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Abstract 1 

Biological systems often need to operate in complex environments where conditions can 2 

rapidly change. This is possible due to their inherent ability to sense changes and adapt their 3 

behavior in response. Here, we detail recent advances in the creation of synthetic genetic 4 

parts and circuits whose behaviors can be dynamically tuned through a variety of intra- and 5 

extra-cellular signals. We show how this capability lays the foundation for implementing control 6 

engineering schemes in living cells and allows for the creation of biological systems that are 7 

able to self-adapt, ensuring their functionality is maintained in the face of varying 8 

environmental and physiological conditions. We end by discussing some of the broader 9 

implications of this technology for the safe deployment of synthetic biology. 10 

 11 

Highlights 12 

• Tunable genetic parts allow for their input-output relationship to be dynamically varied in 13 

response to intra- and extra-cellular signals. 14 

• Self-adaptive biological systems can be built using a combination of control engineering 15 

principles and tunable genetic parts and circuits. 16 

• An ability to engineer self-adaptive systems will be crucial in deploying synthetic biology 17 

into complex and changeable real-world environments.  18 
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Introduction 19 

A key characteristic of all living organisms is their ability to adapt. From altering metabolism 20 

to best utilize a shift in nutrients, to regulating ion transport to maintain cellular homeostasis, 21 

adaptive responses are crucial to many aspects of life. To enable such adaptive processes, 22 

cells have evolved a wide array of sensors able to capture information about their local 23 

environment as well as their internal state. These sensors are connected to cellular circuits 24 

that both monitor and modify internal processes with the goal of maintaining a desired 25 

functionality (e.g. homeostasis) no matter the perturbations experienced by the cell. 26 

 Unlike in Nature, engineered biological systems often lack the ability to adapt to 27 

changing conditions, making them fragile and causing them to break easily [1–6]. This stems 28 

historically from an absence of genetic parts that can be used to dynamically tune the 29 

response of a system and the additional burden of implementing control processes on top of 30 

a basic functioning system. This view is, however, beginning to change [7–9]. Recent 31 

developments in synthetic biology have led to a wide variety of biological parts able to 32 

precisely regulate the transcription [10–14] and translation [15–19] of genes in response to 33 

diverse intra- and extra-cellular signals [20]. Furthermore, the benefits of exploiting control 34 

engineering principles to create robust biosystems is also becoming recognized [7–9,21,22]. 35 

This stems from a growing need in many applications for reliable and guaranteed 36 

functionalities no matter the strain of cell used, or the environment deployed to [23]. 37 

 In this work, we discuss some of the recent advances towards engineering self-38 

adaptive biological systems. We begin by providing an overview of the wide variety of parts 39 

now available for sensing and tuning cellular behaviors and show some of the ways these can 40 

be used to create adaptive genetic circuits. We than discuss recent steps towards using these 41 

circuits to implement closed-loop feedback control within living cells to create self-adaptive 42 

systems and end by outlining some of the future applications that such capabilities could 43 

support. 44 

 45 

Tunable genetic parts 46 

To develop an adaptive system, it is necessary to be able to dynamically alter/tune the input-47 

output relationship of parts within the system. These ‘tunable’ components come in many 48 

different forms, however, conceptually have a common structure (Figure 1a). Each tunable 49 

element consists of an input and output, and a further tuner input that is able to alter the input-50 

output relationship in a useful way [24]. Input, output and tuner signals can take many forms, 51 

from gene expression rate to protein phosphorylation state. However, one of the most 52 

commonly used is transcriptional activity [3,6,25]. This is captured by the RNA polymerase 53 

(RNAP) flux along DNA and can be directed to particular points by positioning  54 
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promoters that control the transcriptional initiation of RNAP. This makes it simpler to connect 55 

individual parts by making the output promoter of one the input promoter of another [10,26]. 56 

