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Abstract:

We study mixed fractional derivative of functions of two variables in weighted Holder spaces of different
orders in each variable. The obtained results extend the well-known theorem of Hardy-Littlewood for the
one-dimensional fractional derivative to the case of mixed Holderness.
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1. Introduction

The mapping properties of the one-dimensional
fractional Riemann-Liouville operator
(12, £ [x) =T Y (a)te* f)x), x>a, are well studied
both in weighted Hoélder spaces oe in generalized
Holder spaces. A non-weighted statement on the
action of the fractional integral operator from H/}

into H}** is due to Hardy and Littlewood ([1], see
[6], Theorems 3.1 and 3.2), and it is known that the
operator 1% with establishes an

isomorphism between the Hoélder spaces H{([a,b])
and H}**([a,b]) of functions vanishing at the point

x=a, If a+A<1. The weighted results with power
weights were obtained in [6] (see Theorems 3.3, 3.4
and 13.13). For weighted generalized Holder spaces
HP(p) of functions ¢ with a given dominant of
continuity modulus of pe, mapping properties in the

case of power weight were studied see [4], [5], [7],
see also their presentation in [6], Section 13.6.
Different proofs were suggested in [2], [3], where
the case of complex fractional orders was also
considered, the shortest proof is given in [2]. A
detailed review of these and some other similar
results can be found in [6].

In the multidimensional case, the statement about
the properties of a map in Hoélder spaces for a mixed
fractional Riemann — Liouville integral was studied
in [8], [9], [12], [15], [16], [17], [18]. When
weighted generalized Holder spaces see [13], [14].
Mixed fractional derivatives were not studied in the
weighted HOolder spaces. Mixed fractional
derivatives were studied when non-weighed Hdolder
spaces see [9], [10], [11], [12], [18]. This paper is
devoted to the study of the properties of a map in
weighted Holder spaces.

We consider the operator mixed fractional
derivatives in the rectangle

O<a<l

Q={(x,y):0<x<b,0<y<d}.
2. Preliminaries
2.1.Notation and a technical lemma.

For a continuous function o(xy) on R* we
introduce the notation

o @]<x, y)=ox+h,y)-olxy),

An cp](x, y)=0(x,y+n)-o(xy),

Zlh,n(pju, )= olx+ by + )=l y + ) ol h,y)+ ol y)

so that
1,0

o(x+h, y+n)=(lAlh,n (pj(x, y)+[Ah (PJ(X: y)+
| Bao ) obiy),

Everywhere in the sequel by C,C,,C, etc., we denote
positive constants which may different values in
different occurrences and even in the same line.

We introduce two types of mixed Hélder spaces by
the following definitions.

Definition 1. Let 2,y<(0,1]. We say that ¢ H*"(Q)
if

|(P(X1, yl)_(P(XZ! Y2) < C1|X1 - X2|k JrCz|)/1 - )’2|Y (3)

for all (x.y,) (x,.y,)eQ. Condition (3) is equivalent
to the coupe of the separate conditions

[LAOh(pj(X, y){sc1|h|”, [OA'lnth(x, y)(sCzlnly 4)

uniform with respect to another variable. By H}"(Q)
we define a subspace of functions feH"(Q),
vanishing at the boundaries x=0 and y=0 of Q.
Let =0 and\or y=0. We put H*°(Q)=L"(Q) and

(2)
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+0)- | per@)

(LAOh @J(x, y)( <G |h |k}  he(0,1]

HO’V(Q):{q)e L*(Q): (OA’ln cpj(x, y){ <G, Inly} » ve(0.1].

Definition 2. We say that o(x,y)e H*?(Q), where
Lye(01], if

¢peH }”’Y(Q) and

11 -
Ann @ (X, y) <Cqlh|"In[" .

We say that ¢eH}'(Q), if o¢(xy)eA*"(Q) and

0(0,y)=0(x,0)=0.
These spaces become Banach spaces under the
standard definition of the norms:

b =l s, Fr— e
ye[0,d]
0l
(An (P](X, Y*
+osup
SR
11
(Ahvn (P](X: y*
b ol s B
y,y+nel0,d]
Note that
11
epeH hy (Q) = (Ah,n (pj(x, y* < Ce|h|ek|n|(1_e)y (5)

for any 6<[0,1], where C,=2C/C°, so that
N H™0Q) 2 HM(Q) 2 H™(Q) (6)

0<0<1
where . stands for the continuous embedding and

the norm for () H****)(Q) is introduced as the
0<6<1

maximum in o of norms for H®"-9(Q). Since
0<[0,1]is arbitrary, it is not hard to see that the
inequality in (5) is equivalent (up to the constant
factor C)to

[Zlh,n @J(x, y)1 <cmin{* '} )

We will also make use of the following weighted
spaces. Let p(x,y) be a non-negative function on Q

(we will only deal with degenerate weights

p(x, y)=p(x)p(y))-

Definition 3. By H"(Q;p) and H™"(Q;p) we denote
the spaces of functions ¢(x,y) such that pp e H*?(Q),
pp e H*¥(Q), respectively, equipped with the norms

