Cache is King: Presenting a Suite of Fast, Correlation
Function Codes

Manodeep Sinha?

26902 Stevenson Center, Department of Physics € Astronomy, Vanderbilt University,
Nashville, TN 37235

Abstract

In the era of ‘Big Data’, we need special computing techniques to both pro-
cess the raw data as well generate and evaluate models to test our theories.
In particular, large galaxy surveys like the Sloan Digitial Sky Survey requires
computing a variety of n-point statistics, e.g., the 2-pt projected correlation
function, w,(r,). While measuring the correlation function in the data is not
a bottle-neck, modeling the observed galaxy distribution correctly requires
a MCMC chain and repeated measurements of w,(r,). To efficiently mea-
sure the correlation functions, we need to write code that accounts for cache
hierarchies while simultaneously exploits the wide vector registers present
in the relatively modern CPUs. Here, I present a suite of OpenMP paral-
lelized, clustering codes that exploit current CPU micro-architecture with
hand-written AVX intrinsics. Given a 3-D distribution of points in a carte-
sian system, these codes compute spatial clustering statistics 3-D correlation
functions DD(r), £(r), &(rp, m); 2-point projected correlation function w,(r,);
counts-in-spheres p/N (7). For a 3-D particle distribution on the sky, the codes
can compute projected correlation function DD(r,, 7), angular correlation
function DD(0) as well as pN(r). These codes are designed to be blazing
fast and can compute wy(r,) for O(1 million) galaxies in ~ 6 seconds on a
post-2011 CPU, which is a factor of few faster than the existing public cor-
relation function routines. The accompanying codes are publicly available at
https://github.com/manodeep/Corrfunc/.

Keywords: methods: numerical, (cosmology:) large-scale structure of
universe,

Email address: manodeep.sinha@vanderbilt.edu (Manodeep Sinha)

Preprint submitted to Astronomy and Computing February 3, 2016

1. INTRODUCTION

The large-scale structure of the Universe can be now measured using
O(million) galaxies using data from current surveys like SDSS/BOSS sur-
veys. Upcoming surveys like LSST will probe even deeper and wider and
aim to target on O(10’s of million) galaxies. With such a large galaxy data,
we can measure the galaxy density field fairly accurately in the data. While
the number of galaxies observed in these current and upcoming surveys is
large, we have to compute the galaxy density fields only once. Thus, even a
slow, correlation function code will be fine when measuring the data correla-
tion function. However, predicting this galaxy density field data will require
an even larger number of model galaxies — increasing the computational load
of determining the density field even further. Typically, the modeling pro-
cess also involves an MCMC — requiring ~ millions of evaluations of the
correlation function.!

Modern cpu’s have a hierarchy of memory locations; the smallest (and
fastest) are physically located close to the computing cores while the largest
(and slowest) are the farthest. All cpu instructions need to be carried out
from cpu registers - there are ~ 100 registers typically available and the access
times can be thought of as instantaneous. Next up is the L1 cache divided
into L1D for data and L1I for instructions cache. Since the cpu always
necessarily executes instructions that are close together, we will ignore the
instruction cache from now on. Typical L1 cache sizes range from 64KB
to 128 KB (shared between instruction and data). Next level up is the L2
cache, typically ~ 256KB to 1 MB. The last level cache or the L3 cache is
usually shared across all cores on the socket and can be 10 MB to 40 MB.

2. Methods

We need to compute pairwise distances to get the correlation function.
A naive implementation of a correlation function would compute all possible
pairwise separations with a complexity O(N?). However, for almost all cor-
relation functions, we are only interested in separations less than a certain

1T will assume that creating the models themselves is much faster compared to com-
puting the correlation functions.

S U = W N~

Timaz, Where 7., is much smaller than the domain of the point distribution
itself. We can then immediately see a way to prune pairs that can not pos-
sibly be within 7,,,,. If we impose a 3-d grid, with cell-size 7,,4., then two
points separated by more than one cell size (7,q,) in any one dimension can
not be within r,,,, of each other. Thus, given one point which is the target
galaxy and a grid with cell-size 7,,,., immediately allows us to prune all of
the points that are not within 1 cell offset in each dimension. However, even
with this pruning, the actual implementation of the algorithm matters. For
instance, a linked-list in each cell performs ~ 60x worse than the algorithm
described here.?

2.1. Partitioning the Particles based on 1,4z

Fig. 1 shows a schematic 2-D grid that corresponds to our partitioning
scheme.

2.2. How to Maintain Cache Locality within the Grid

For all pairs around a given target galaxy, we need to compute distances
to all points within all neighbouring 3-d cells. We ensure that the particle
locations are contiguous by moving them into the following C struct in the
order in which they arrive.

typedef struct{
DOUBLE =*x;
DOUBLE x*y;
DOUBLE *z;
int64_t nelements;
} cellarray;

Since the typical particle data is small (~ 20-30 MB), duplicating the
entire particle distribution does not impose a strong constraint on the mem-
ory requirements. However, this duplication allows us to store the particles
contiguously and produces fewer cache misses while looping over particles in
a cell. The entire 3-D particle distribution is then deposited on the uniform
grid. Now, for each particle we need to visit 27 total cells to compute all
possible pairs within r,,q;.

