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This paper reports the synthesized two-mass antiphase 
resonance vibratory machine with a vibration exciter in the 
form of a passive auto-balancer. In the vibratory machine, 
platforms 1 and 2 are viscoelastically attached to the sta-
tionary bed and are tied together viscoelastically. A passive 
auto-balancer is mounted on platform 2. 

It has been established that the vibratory machine has 
two resonant frequencies and two corresponding forms of 
platform oscillations. Such values for the supports’ para
meters have been analytically selected at which:

– there is an antiphase mode of motion at which plat-
forms 1 and 2 oscillate in the opposite phase and the prin-
cipal vector of forces acting on the bed (when disregarding 
the forces of gravity) is zero; 

– the frequency of platform oscillations under an anti-
phase mode coincides with the second resonance frequency.

The antiphase mode occurs when the loads in an 
auto-balancer get stuck in the vicinity of the second reso-
nance frequency, which is caused by the Sommerfeld effect. 

The dynamic characteristics of a vibratory machine 
have been investigated by numerical methods. It has been 
established that in the case of small internal and external 
resistance forces:

– there are five theoretically possible modes of load 
jamming; 

– the antiphase (second) form of platform oscillations 
is theoretically implemented under jamming modes 3 and 4; 

– jamming mode 3 is locally asymptotically stable 
while jamming mode 4 is unstable;

– for the loads to get stuck in the vicinity of the second 
resonance frequency, the vibratory machine must be pro-
vided with the initial conditions close to jamming mode 3, 
or the rotor must be smoothly accelerated to the working 
frequency; 

– the dynamic characteristics of the vibratory machine 
during operation can be controlled in a wide range by 
changing both the rotor speed and the number of loads in 
the auto-balancer.

The reported results are applicable for the design of 
resonant antiphase two-mass vibratory machines for gen-
eral purposes
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1. Introduction

Among the vibratory machines for various applications, 
resonance vibratory machines appear promising [1]. In them, 
vibration exciters of lower mass generate vibrations at a greater 

amplitude, thereby improving the energy efficiency, reliability, 
and durability of vibratory machine operation. The basic prin-
ciples of designing such machines were considered in [1, 2].

The inertial vibration exciters of a lower mass excite more 
intense vibrations compared to electromagnetic vibration  
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exciters [2]. Therefore, hereafter we consider vibratory ma-
chines only with inertial vibration exciters.

Vibratory machines can be single- and multi-mass. It should 
be noted that multi-mass vibratory machines possess a series of 
advantages over single-mass ones [3–11]. Thus, a multi-mass 
structure makes it possible to design vibratory machines that 
almost do not transmit vibrations to the foundation.

The most effective and simple ways to excite resonant os-
cillations are based on the use of the Sommerfeld effect [7–12].  
Among these methods, there is a particular technique based 
on using passive auto-balancers in the form of vibration 
exciters [12, 17–21]. The technique is applicable for single- 
and multi-mass vibratory machines and is distinguished by 
the possibility to change the characteristics of vibrations in 
a wide range.

It is a relevant task to build on the results reported 
in [17–21] in order to synthesize a resonant antiphase two-
mass vibratory machine with a vibration exciter in the form 
of a passive auto-balancer and to investigate its steady state 
vibrations. In a given vibratory machine, the two platforms 
are viscoelastically attached to the bed and are tied together 
viscoelastically. A passive auto-balancer is mounted on one of 
the platforms. Under an antiphase mode, the platforms exe
cute intense anti-phase resonance oscillations. At the same 
time, the total force with which the elastic supports act on 
the bed is almost zero.

2. Literature review and problem statement

Two-mass vibratory machines have a series of advantages 
over single-mass ones. Let us consider what these advantages 
provide for when designing vibratory machines. 

In most two-mass vibratory machines, a working body 
(a working platform) is viscoelastically attached to a plat-
form while the platform is similarly attached to the founda-
tion. A vibration exciter is mounted on the platform.

