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Abstract. Based on a strengthened form of the strong Goldbach conjecture, this paper 
constitutes an antinomy within ZFC. 
 
Notations. Let  denote the natural numbers starting from 1, let n denote the natural 
numbers starting from n > 1 and let 3 denote the prime numbers starting from 3. 

Strengthened strong Goldbach conjecture (SSGB): Every even integer greater than 6 can 
be expressed as the sum of two different primes. 
 
 
Theorem.  4  ≠  4. 
 
Proof. We define the set Sg := { (pk, mk, qk) | k, m  ; p, q  3, p < q; m = (p + q) / 2 }. 
 
SSGB is equivalent to saying that every integer x ≥ 4 is the arithmetic mean of two different 
odd primes and so it is equivalent to saying that all integers x ≥ 4 appear as m in a middle 
component mk of Sg. So, by the definitions we have 
 
SSGB  <=>   x  4   Ǝ (pk, mk, qk)  Sg     x = m. 

SSGB  <=>  Ǝ x  4    (pk, mk, qk)  Sg     x ≠ m. 
 
 
The set Sg has the following property: The whole range of 3 can be expressed by the 
triple components of Sg, since every integer x ≥ 3 can be written as some pk with k = 1 
when x is prime, as some pk with k ≠ 1 when x is composite and not a power of 2, or as     
(3 + 5)k / 2 when x is a power of 2; p  3, k  . 
 
 
In the case of SSGB, there is at least one n  4 different from all the numbers m that are 
defined in Sg. In the case of SSGB, there is no such n. The following steps work regardless 
of the choice of n if there is more than one n. 
 
According to the above three types of expression by Sg triple components, for n we have 
 
(C)   k     Ǝ (pk', mk', qk')  Sg     nk = pk'    nk = mk' = 4k'. 

 

Moreover, due to the definition of Sg, we have 

(M)  ∄ p, q  3, p < q     n = (p + q) / 2. 

http://en.wikipedia.org/wiki/Even_and_odd_numbers
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Prime_number
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The properties (C) and (M) hold for any n given by SSGB. We will show that under the 
assumption SSGB the set Sg can be written as the union of the following triples, which 
would be impossible without having (C) and (M). 

(i) Sg triples of the form (pk' = nk, mk', qk') with k' = k in case n is prime, due to (C) 

(ii) Sg triples of the form (pk' = nk, mk', qk') with k' ≠ k in case n is composite and not a 
power of 2, due to (C) 

(iii) Sg triples of the form (3k', 4k' = nk, 5k') in case n is a power of 2, due to (C) 

(iv) all remaining Sg triples of the form (pk' = nk, mk', qk'), (pk', mk' = nk, qk') or (pk', mk', qk' 
= nk) 

and 

(v) Sg triples of the form (pk' ≠ nk, mk' ≠ nk, qk' ≠ nk), i.e. those Sg triples where none of the 
nk’s equals a component. 

 

We can formalize this as follows. 

We split Sg into two complementary subsets: For any y  3, Sg = Sg+(y) ∪ Sg-(y), where 

Sg+(y) := { (pk', mk', qk')  Sg | Ǝ k     pk' = yk    mk' = yk    qk' = yk } and  

Sg-(y) := { (pk', mk', qk')  Sg |  k     pk' ≠ yk    mk' ≠ yk    qk' ≠ yk }. 
 

Let Sg+ be shorthand for Sg+(n) and let Sg- be shorthand for Sg-(n). Then, as Sg+ denotes 
the union of the triples of the above types (i) to (iv) and Sg- denotes the union of the triples 
of type (v), we can state 

SSGB  =>  ((Sg = Sg+ ∪ Sg-)  or  (C)  or  (M)). 

Since (C) and (M) are true, we get 

SSGB  =>  Sg = Sg+ ∪ Sg-. 

Sg+ ∪ Sg- is independent of n, since for every n it equals Sg. So, we can write 

(1)   y  3   SSGB  =>  Sg = Sg+(y) ∪ Sg-(y). 

 

Under the assumption SSGB there is no n, which only means that the numbers m defined 
in Sg take all integer values x ≥ 4. So, in addition to (1), here we also have 

(2)   y  3   SSGB  =>  Sg = Sg+(y) ∪ Sg-(y). 
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Because of the rule "(  x  P(x)) and (  x  Q(x))  <=>   x  (P(x) and Q(x))", by (1) and (2) for 
each set Sg+(y) ∪ Sg-(y), y  3, we have 

SSGB  =>  Sg = Sg+(y) ∪ Sg-(y) 

and 

SSGB  =>  Sg = Sg+(y) ∪ Sg-(y). 

 

For each k ≥ 1, we define M(k) := { mk | (pk, mk, qk)  Sg }. Then, for some set M, 

(1')  SSGB  =>  M(1) = M 

and 

(2')  SSGB  =>  M(1) = M. 

 

On the other hand, under the assumption SSGB the numbers m defined in Sg take all 
integer values x ≥ 4 whereas under SSGB they don't. By this, we get 

(3)  SSGB  =>  M(1) ≠ 4 

and 

(4)  SSGB  =>  M(1) = 4. 

 

The statements (1'), (2'), (3), (4) were each derived from an assumption. That is, they were 
derived without using the tautology "False => Q" or the tautology "Q => True", i.e. none of 
the four proofs uses that SSGB or SSGB is false, and the proofs for (1) and (2) don't use 
Sg = Sg+(y) ∪ Sg-(y). 

This means that in each individual proof of (1') to (4) the premise is assumed to be true. 
Therefore, from (1') and (3) we obtain M ≠ 4 and from (2') and (4) we obtain M = 4, 
which results in the contradiction 4  ≠  4. 

                                                                                                                          □ 

 

Note. The proof is based on the following general principle. Let’s suppose: 

There exists a proposition P and there exist sets A, B, C, D with C ≠ D such that 

(1)  P => A = B 

(2)  P => A = B 

(3)  P => A = C 

(4)  P => A = D. 
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Each of the four statements has a proof that does not rely on the tautology "False => Q" or 
the tautology "Q => A = A". Furthermore, the definition of the sets B, C and D is not related 
to the proposition P. 

Then, (1) to (4) lead to the conclusion B = C and B = D, and therefore to a contradiction. 