 While there are many ways that the behavior of biological parts can be tuned, the most 57 

widespread and easiest to apply is through the control of gene expression. By incorporating 58 

additional regulatory parts to modify the rate of transcription and/or translation of an output 59 

gene it is possible to create a tunable expression system (TES) that can vary the amount of 60 

output protein produced for a given input transcriptional activity [24]. As gene expression 61 

underlies many core cellular behaviors this approach is a flexible means to control a variety 62 

of biological functionalities in a dynamic and tunable way. 63 

 The core structure of a TES comprises of promoters acting as signals for the input and 64 

tuner, a gene that is expressed as output, and internal regulators that allow the input and tuner 65 

promoters to dynamically alter output protein expression rate (Figure 1a). For the input and 66 

tuner promoters, a variety of sensors with transcriptional outputs now exist to sense 67 

environmental conditions such as chemical concentrations [27] and light [28,29], as well as 68 

internal cellular states (e.g. stress responses) [9] and population level features like cell density 69 

through quorum sensing [30]. Similarly, many output genes exist that enable control of cellular 70 

behaviors from modifying their metabolic state [31–33] to cell movement [34] and even cell-71 

to-cell communications [30]. The final component in the TES is the internal regulator used to 72 

modulate how transcriptional activity of the input promoter is transformed into a protein 73 

expression rate. To make this relationship a function of the transcriptional activity of the tuner 74 

promoter, numerous types of transcriptional and translational regulators can be used (Figure 75 

1b). These include: 1. toehold switches (THSs) where translation rate is controlled through 76 

expression of a trigger RNA that is able to disrupt secondary structures around the RBS of the 77 

output gene [15,16,24]; 2. small transcription activating RNAs (STARS) which interact with 78 

transcriptional terminators that are placed in the 5’ untranslated region (UTR) of a gene and 79 

regulate premature RNAP termination [11,12,35]; 3. small RNAs (sRNAs) that can be 80 

designed to bind the ribosome binding site for a gene of interest and suppress translation 81 

initiation [18]; 4. σ/anti-σ pairs where the anti-σ protein is expressed by the tuner promoter to 82 

reduce the expression rate of input promoters driven by the cognate σ-factor [36,37]; 5. split 83 

T7 RNAPs where the input and tuner promoters express different halves and the gene of 84 

interest is connected to the cognate promoter of the RNAP [38]; and 6. other programmable 85 

transcription factors like CRISPRi/a [14], transcription activator-like effector nucleases 86 

(TALENs) [39] and zinc fingers (ZFs) [40] that can be expressed by the tuner promoter and 87 

interfere or enhance transcription initiation or elongation from the input promoter. 88 

 Although it is more common for the input and tuner promoters to be different, recently 89 

it has been shown that by using identical promoters to control both regulatory inputs in unison, 90 

more stringent control of a protein expression can be achieved as well as sharp digital-like 91 
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transitions between OFF and ON states [35,41] (Greco et al. bioRxiv doi: 92 

10.1101/2020.07.04.187500). 93 

 It should also be noted that other approaches to tuning gene expression have been 94 

developed. For example, two-component systems where phosphorylation rates can be 95 

modified by the concentration of specific kinases [42] and CRISPRi systems where the 96 

strength of repression is controlled by base mismatches in the guide RNA (gRNA) [9]. 97 

However, in most cases tuning of such systems requires the physical modification of the 98 

encoding DNA making it impossible to dynamically regulate behavior. 99 

 100 

Adaptive genetic circuitry 101 

To implement more complex functionalities, it is often necessary to connect together many 102 

genetic parts into a circuit [6]. In other engineering fields such as electronics, specifying the 103 

connections between components would generally be sufficient to create a working system. 104 

This is due to electronic components having standardized operating ranges to ensure 105 

compatibility and reliable functionalities no matter the context they are used in. For example, 106 

complementary metal-oxide-semiconductor (CMOS) electronic logic gates expect inputs of 0–107 

