xi theory/include directory – those headers correspond
to the actual static library. DO NOT include the header files from the xi of r/xi rp pi/wp
directories – these headers do not contain the correct function signature for the compilation
flags used to generate the static libraries.

5.1 C bindings

The examples contains the files run correlations.c that shows how to use the three types
of correlation function libraries from C. Essentially, the process consists of including the
appropriate header file and passing the arrays (of the correct float/double type) into the
functions. Make sure to include the static library in the linking step to create a stand-alone
executable (see the Makefile in the examples directory).

5.1.1 API for DD(r)

The interface for the 3-D correlation function, DD(r), is through the countpairs function.
Here is the corresponding function signature:

Listing 5.1 API for the 3-D DD(r).

results_countpairs * countpairs(

20

const int64_t ND1 , const DOUBLE * const X1, const DOUBLE * const

Y1 , const DOUBLE * const Z1 ,

const int64_t ND2 , const DOUBLE * const X2, const DOUBLE * const

Y2 , const DOUBLE * const Z2 ,

#ifdef USE_OMP

const int numthreads ,

#endif

const int autocorr ,

const char *binfile);

The parameters to the function are:

• ND1 – number of elements in the first data-set.

• X1 – the array of X-values in the first data-set.

• Y1 – the array of Y-values in the first data-set.

• Z1 – the array of Z-values in the first data-set.

• ND2 – number of elements in the second data-set.

• X2 – the array of X-values in the second data set.

• Y2 – the array of Y-values in the second data set.

• Z2 – the array of Z-values in the second data set.

• numthreads – the number of threads to use (if USE OMP is enabled in common.mk).

• autocorr – if an auto-correlation is being calculated (1 implies auto-correlation, flag
is used for some runtime optimizations).

• binfile – file name that contains the radial bins. See Section 3.2 for details on how
to create this file.

The output from countpairs is contained in struct results countpairs. The structure
definition is:

Listing 5.2 Structure definition for the output of DD(r).

typedef struct{

uint64_t *npairs;

DOUBLE *rupp;

DOUBLE *rpavg;

int nbin;

} results_countpairs;

void free_results(results_countpairs ** results);

21

The fields in the structure correspond to:

• npairs – array containing the pair-counts.

• rupp – array containing the upper limits of the bins. rupp[0] gives the lower-limit of
the first radial bin.

• rpavg – array containing the average value of the separations for all the pairs that
fell into the bin. Will contain meaningful values if OUTPUT RPAVG is defined in
common.mk; identically 0.0 otherwise.

• nbin – the number of radial bins used. Note that the actual pair-counts are stored in
the index range [1,nbin-1]. The zero’th bin contains garbage for all of the arrays in
this struct results countpairs.

After the results structure has been used, use free results(&results countpairs) to free
allocated memory.

5.1.2 API for ξ(rp, π)

The interface for the 2-D correlation function, ξ(rp, π), is through the countpairs rp pi

function. Here is the corresponding function signature:

Listing 5.3 API for the 2-D ξ(rp, π)

results_countpairs_rp_pi * countpairs_rp_pi(

const int64_t ND1 , const DOUBLE *X1, const DOUBLE *Y1, const

DOUBLE *Z1,

const int64_t ND2 , const DOUBLE *X2, const DOUBLE *Y2, const

DOUBLE *Z2,

#ifdef USE_OMP

const int numthreads ,

#endif

const int autocorr ,

const char *binfile ,

const double pimax);

The parameters to the function are:

• ND1 – number of elements in the first data-set.

• X1 – the array of X-values in the first data-set.

• Y1 – the array of Y-values in the first data-set.

• Z1 – the array of Z-values in the first data-set.

22

• ND2 – number of elements in the second data-set.

• X2 – the array of X-values in the second data set.

• Y2 – the array of Y-values in the second data set.

• Z2 – the array of Z-values in the second data set.

• numthreads – the number of threads to use (if USE OMP is enabled in common.mk).

• autocorr – if an auto-correlation is being calculated (1 implies auto-correlation, flag
is used for some runtime optimizations).

• binfile – file name that contains the radial bins. See Section 3.2 for details on how
to create this file.

• pimax – the maximum line-of-sight distance (assumed to be the Z axis) to use.

The output from countpairs rp pi is contained in struct results countpairs rp pi.
The structure definition is:

Listing 5.4 Structure definition for the output of ξ(rp, π)

typedef struct{

uint64_t *npairs;

DOUBLE *rupp;

DOUBLE *rpavg;

DOUBLE pimax;

int nbin;

int npibin;

} results_countpairs_rp_pi;

void free_results_rp_pi(results_countpairs_rp_pi ** results);

The fields in the structure correspond to:

• npairs – array containing the pair-counts. Number of elements in the array is (npibin+1)×(nbin+1).

• rupp – array containing the upper limits of the bins. rupp[0] gives the lower-limit of
the first radial bin. Number of elements in the array is nbin.

• rpavg – array containing the average value of the separations for all the pairs that
fell into the bin. Will contain meaningful values if OUTPUT RPAVG is defined in
common.mk; identically 0.0 otherwise. Number of elements in the array is (npibin+1)×(nbin+1).