@l (g0 =Pl @) @l (i) =IPPl21 )
By H;'(Qp)=Hg'(p) and Hy(Qp)=Hi"(p) we

denote the corresponding subspaces of functions ¢
such that pe|,—o = pe|,-=0.
Below we follow some technical estimations

suggested in [2] for the case of one-dimensional
Riemann-Liouville fractional integrals. We denote

1oy P y)-p(t.s)
B(x,y;t,s)= p(t,s;)(x—t)“f(y—s)m : (8)

where 0<a,p<1,0<t<x<b, 0<s<y<d and
)= _PX)=p(t) o) _Py)=p(s)
S S e ©
In the case p(x,y)=p(x)p(y) we have
B(x, y;t,s)=B,(x,t)B,(y,s)+ (yBl_(:)L)g +(52_(3/)le :
Let also

Dy(x,h,t)=B,(x+h,t)-B,(x,t), t,x,x+he[0,b], h>0,

Dz(y,n,8)=Bz(y+n,S)—Bz(y,S), s,¥,y+ne[0,d],n>0.
Lemma 1. (see [2]). Let p(x)=x*, neR', O<a<1.
Then

|By(x,t) < C(%

max(11—1,0) 1
) (10)

t(x—t)*
]max(ul,o) h

t(x+h-t)x—t)* (1)

|Dy(x,h,t) < C(%

Similar estimates hold for B,(y,s) and D,(y,n,s) with

v

ply)=y".
Remark 1. All the weighted estimations of
functional integrals in the sequel are based on
inequalities (10)-(11). Note that the right-hand sides
of these inequalities have the exponent max(u-10),
which means that in the proof, it suffices to consider
only the case p=>1, evaluations for u<1 being the

same as for p=1.

2.2. A one-dimensional statement

The following statement is known (see the
presentation of this proof in [6], p. 190); a shorter
proof was given in [2]. Nevertheless, we recall the
scheme of the proof from [2] to make the
presentation easier for the two-dimensional case.

Let p(x) the weight function and put it y(x)=p(x)p(x)

o(x)e HE([0,b];p). Evidently w(x)eH([0,b]) and
y(0)=0. It is easy to see that

(P1g. o)) = (18w )+ (38w )x),

where (J&\,/Xx):ﬁj’sl(x,t)\u(t)dt so that in (13) we

(13)

have the farctional integral if 0<a<1 and the
fractional derivative if ~1<a <0.
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The representation (13) for the fractional (integral)
derivative shows that the estimate for the continuity
modulus in the weighted case reduces to two simpler
estimates:

1) the known non-weighted estimate of Hardy-
Littlewood for fractional integral and fractional
derivative;

2) the estimate of the second term in (13), which is
the main part of the job.

Theorem 1. Let 0<a<1, p(x)=x* and |y(x)<cCx**

with y<1+2. Then the operator (3;%y)x)e H*([0.1]) ,

L+a<land “(JO+\1|IXXX‘ <C sup‘ “hoa XX'
xe[0,1]

Proof. In the proof, we use the following notation

(v )x+h)- 52w )= F(x h)+ F(xh),  (14)
where
Fih)= Bt

S (15)

F,(x,h)= [ DOx,h, ()t

The estimate of F, the case 1<p<a+1. The estimate
(10) B(x,t) implies
x+h
R < Clcrn ™ [t b (xrh—t) “dt=

X

x+h
A ja—a(l_ é)k+u7ud§ < Clh}\, ,
0
where

C,=Csupe&” Ié (1-g)+Hdg < oo.

O<e<l

The estimate of F, in the case 1<p<xi+1. Applying
the estimate (11) for D(x,h,t), we obtain

Lap theThgt
A Yo vy
0

X

X+h xm n
=Ch(x+h)" ds <C,h*,
0 1 N
F’{x+h éj
where
l-¢ Ata—p
C,=C sup e 5 TS .

O<e<l

o @-g)l-e-¢e)

3. Main result

The Riemann — Liouville mixed fractional

integration operator has a form

IIX t)1tsdtds _,

where x,y>0, 0<oc,[3<1.

The corresponding mixed fractional differentiation
operators are introduced in the Marchaud form

o (x.y)
(D0+l,30+q)xx y 1 B)((P y +

(15)

(18500 y)-—

x%yP

(16)

+ dtds |, x>0,y>0
o] [ A1) |0
in the case 0<a,p<1.
The definition in the Marchaud form may be used
for all —1<a,p<1: if o,p>0 (16) gives the mixed
fractional derivative, if o,p<0, it is mixed fractional
integral.
We shall use the united notation

1&B L if 0< 1
O 1)

DyYol, if 0<a,B<l

Let p(x,y)=p(x)o(y) be the weight function and put
)

v(x,y)=px y)o(xy), o(xy)eHI?(Q;p). Evidently
yeH™(Q) and w(xy)|oy-0=0. It is easy to see
that
(ot o)x ) =[085 vl y)+clkehwlxy),  (18)
—1<a, p<1, where C=const and
Xy
(K&FONXX, y)=J IB(X, y;t,s)y(t,s)dtds, (19)
00

so that in (18) we have the mixed frational integral if
O<a,B<land the mixed fractional derivative if
-1<o,p<0.