It is known that the two-mass vibratory machine, in con-
trast to a single-mass one, has an anti-resonance mode of os-
cillations under which the platforms’ oscillations are almost 
not transferred to the foundation [3–5]. Significantly, the 
anti-resonance regime is implemented in a wide region of the 
parameters of the vibratory machine [3]. At the same time, 
the region of the existence of an anti-resonance regime [4], 
as well as the frequency of platform oscillations [5], are less 
dependent on the mass of the load. Under an anti-resonance 
mode, the working body oscillates at a significant amplitude 
while the platform oscillates at a minimum amplitude.

However, anti-resonance two-mass vibratory machines 
are not resonant. They operate in the inter-resonance region 
or after the second resonance [6]. Therefore, these machines 
do not demonstrate the advantages of resonant machines.

The easiest technique to excite resonant vibrations in 
vibratory machines is based on the Sommerfeld effect [7]. 
There are examples of this technique’s application for single- 
mass [8], two-mass [9, 10], and three-mass [11] vibratory 
machines. The effect is manifested in that the unbalanced ro-
tor of a DC electric motor [9], or induction motor [8, 10], the 
unbalanced impeller [11] cannot accelerate to the working 
frequency and gets stuck at one of the resonant frequencies 
of platform vibrations.

The two-mass vibratory machine has two resonant frequen-
cies and two corresponding forms of oscillations [3–6, 9, 10].  
At a lower resonance frequency, the platforms oscillate in phase;  

at a higher frequency – in antiphase. The antiphase mode of 
platform motion is of more interest in practical terms. Under 
this regime, the large amplitudes of platform oscillations are 
achieved at less perturbing forces operating on the foundation.

Study [12] proposed using a passive auto-balancer (a ball,  
a roller, or a pendulum) to excite resonant vibrations in 
single- and multi-mass vibratory machines. The technique is 
also based on the Sommerfeld effect. The technique employs 
the effect of the balls (rollers) [13] or pendulums [14] getting 
stuck in the auto-balancer at one of the resonant frequencies 
of the vibratory machine. The effect is manifested at small 
resistance forces in rotary systems with isotropic [13, 14] 
and anisotropic [15] supports. Platform vibration parame-
ters vary widely by changing the rotor speed, the total mass  
of loads. There can be several loads [13–15], as well as one [16].

The technique for exciting resonant vibrations by pas-
sive auto-balancers is theoretically substantiated in stu- 
dies [17–21]. Thus, [17] describes the generalized models of 
single-, two-, and three-mass resonant vibratory machines, 
as well as the derived differential motion equations. The 
analytical methods were applied to investigate the feasibility 
of this technique for a single-mass [18], two-mass [19], and 
three-mass [20] vibratory machine.

The results reported in [17–20] have made it possible for 
the authors of [21] to synthesize and investigate the dyna
mics of a three-mass anti-resonant vibratory machine with  
a vibration exciter in the form of a passive auto-balancer. The 
new vibratory machine is interesting because it almost does 
not transmit vibrations to the foundation. The vibratory ma-
chine consists of three viscoelastically connected platforms. 
The intermediate platform is viscoelastically attached to 
the foundation. One of the outside platform hosts a passive 
auto-balancer. Under an anti-resonance motion mode, the 
intermediate platform almost does not oscillate while the two 
outside platforms oscillate in opposite phases. The rigidity of 
the supports was chosen so that the frequency of platforms’ 
oscillations under an anti-resonance mode was a resonant 
frequency of the vibratory machine’s oscillations. In this case, 
due to the Sommerfeld effect, the loads in the auto-balancer 
can get stuck at the specified resonance frequency, which 
could excite the anti-resonance mode of motion.

It should be noted that the two-mass vibratory machines’ 
structure is simpler than that of three-mass vibratory ma-
chines. However, up to now, no resonant two-mass vibratory 
machines with a vibration exciter in the form of a passive auto- 
balancer that do not transmit vibrations to the foundation 
have been synthesized.

3. The aim and objectives of the study

The aim of this work is to synthesize and study the dy-
namics of a two-mass resonant anti-phase vibratory machine 
with a vibration exciter in the form of a passive auto-balancer.  
This is necessary for the development and design of vibratory 
machines of the specified structure, which would almost not 
transmit vibrations to the foundation.