• pimax – the maximum line-of-sight distance used in the bins.

23

• nbin – the number of radial bins used. Note that the actual pair-counts are stored in
the index range [1,nbin-1]. The zero’th bin contains garbage for all of the arrays in
this struct results countpairs rp pi.

• npibin – the number of π bins used. The total number of elements in the arrays in
the struct countpair rp pi is (npibin+1)×(nbin+1). As usual, meaningful data is
only contained in the radial bin range [1,nbin-1].

After the results structure has been used, use free results rp pi(&results countpairs rp pi)

to free allocated memory.

5.1.3 API for wp(rp)

The interface for the projected correlation function, wp(rp), is through the countpairs wp

function. The code always uses PERIODIC boundary conditions, irrespective of the settings
in common.mk. Here is the corresponding function signature8:

Listing 5.5 API for the wp(rp).

results_countpairs_wp *countpairs_wp(

const int64_t ND1 , DOUBLE * restrict X1, DOUBLE * restrict Y1,

DOUBLE * restrict Z1,

const double boxsize ,

#ifdef USE_OMP

const int numthreads ,

#endif

const char *binfile ,

const double pimax);

The parameters to the function are:

• ND1 – number of elements in the data-set.

• X1 – the array of X-values in the data-set.

• Y1 – the array of Y-values in the data-set.

• Z1 – the array of Z-values in the data-set.

• boxsize – the boxsize that fully contains the X/Y/Z values.

• numthreads – the number of threads to use (if USE OMP is enabled in common.mk).

• binfile – file name that contains the radial bins. See Section 3.2 for details on how
to create this file.

8The X1/Y1/Z1 arrays are not declared with const qualifiers because I sort those arrays on Z in the
countpairs wp function.

24

• pimax – the maximum line-of-sight distance (assumed to be the Z axis) to use.

The output from countpairs wp is contained in struct results countpairs wp. The
structure definition is:

Listing 5.6 Structure definition for the output of wp(rp)

typedef struct{

uint64_t *npairs;

DOUBLE *wp;

DOUBLE *rupp;

DOUBLE *rpavg;

DOUBLE pimax;

int nbin;

} results_countpairs_wp;

void free_results_wp(results_countpairs_wp ** results);

The fields in the structure correspond to:

• npairs – array containing the pair-counts. Number of elements in the array is nbin.

• wp – array containing the actual wp values.

• rupp – array containing the upper limits of the bins. rupp[0] gives the lower-limit of
the first radial bin. Number of elements in the array is nbin.

• rpavg – array containing the average value of the separations for all the pairs that
fell into the bin. Will contain meaningful values if OUTPUT RPAVG is defined in
common.mk; identically 0.0 otherwise. Number of elements in the array is nbin.

• pimax – the maximum line-of-sight distance used in the bins.

• nbin – the number of radial bins used. Note that the actual pair-counts are stored in
the index range [1,nbin-1]. The zero’th bin contains garbage for all of the arrays in
this struct results countpairs wp.

After the results structure has been used, use free results wp(&results countpairs wp)

to free allocated memory.

5.2 Python Bindings

The python bindings directory contains python bindings for python 2.x. Note that python3
is not supported out of the box9. If all went well, then typing python call correlation functions.py

should run the example python code. If you get an error (and you are on a MAC), then refer

9In the future, I might switch to cython to cover both python2 and python3

25

to Section 2.5 or the FAQ. If you edit the common.mk file and compile for double precision

arithmetic, then be sure to change the line dtype=np.float32 to dtype=np.float64. Oth-
erwise, you will get a TypeError at runtime.

6 Benchmarks & Scaling

In this section we present the runtimes and scalings for different number of particles, rmax

and OpenMP threads for the codes. For all of the scaling tests, only an auto-correlation
calculation was used and the fiducial catalog contains ∼ 1.2 million galaxies on a periodic
cube of side 420 h−1Mpc.

6.1 Scaling with Number of Particles

In Fig. 2, we show the scaling for the three codes with the number of particles. For this
scaling, we subsampled the fiducial mock to attain 10 logarithmic steps in particle number
ranging from 1.2× 104 to 1.2× 106. All the timings are generateed using 1 thread.

6.2 Scaling with rmax

The code runtime increases drastically as the largest requested separation, rmax increases.
Roughly speaking, the runtimes scale as O(r2max) with DD(r) showing the strongest depen-
dence on rmax. This is from the πmax dependence of ξ(rp, π) and wp(rp). Even when rmax is
large, the effective number of particles per cell only grows as r2max and not r3max (as it does
for DD(r)). If we extend the benchmarks to larger rmax, we will see a O(r3max) dependence
for

6.3 Scaling with OpenMP threads

All of the codes presented here scale reasonably well (efficiency & 80%) up to 10 OpenMP
threads. Beyond that, the work-load is scaling efficiency starts dropping off and plateaus for
nthreads & 20.

26

Figure 2. Scaling with particle number for DD(r), ξ(rp, π), wp(rp). The timings are ob-
tained using 1 OpenMP thread.