1.5 V for an OFF state and 3.5–5 V for an ON state. In biology, such standardization is difficult 108 

due to the diversity of biochemical components used and challenges in engineering them to 109 

ensure a common level of response [26,43]. Therefore, rather than imposing constraints on 110 

biology that are near impossible to implement, it is instead necessary to work with the diversity 111 

present and ensure that components connected have inputs and outputs that are ‘matched’ 112 

to guarantee signals propagate correctly [6,20,44]. Many of the advances in automated 113 

genetic circuit design have revolved around ensuring parts perform consistently when used in 114 

different ways (e.g. insulating their function from varying genetic context [45,46]) and 115 

automating the selection of combinations of parts within a circuit such that their inputs and 116 

outputs are optimally matched [6,26,43]. 117 

 Tunable genetic parts can greatly simplify this process by removing the need to 118 

reassemble a circuit if two parts are found to be mismatched when connected. At the cost of 119 

additional tuning inputs to a circuit, tunable genetic parts can have their response function 120 

dynamically varied after circuit assembly (Figure 2a). This allows parts to be dynamically 121 

matched and opens up the possibility of rapidly optimizing overall circuit function without the 122 

need to reassemble underlying DNA (Figure 2b). In addition to simplifying the creation of 123 

optimized circuits, the ability to dynamically vary the response dynamics of individual parts is 124 

also valuable for systems that must function in highly changeable environments, where shifts 125 

might cause physiological changes that impact some or all parts in a circuit [4,5,47]. 126 
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 Beyond the tuning of steady-state response functions, circuits capable of exhibiting 127 

dynamic behaviors such as oscillations have also been developed, where characteristics such 128 

as period and amplitude can be varied through diverse inputs to the system. In one such 129 

oscillator for Escherichia coli cells, positive and negative feedback loops are implemented 130 

using the PBAD (positive) and Ptac (negative) systems which can be further regulated using 131 

arabinose and isopropyl β-D-1-thiogalactopyranoside (IPTG), respectively [48]. It was found 132 

that increasing the concentration of Arabinose caused a lengthening of the oscillatory period, 133 

while increasing an IPTG concentration or temperature led to a shortening of the oscillatory 134 

period. Other tunable oscillator circuits have also been developed to allow for control via light 135 

[49], to synchronize behaviors across a population of cells [50] and to function in mammalian 136 

cells [51]. Furthermore, they’ve been modelled to demonstrate regulatory motifs capable of 137 

having their oscillatory amplitude and frequency tuned independently [52]. 138 

 139 

Towards self-adaptive systems 140 

A limitation of using tunable genetic parts and circuits is the need for external inputs to be 141 

continually provided. A solution to this is to connect the output of a cellular process to the tuner 142 

input of the circuit, creating a closed-loop self-adaptive system. There has been growing 143 

interest in the application of closed-loop feedback control in biology and the role that control 144 

engineering principles might play in creating robust biosystems [8,21,22,53]. 145 

 Some simple feedback control schemes have already been implemented in living cells. 146 

Many of these focus on the development of dynamic regulatory schemes for metabolism to 147 

maximize the yield of desired products [33,54,55]. Feedback is created by either using 148 

endogenous transcription factors that respond to intermediate metabolites of interest [31,56], 149 

or by the design of RNA aptamers able to sense and then actuate gene expression or shifts 150 

in metabolic fluxes in response to changes in metabolite concentrations (Glasscock et al. 151 

bioRxiv doi: 10.1101/529180). Related to this, general cellular stress responses have also 152 

been used as triggers for feedback control. Specifically, the σ32
 heat-shock response of E. coli 153 

was found to be rapidly activated when cells were burdened by excessive protein expression 154 

[57]. By connecting the endogenous PhtpG1 σ32-promoter to a CRISPRi based feedback control 155 

system (Figure 3a), it was shown that protein expression of burdensome synthetic genetic 156 

constructs could be dynamically regulated to reduce cellular burden [9]. This both increased 157 

overall protein yield, as there was less impact of cellular growth, and the evolutionary stability 158 

of the synthetic genetic constructs as there was less selective pressure for mutations. Similar 159 

approaches have been implemented using repressor proteins for negative feedback regulation 160 

and the PibpAB σ32-promoter as a sensor of burden [58]. Dynamic regulation of protein 161 

expression has also been performed in mammalian cells using translation-based negative 162 
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feedback control [59] and general-purpose gene expression controllers based on quorum-163 

sensing [32]. 164 

 More general feedback control schemes in living cells include the antithetic integral 165 

controller motif that uses sequestration mechanisms such as molecular titration to implement 166 

an embedded feedback controller [8]. This motif guarantees perfect adaptation, rejecting 167 

constant disturbances so that the output of the genetic system of interest initially responds to 168 

an external input but then returns to basal levels while the input persists [21]. 169 