To accomplish the aim, the following tasks have been set:
– to synthesize a two-mass resonant antiphase vibratory 

machine that almost does not transmit oscillations to the 
foundation; 

– to analytically find the laws of its platforms’ oscillations; 
– to investigate by numerical methods the dynamic pro

perties of the vibratory machine at certain parameters.
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4. The mechanical-mathematical model  
of vibratory machine 

4. 1. Description of the vibratory machine model
A model of the two-mass vibratory machine is depicted in 

Fig. 1 [17]. The vibratory machine consists of a bed, rigidly 
attached to the foundation, and platforms 1, 2 of, respective-
ly, masses M1 and M2. Platform number i is attached to the 
bed with an elastic-viscous support whose rigidity coefficient 
is ki, and viscosity coefficient is bi, /i = 1, 2/. The platforms 
are connected by an elastic-viscous support whose rigidity 
coefficient is k12, and viscosity coefficient is b12.

 
 
 

    

a

b c

Fig. 1. The kinematics of a two-mass vibratory 	
machine motion [17]: a – platform; b – a ball or roller; 	

c – pendulum

The guides on the bed allow the platforms to execute only 
translational motion in the vertical direction. The positions 
of the platforms are determined by the y1, y2 coordinates, and 
the coordinates are counted from the positions of the static 
equilibrium of the platforms. 

Platform 2 hosts a ball-, a roller- (Fig. 1, b), or a pendu-
lum-type (Fig. 1, c) auto-balancer. 

The body of the auto-balancer is mounted onto the shaft 
and rotates with a shaft at a constant angular velocity w (around 
point K). The turning angle of the body is wt, where t is the time.

The auto-balancer consists of N identical loads. The 
mass of one load is m. The center of the load’s mass can 
move along the circumference of radius R with the center at  
point K (Fig. 1, b, c). The position of load number j is deter-
mined by angle jj, / , / .j N= 1

The center of the mass of load number j moves relative 
to the body of the auto-balancer at a relative speed whose 
module is equal to v Rj

r
j

( ) | | .= ′−j ω  Hereafter, a stroke by the 
value denotes a time derivative t. 

At the relative motion, the load is exposed to the force of 
viscous resistance whose module is:

F b v b Rj W j
r

W j= = ′−( ) | |,j ω  / , /,j N= 1 	 (1)

where bW is the viscous resistance force factor.
Further, we do not take into consideration the gravity 

forces.

4. 2. Differential motion equations
The differential equations of the vibratory machine’s mo-

tion take the following dimensionless form [19].

   v h v n v h v v n v v1 1 1 1
2

1 12 1 2 12
2

1 22 2 0+ + + −( ) + −( ) =ρ ρ ,

 

  

v h v n v

h v v n v v sy

2 2 2 2
2

2

12 1 2 12
2

1 2

2

2 0

+ + −

− −( ) − −( ) + =ρ ρ ,

  j eβ j e jj j jn v+ −( ) + =2 0cos ,  / , / .j N= 1 	 (2)

The following dimensionless quantities are introduced 
in (2):

– constants and time:

v y y1 1= ( )/ ,ρ   v y y2 2= / ,

s
mR

sy j
j

N

=
=

∑


sin ,j
1

 τ ω=  t; 	 (3)

– parameters:

n
k

M1
2 1

1
2=
ω

,  n
k

M12
2 12

2
2=

Σ ω
,  n

k
M2

2 2

2
2=

Σ ω
,

h
b

M1
1

12
=

ω
,  h

b
M12

12

22
=

Σ ω
,  h

b
M2

2

22
=

Σ ω
,  ρ =

M
M

2

1

Σ ,

n =
ω
ω

,  e
κ

=
y
R

,  β
eκ ω

=
b
m
W



,  eβ
κ ω

=





b
m

W



. 	 (4)

In (2), a point above the value denotes a derivative from 
the dimensionless time.