2The usual linked-list is very cache-unfriendly. Each dereference requires a read from
a new region of memory and an almost guaranteed cache miss.

o ° o o
o o o
o © ®
] (-]
q o
° o o
o = o)
© 4
o b
o
o
o
o
o)
q
© 8 ° o0
o
jco o © o Q o
°©)
o o
O q
o Q o
o o
0©
---------- 3 a o o
° o o °
° O P
. o o
o o
©)
[+] O
do ®
o te o '_"‘
b
of
o
© (-
T"mazx

Figure 1: A 2-D grid showing the bin-lattice partitioning scheme. The bigger square show
the entire domain, the red circles show a random distribution of 100 particles. Let’s say we
want to compute all pairs for the target blue point, then we would only have to consider
red points that are within one cell (the dark shaded region). A circle with radius 7,4, is
also drawn to shown the actual pairs that will eventually count in the correlation function.

3. The pair-counting algorithm

3.1. DD(r)
3.2. &(rp,m)
3.3. wy(ry)
3.4.
3.5. Hand-written Vectorization Support
Advanced Vector Extensions (AVX) has been available in cpu’s more
recent than 2011. AVX allows the processing of 8 floats or 4 double simulta-
neously — thus, potentially increasing the throughput by a factor of 8x/4x.

However, automatic vectorization is not always possible by the compiler and

in those cases we can write AVX vector intrinsics to directly manipulate 8
floats/4 doubles?®.

4. Benchmarks & Scaling

In this section we present the runtimes and scalings for different number
of particles, 7,4, and OpenMP threads for the codes. For all of the scaling
tests, only an auto-correlation calculation was used and the fiducial catalog
contains ~ 1.2 million galaxies on a periodic cube of side 420 h=!Mpc.

4.1. Scaling with Number of Particles

In Fig. 2, we show the scaling for the three codes with the number of
particles. For this scaling, we subsampled the fiducial mock to attain 10
logarithmic steps in particle number ranging from 1.2 x 10* to 1.2 x 106.

4.2. Scaling with vz
4.3. Scaling with OpenMP threads

5. Conclusions

I have presented a suite of three fast correlation function codes that take
advantage of the underlying hardware. The reasons why the codes are much
faster for typical workloads are:

3 Another option would be to use the vectorclass written by Agner Fog here: http:
//agner.org/optimize/vectorclass/

I IIIIIIII I T T TTTI I

| DD (=N i

100 K PP, (= N'*) _

E| Owr) («<N') .

| [Jém (=N .

'a‘ - -
o

c = -
(@]
3

e 1.0 E

o C .

£] :

= - .

5 C]

|

0.1

| lllllll

llllllll

L 1 1111
10° 10° 10°
of galaxies

|

Figure 2: Scaling with particle number for DD(r), {(rp,), wp(rp) and &(r)

Rmax

10

o -

—

[spuooss] swnuni

1 1 | R 1 [
o -~
-

[spuooss] swnuni

Figure 3: Scaling with 7,44 for DD(r), £(rp,), wp(ry) and &(r)

dnpaadg ueipajy

Nthreads

Nthreads

Figure 4: OpenMP scaling for DD(r), &(rp,), wp(rp) and &(r)

Table 1: OpenMP scaling for the three codes. Efficiencies are defined as
Speedup/Nthreads. Note, that DD(r) has super-linear scaling with nthreads up to ~ 10
threads.

Efficiency|[%)]

Nthreads Periodic Boxes Spherical Geometry
DD(r) &(rp,mw) wy(rp) &(r) DD(rp,w) DD(@) DR(r,,m) DR(0)

1 100 100 100 100 100 100 100 100
2 115 98 98 106 96 94 97 98
3 113 95 91 102 91 83 91 92
4 111 96 95 101 85 78 92 89
5 108 94 93 99 87 76 86 87
6 106 91 91 96 89 70 84 7
7 105 90 89 96 84 68 97 80
8 105 92 88 92 76 59 95 75
9 101 88 83 91 72 65 89 75
10 101 84 83 88 72 57 78 75
11 97 87 67 84 74 56 7 69
12 96 82 75 87 70 53 79 69
13 94 84 76 82 67 47 73 71
14 94 81 7 80 67 44 78 63
15 91 78 78 78 62 43 66 61
16 89 83 73 80 57 44 66 58

e A ‘bin-lattice’ scheme is used to first partition the computational do-
main into 3-D cells that can then be used to prune majority of the
volume.

e To obtain better cache-locality, the particle list is duplicated into a
contiguous array for each dimension. Thus, all particles that fall into
the same 3-D cell are stored in a contiguous array.

e With the AVX instruction set, modern CPU’s can process 8 floats/4
doubles simultaneously. The codes contain hand-written AVX intrinsics
that offer a factor of few speedup compared to the compiler generated
scalar code.

Foreman-Mackey et al. (2013)

Acknowledgements

Foreman-Mackey, D., Hogg, D. W., Lang, D., Goodman, J., Mar. 2013.
emcee: The MCMC Hammer. PASP125, 306-312.