The representation (13) for the fractional (integral)
derivative shows that the estimate for the continuity
modulus in the weighted case reduces to two simpler
estimates:

1) the known non-weighted estimate of Hardy-
Littlewood for mixed fractional integral (see [8], [9],
[12], [15], [16]) and mixed fractional derivative (see
[9], [10], [11], [12]); in the case weighted estimated
of Hardy-Littlewood for mixed fractional integral
(see [8]);

2) the estimate of the second term in (18), which is
the mixed fractional derivative. It is the main part of
the job.

Let

p(x y)=xty", (16)

p<l+Ad, v<y+1l.
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Theorem 2. Let o,8<(0,2), 2,ve(02) , p(x,y)=x"y" Hence, by estimates for F, and F, from Theorem 1,
and |y(x y) <Cx***y"*? with u<1+%, v<y+1. Then We have
the operator K;“;# is bounded from the space (Lth sz(x y<cn.
Ha+e (o) into HX(p). _
Proof. To estimate the term (K&F‘ONXX, y), We note The estimate
’ 01
that the weight being degenerate, we have [An sz(x, y)<Cm'
p(x,y)—p(t,s) = [p(x)- p®)p(y) - p(s)]+ p(s o (x) - p(t)]+ _ _ _
+p(t)p(y)-p(s)) Is symmetrical obtained.

This leads to the following representation For the mixed difference (Zlh,nezj(x,)/) With hn>0

X Yy
(ks v )= ol Xy_I JBlXtBZ(y su(t, s )dtds + and xx+he[0,b], y,y+ne[0,d] the appropriate

representation leading to the separate evaluation in

j jBl X, t)Y wlts dtis j J'Bz t S dfis, each variable without losses in another variable is as
(y-s)f Xt} follows:
where the notation (9) has been used. For the xth y-n
_ 10 _ (Ah nsz X, y)= I I B, (x+h,t)B,(y +m,5)y(t, s)dtds +
difference G,(x+h,y)-G,(x, y)Z(Ah GZJ(X, y) with Yy

X Y
h>0 and x,x+he(0,b), we have + j j Dy (x, h,t)D,(y,m, s h(t, s )dtds +
x+h'y 0
(Ah sz X Y)= j IBl (x+h,t)B,(y, s hy(t, s)dtds + xh
X 0 +J. I B, (x+h,t)D,(y,m, s w(t, s)dtds +
X Yy X
+I IDl(x,h,t)Bz(y,s)\y(t,s)dtdSJr Xy
00 +I j (X, h,t)B, (y +m, 5 wl(t, s )dtds +
x+h'y
(t,s) 0
+I IBl (x+h,t) Bdtds+
X 0 (v- 5)1 I I X+htB (t,s)dtds +
jg JX ) X Yy Y+Tl 5)1
+ Dy( x+ht dtds +
00 (y- S)1+B +th y]ﬂ Byly +n.9) y(t, s)dtds +
x+h y Xy (X—i—h t)1+OL
+ j .[BZ — L —dtds+ ih
x 0 X+h t)la + B,(x+h,t (t,s)dtds +
(y+n- S)1+B y-sP ™

o] [t e

+
Ot X O %X X oy +
Ol < Ot < O <
,P

1
(x,h,t (t,s)dtds +
Since yeHZ**P, we have ){(Wn SFP - (y- S)M}
t,s) <Cthroshtr t,5)—w(x,0) <C(t—x)*s*P,
[wlt. ) <GP, [yt s)-yi(x0) < Clt—xf s F o ok
Then (x+h— t)l*“ x—t)**
X+h X y+m
[Ah sz(x y* <C .“Bl (x+h t)t7‘+°‘dt+J‘|D1 x,h, )t dt + +-" I Dl(x,h,t)ﬂdtds+
0 y (y+-r-|_s)1+l3
x+h'y \V(t S)
x+h (t X )L.det X 1 | . + I j DZ(y’n'S)Wdtds+
+ - +I — - —(t—x)"""dt [x X 0
» (x+h- t)e 0x+h t)1°‘ (x— t)1°‘| Xy L L
y x+h +j f Bz(y+n,s){ —- Ml}w(t,s)dtds.
vaflJ. (y ) dS+[ J.|B1 X+h tltkﬂxdt_’_ 0 v (X+h—t)1 (X—t)
o S We omit the details of evaluation of each term in the
X y above representation; it is standard via Lemma 1 and
+ [l htje |f "hds yields
1\ A T
0 0 (y_s)1+B 11
[Ah n GZJ(X y* < Cgh'ny?
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This completes the proof.
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