In turn, in (3), (4):

–  M M Nm2 2Σ = + ,   y s M= 2Σ ; 	 (5)

– for a ball, a roller, and a pendulum, respectively:

κ = 7 5,  κ = 3 2,  κ = + ( )1 2J mRC / , 	 (6)

where JC is the main central axial moment of the pendulum 
inertia; ω  is the characteristic scale of time; s  is the charac-
teristic scale of the unbalanced mass.

Note that the characteristic scales can be chosen arbi-
trarily depending on the problem under consideration.

From the side of the platforms’ elastic supports, the bed is 
exposed to a variable perturbing force. The projection of the 
perturbing force onto the y axis is equal to:

R k y b y k y b yy = + ′ + + ′1 1 1 1 2 2 2 2. 	 (7)

Given (3) and (4), the projection of the perturbing force 
is reduced to the following dimensionless form:

R R M y n v h v n v h vy y= ( ) = + + +2
2

1
2

1 1 1 2
2

2 2 22 2Σ � � � �ω . 	 (8)

This force makes the bed and foundation oscillate vertically.  
In a perfect anti-phase machine, this force should be zero.
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5. The synthesis and study of the dynamics  
of an antiphase resonance two-mass vibratory machine 

5. 1. Synthesizing the antiphase resonant two-mass 
vibratory machine 

5. 1. 1. Search for the angular velocity of load rotation 
at which the vibratory machine operates as an anti-phase 
machine

A purely antiphase mode of platform motion is possible 
only in the absence of resistance forces. 

In the absence of resistance forces, the loads collected, the 
loads getting stuck at a constant rotation rate W, the system 
of equations (2) takes the form:

v n v n v v1 1
2

1 12
2

1 2 0+ + −( ) =ρ ,

v n v n v v s2 2
2

2 12
2

1 2
2+ − −( ) =ρ τΩ Ωsin . 	 (9)

where s is the total dimensionless unbalanced mass of tightly 
pressed loads. 

In the absence of viscous resistance forces, the condition 
for the perturbing force to equal zero (8) takes the form:

R n v n vy = + =1
2

1 2
2

2 0. 	 (10)

Solve the system of equations (9) under constraint (10). 
Add equations in (9), we obtain:

 v n v v n v s1 1
2

1 2 2
2

2
2+ + + = Ω Ωsin .τ

Given the constraint (10), the latter equation takes  
the form:

 v v s1 2
2+ = Ω Ωsin .τ

Then, given that the platforms oscillate near the positions 
of static equilibrium, we obtain:

 v v s2 1
2= − + Ω Ωsin ,τ

 v v s2 1= − − Ω Ωcos ,τ  v v s2 1= − − sin .Ωτ 	 (11)

Substituting (11) in equation (9), after the transforms, 
we obtain:

v n n v n s1 1
2

12
2

1 12
21+ + +( )  = −ρ τsin ,Ω

v n n v s n n1 2
2

12
2

1 12
2

2
21+ + +( )  = − +( )ρ τsin .Ω 	 (12)

In (12), subtract the second equation from the first equa-
tion, and obtain:

n n v n s1
2

2
2

1 2
2−( ) = sin .Ωτ

From the equation above and the last equation in (11), 
we find:

v
n

n n
s1

2
2

1
2

2
2=

−
sin ,Ωτ  v

n
n n

s2
1
2

1
2

2
2= −

−
sin .Ωτ 	 (13)

Find at what angular velocity of load jamming W the laws 
of platform oscillations (13) could be the solution to the sys-
tem of equations (9). Denote:

L v n v n v v1 1 1
2

1 12
2

1 2 0= + + −( ) = ρ ,

L v n v n v v s2 2 2
2

2 12
2

1 2
2 0= + − −( ) − = ρ τΩ Ωsin . 	 (14)

Substituting (13) in (14), we obtain:

L L n n n n n n n
s t

n n2 1 2
2 2

1
2

2
2

1
2

12
2

2
2

12
2

1
2

2
2= − = − − −( ) ( )

−
Ω

Ω
ρ

sin
. 	 (15)

From (15), we find that two equations in (14) will simul-
taneously hold only at the following angular velocity:

Ωw n n n n n n n= + +( )1
2

2
2

1
2

12
2

2
2

12
2

2
2ρ . 	 (16)

This is the angular velocity of load rotation at which a vibra-
tory machine operates as an ideal antiphase vibratory machine.