 Molecular titration has also been shown to be an effective mechanism to implement 170 

‘comparator’ devices able to produce an output function of the mismatch between the levels 171 

of two different inputs, an essential component of any biomolecular controller [36,60]. 172 

Implementations of more sophisticated control strategies have also been recently presented, 173 

such as the biomolecular PID controller presented in [61]. As the complexity of biomolecular 174 

control designs increases, to successfully implement the control function, the parts needed to 175 

construct the control strategy must be finely tuned to guarantee the right balance between the 176 

sensing and actuating parts of a circuit [62]. The use of tunable parts could open the way to 177 

the development of adaptive biomolecular controllers able to self-tune themselves in order to 178 

guarantee the robust execution of the control task they are assigned to perform even in the 179 

presence of perturbations, cell-to-cell variability, etc. This might be even more crucial when 180 

the control functions are spread among different populations in a microbial consortium as 181 

recently suggested in [63]. 182 

 Beyond simple feedback motifs, it can be difficult to implement complex control 183 

algorithms using biochemical components because the feedback strengths and dynamics 184 

required may be difficult to match to available parts. Therefore, an intermediate step is 185 

sometimes taken whereby a computer is used to implement controller logic within the 186 

feedback loop and create what is termed a cybergenetic system [22] (Figure 3b). 187 

Cybergenetic systems often rely on single-cell microcopy platforms and microfluidics to image 188 

engineered cells whose current state is displayed via fluorescent reporter proteins and use 189 

chemical inducers [64,65] or light [28,29,66,67] as inputs to perturb the cells states in a pre-190 

defined way (i.e. the cells are engineered to sense and update their state in response to a 191 

stimulus). The computer-based controller runs in real-time analyzing microscopy images to 192 

extract the current states of cells and then immediately computes a control action, which is 193 

then administered by varying chemicals concentrations or light that the cells are exposed to. 194 

Such systems have been shown capable of controlling both population [8,64,66,68] and 195 

single-cell behaviors [67]. Moreover, toolkits have emerged to simplify their creation by 196 

handling image analysis, tracking and calculation of control actions (Pedone et al. bioRxiv doi: 197 

10.1101/2020.06.25.171751). The major advantage of this hybrid approach is that the 198 
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computer controllers are cell-agnostic, allowing them to be used with any biosystem that has 199 

the same types of control inputs and observable outputs. 200 

 201 

Conclusions 202 

The creation of self-adaptive biosystems that can function in the face of varying and uncertain 203 

environments will be a crucial step for the safe deployment of synthetic biology into everyday 204 

life. Recent advances in biological control engineering provide the theoretical foundations 205 

necessary to design such systems and, as we have shown, tunable genetic parts and circuits 206 

can support their physical implementation [24]. While the self-adaptive systems built to date 207 

have mostly been small-scale proof-of concepts, it is clear that the ability to synthesize and 208 

assemble entire genomes is in reach [69,70]. Demonstrating the value of integrating tunable 209 

parts and circuits within these cellular systems will be crucial to moving beyond the mere 210 

recoding of existing genomic information and towards the creation of synthetic cells built from 211 

the ground up to reliably implement novel functionalities. Furthermore, they will support the 212 

scale-up of these systems by enabling us to move beyond single-cells and towards the 213 

engineering of collective behaviors of vast populations of cells [71] or even entire synthetic 214 

ecologies [72]. 215 
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Figures and captions 470 