27

Figure 3. Scaling with rmax for DD(r), ξ(rp, π), wp(rp). The timings are obtained with 4
OpenMP threads.

28

Figure 4. OpenMP scaling for DD(r), ξ(rp, π), wp(rp). The fiducial mock used here contains
∼ 106 particles in a 420.0 h−1Mpc cube.

29

Table II. OpenMP scaling for the three codes. Efficiencies are defined as Speedup/Nthreads. Note, that
DD(r) has super-linear scaling with nthreads up to ∼ 10 threads.

Nthreads
Efficiency[%]

Periodic Boxes Spherical Geometry

DD(r) ξ(rp, π) wp(rp) ξ(r) DD(rp, π) DD(θ) DR(rp, π) DR(θ)

1 100 100 100 100 100 100 100 100
2 115 98 98 106 96 94 97 98
3 113 95 91 102 91 83 91 92
4 111 96 95 101 85 78 92 89
5 108 94 93 99 87 76 86 87
6 106 91 91 96 89 70 84 77
7 105 90 89 96 84 68 97 80
8 105 92 88 92 76 59 95 75
9 101 88 83 91 72 65 89 75
10 101 84 83 88 72 57 78 75
11 97 87 67 84 74 56 77 69
12 96 82 75 87 70 53 79 69
13 94 84 76 82 67 47 73 71
14 94 81 77 80 67 44 78 63
15 91 78 78 78 62 43 66 61
16 89 83 73 80 57 44 66 58

30

7 Extending the Code

7.1 Different Type of Input Data File

All of the codes use io.c in the io sub-directory to read-in the data. If you want to specify
a different file format, the easiest way would be to edit io.c. Decide on the file format code
and add another strncmp case in io.c. Remember that the x/y/z are declared as void

pointers, so you can not directly reference the x/y/z pointers. If you do add support for
a different file-type, please submit a pull request and I will be happy to merge it into the
code-base.

7.2 Computing a different type of correlation function

Let’s say, you want to compute a marked correlation function. Now, you will need to read-
in/create the marks for each individual point. Here are the steps you will need to create
your custom correlation function code:

1. Add the data fields into the cellarray structure definition (see Listing 4.1.

2. Add in the memory allocation for the fields in gridlink.c after the malloc for X/Y/Z
pointers (see Listing 4.3).

3. Extend gridlink.c to accept additional arrays and assign those arrays into struct

lattice (see Listing 4.4).

4. Enable OUTPUT RPAVG and DOUBLE PREC (this is not required, but probably
the easiest way to create a custom correlation function calculation).

5. Declare and zero-initialize a results array that will contain your custom correlation
function. Follow the implementation in the code for calculating rpavg.

6. Add in the AVX arrays that load your custom data fields in the j loop in the
countpairs* functions.

7. Add your custom correlation function weight into the results array. Combine thread-
local arrays into a global one in case USE OMP is selected.

8. Add the custom correlation function field to the corresponding struct results countpairs*.
Assign the results array into the struct results countpairs*.

9. Add a call to free(your field) in the corresponding function free results countpairs*.

31

7.3 Using SSE instead of AVX

If your CPU is too old and does not support AVX, then you can still use SSE instrinsics
to compute the correlation functions. However, this will require replacing all of the AVX
sections with corresponding SSE intrinsics. Email me and I will guide you through the
conversion process.

8 License

The code has been released under the MIT License.

Permission is hereby granted, free of charge, to any person

obtaining a copy of this software and associated documentation

files (the ‘‘Software’’), to deal in the Software without

restriction, including without limitation the rights to use,

copy, modify, merge, publish, distribute, sublicense, and/or

sell copies of the Software, and to permit persons to whom

the Software is furnished to do so, subject to the following

conditions:

The above copyright notice and this permission notice shall

be included in all copies or substantial portions of the

Software.

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY

KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS

OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR

OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT

OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

32

mailto:manodeep@gmail.com

	Introduction
	Installation
	Getting the Source
	Directory Structure
	Compilation Options
	Linux
	Mac OSX
	Running the tests

	Running the Codes
	Input File Formats
	The fast-food file format

	Specifying the radial bins
	Running xi(r)
	Running xi(rp,pi)
	Running wp(rp)

	Code Design
	Partitioning the Particles based on rmax
	How to Maintain Cache Locality within the Grid
	The Pair-Counting Algorithms
	Pair-counting for xi(r)
	Pair-separations for the projected correlation functions xi(rp,pi), wp(rp)
	Pair-counting for xi(rp,pi)
	Pair-counting for wp(rp)

	AVX intrinsics to update the npairs histogram

	Calling the C Libraries
	C bindings
	API for xi(r)
	API for xi(rp,pi)
	API for wp(rp)

	Python Bindings

	Benchmarks & Scaling
	Scaling with Number of Particles
	Scaling with rmax
	Scaling with OpenMP threads

	Extending the Code
	Different Type of Input Data File
	Computing a different type of correlation function
	Using SSE instead of AVX

	License