5. 1. 2. Conditions under which the antiphase vibratory 
machine becomes resonant

The frequency equation of the system of equations (9) 
takes the following form:

Δ p
a p a p

a p a p

a p a p a p a p

( ) =
( ) ( )
( ) ( ) =

= ( ) ( ) − ( ) ( ) =

11 12

21 22

11 22 12 21 0,, 	 (17)

where

a p n n p11 1
2

12
2 2( ) = + −ρ ,  a p n12 12

2( ) = − ,

a p n a p n n p21 12
2

22 2
2

12
2 2( ) = − ( ) = + −ρ, . 	 (18)

Then

Δ p n n p n n p n( ) = + −( ) + −( ) − =1
2

12
2 2

2
2

12
2 2

12
4 0ρ ρ . 	 (19)

If Ωw  from (16) is a resonance frequency, then:

Δ Ωw n n n n n n n n n n( ) = −( ) + +( )  =1
2

2
2

12
2

1
2

2
2

1
2

12
2

2
2

12
2

2
4 0ρ . 	 (20)

From (20), we find that Ωw is a resonance frequency 
provided:

n n2 1= . 	 (21)

Let the condition (21) be met. Then the frequency equa-
tion (19) takes the form:

Δ p p n p n n( ) = −( ) − + +( ) 
2

1
2 2

1
2

12
2 1 ρ . 	 (22)

From equation (22), we find the following two resonance 
frequencies of the vibratory machine:

n nr
1 1
( ) ,=  n n nr

2 1
2

12
21( ) ,= + +( )ρ  n nr r

2 1
( ) ( ) .>( ) 	 (23)

Thus, in the absence of resistance forces in the supports 
(h1, h12, h2 = 0), the vibratory machine has two resonance 
frequencies (23). They correspond to two forms of the plat-
forms’ resonance oscillation. The first oscillation form is 
dominated by the component at which the platforms oscillate 
in phase; the second – in antiphase. 

Note that at n2→n1 the laws of platform motion (13) are 
incorrect as amplitudes of oscillations tend to infinity. The 
presence of viscous resistance forces limits the amplitude of 
platform fluctuations. However, the projection of the per-
turbing force onto the y axis is, in this case, no longer zero.
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5. 2. Analytical study of the dynamics of a resonant 
antiphase vibratory machine 

5. 2. 1. The laws of steady state platform motions
Loads can get stuck in a vibration exciter only if there are 

viscous resistance forces [19]. Under a jam mode, the loads 
are tightly pressed together and generate the largest total 
(dimensional) unbalanced mass S AB

max . For balls or rollers [19]:

S mR r N r RAB
max sin arcsin / .= ( ) { }2 	 (24)

For the case of pendulums, additional information about 
the design of pendulums is needed to determine the greatest 
unbalanced mass S AB

max .
The steady state modes of platform motions are deter-

mined using the results reported in [19]. At e = 0:

v X s

X s i

i i

i

τ τ

τ

( ) = ( ) ( )+

+ ( ) ( ) =
−2 1

2 1 2

Ω Ω

Ω Ω

, sin

, cos , / , /. 	 (25)

where W is the constant frequency at which loads get stuck;

s S sAB= max ; 	 (26)

X s sj jΩ Δ Ω Δ Ω, , / ,( ) = ( ) ( )  / , , , / .j = 1 2 3 4 	 (27)

In turn, in (27):
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Finally, in (28):

a n n11 1
2

12
2 2Ω Ω( ) = + −ρ ,  a h h12 1 122Ω Ω( ) = − +( )ρ ,

a n13 12
2Ω( ) = − ,  a h14 122Ω Ω( ) = ,

a q n n33 1
2

12
2 2( ) = + − Ω ,  a h h34 1 122Ω Ω( ) = − +( ),

b s s3
2Ω Ω, .( ) = 	 (29)

Note that in reality e is the small parameter and, there-
fore, the correction to law (25) does not exceed 2 %.