 471 

Figure 1: Tunable genetic parts. (a) Schematic of a tunable expression system (TES) where 472 

a variety of different inputs and output can be selected. Typically, inputs are transcriptional 473 

signals related to environmental or cellular states and the output is the expression of a gene 474 

that influences cellular behavior or acts as an input to another part of a larger circuit. (b) Major 475 

regulatory mechanisms that can be used to tune gene expression in a TES. Both active and 476 

inactive states shown in addition to whether the tuner will cause activation (+) or repression 477 

(–) of the output. The stage in gene expression (i.e. transcription or translation) where 478 

regulation takes place is shown below the box for each mechanism. Ribosomes and RNA 479 

polymerase (RNAP) shown by light grey and orange shapes without an outline, respectively. 480 

For the CRISPRi/a, TALENs and ZFs box a repressive CRISPRi system is shown. This can 481 

be modified to be an activator by fusing dCas9 to an activator domain to recruit RNAP to the 482 

promoter. In general, the additional blue element would be expressed by the tuner input to 483 

modulate expression of the output. RBS, ribosome binding site; sRNA, small RNA; STAR, 484 

small transcription activating RNAs; siRNA, small interfering RNA; CRISPRi/a, clustered 485 

regularly interspaced short palindromic repeats interference/activation; TALEN, transcription 486 

activator-like effector neclease; ZF, zinc finger; gRNA, guide RNA.  487 
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 488 

Figure 2: Tunable genetic parts enable the construction of adaptive circuits. (a) Libraries 489 

of genetic parts (e.g. NOT gates) are commonly created that cover a range of different 490 

behaviors (left box). These differences are shown by the specific response function of each 491 

part, which captures the steady-state input-output relationship. For most genetic parts the 492 

response function is fixed, and so physical replacement is necessary if a part is not compatible 493 

when used in a system. In contrast, tunable genetic parts (right box) have additional tuner 494 

inputs that allow the shape and position of the response function to be dynamically varied as 495 

required. (b) Schematic of a simple genetic circuit where a sensor input is inverted to give a 496 

desire output reporter (e.g. green fluorescence). For the sensor and NOT gate to parts to work 497 

effectively, the output of the sensor must ‘match’ the response function of the NOT gate (dotted 498 

grey lines). If the parts are matching, then a large change in the NOT gate output will occur 499 

when the sensor switches between OFF and ON states. For standard NOT gates (left column) 500 

entire libraries need to be assembled and screened to find a working combination. 501 

Furthermore, if the environment changes then so too might the behavior of the parts making 502 

reassembly necessary. For a tunable NOT gate (right column), the tuner input can be varied 503 

until the gate perfectly matches the sensor’s outputs. No reassembly is required, allowing the 504 

circuit to be dynamically tuned to changing conditions. Genetic circuits shown using Synthetic 505 

Biology Open Language (SBOL) Visual notation [73]. RNAP, RNA polymerase.  506 
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 507 

Figure 3: Self-adaptive systems. (a) Embedding burden-based controller. A synthetic 508 

construct expresses a burdensome protein. Endogenous cellular processes (dashed arrows) 509 

lead to the activation of the PhtpG1 promoter under high levels of protein expression burden 510 

causing expression of a guide RNA (gRNA). This gRNA forms a complex with a constitutively 511 

expressed dCas9 protein that then targets the promoter of the synthetic construct, down 512 

regulating its expression. The strength of this negative feedback loop is dynamically ‘tuned’ 513 

by the endogenous burden signal as well as mismatches in the gRNA to the target promoter 514 

that reduce the binding affinity of the dCas9:gRNA complex. Panel adapted from [9]. (b) 515 

Schematic of an external in silico control system. Living cells grow in a microfluidic chip that 516 

is continually imaged by a microscope. These images are set to a computer, analyzed and an 517 

output signal from the cells (e.g. fluorescence) compared to a desired reference value. A 518 

control algorithm assesses this difference and emits a control signal, which actuates syringes 519 

and changes the concentration of a signaling molecule provided to the cells. The cells sense 520 

this change and alter their gene expression in response. The strength of feedback in this 521 

system can be tuned by modulating the control signals produced. Grey arrow in the 522 

microfluidic chip represents the flow of nutrients and signaling molecules. gRNA, guide RNA. 523 
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