From (25), we find the amplitudes of platforms’ oscillations:

Amp s X s X si i iΩ Ω Ω, , , ,( ) = ( ) + ( )−2 1
2

2
2  / , / .i = 1 2 	 (30)

In the laws of platform motion (25), all possible values of 
the constant parameter W are determined from the following 
equation [19]:

P n n sΩ Ω Δ Ω Ω Δ Ω, , .( ) = −( ) ( ) + ( ) =2 02
4β 	 (31)

In the presence of viscous resistance forces, the dimen-
sionless projection of the perturbing force takes the form 
of (8). Given (25), this projection changes according to the 
following harmonic law:

R s
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at amplitude:
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At the antiphase form of platform motion, the amplitude 
(33) is a small quantity.

5. 2. 2. Procedure for the numerical study of steady state 
platform vibrations [19, 21]

In the absence of resistance forces in the supports, 
Δ Ω4 0, .s( ) =  In this case, the component 2β n −( ) ( )Ω Δ Ω  that 
remained in (31) has five valid positive roots:

n r
1
( ),  n r

1
( ),  n r

2
( ),  n r

2
( ),  n n nr r

2 1
( ) ( ) .>( ) 	 (34)

Therefore, for the case of small viscous resistance forces 
in the supports, the frequencies of load jamming are close to 
the resonance (natural) oscillation frequencies of the vibra-
tory machine or to the frequency of rotor rotation.

From (31), we find the following solution to the equation 
of the frequencies of load jamming in the parametric form:

n
s

Ω Ω
Δ Ω

ΩΔ Ω
Δ Ω( ) =

( ) −

− ( )












( ) 
2

2
4

β
β

,
,  Ω ∈ +¥( )0, . 	 (35)
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In a general case, when one increases W from 0 to +¥, the 
dimensionless angular velocity of rotor rotation n can take 
the local minimum or maximum values. Then at the points 
of a local minimum, there would occur (to disintegrate later) 
a pair of jamming frequencies, and, at the points of a local 
maximum, a pair of jamming frequencies would disappear 
through merging.

Thus, at the bifurcation points:

dn d( ) .Ω Ω = 0 	 (36)

In the plane Ω Ω, ,n( )( )  Ω ∈ +¥( )0, ,  the evolution or dis-
appearance of the jamming frequencies is illustrated by the 
chart of function Ω n( ),  n ∈ +¥( )0, .

Our analysis allows us to use the following computational 
algorithm for studying the steady state vibrations of the vi-
bratory machine [19, 21]:

1. Equation (36) is employed to find four bifurcation fre-
quencies of load jamming, such as 0 1 2 3 4< < < <Ω Ω Ω Ωb b b b

( ) ( ) ( ) ( ).
2. Applying formula (35) produces four bifurcation an-

gular velocities of rotor rotation n b
i( ),( )Ω  / , / .i = 1 4  Number 

them in ascend order: 0 1 2 3 4< < < <n n n nb b b b
( ) ( ) ( ) ( ). When a rotor 

passes the bifurcation speed, one pair of jamming modes 
emerges or disappears.

3. In the plane (n, W), build the charts of five possible 
modes of load jamming nj ( ), ,Ω Ω( )  / , /,j = 1 5  where

n n1 Ω Ω( ) = ( ),  Ω Ω∈ 0 1, ;( )
b  n n2 Ω Ω( ) = ( ),  

Ω Ω Ω∈ b b
( ) ( ), ;1 2  …, n n5 Ω Ω( ) = ( ),  Ω Ω∈ + ¥ )b

( ), .4 	 (37)

It was established in [19, 21] that only the odd modes of 
jamming are locally asymptotically stable while even ones are 
always unstable.

4. For each jamming mode, the following is calculated in 
the parametric form:

– from formulae (30), the amplitudes of platform oscil-
lations:

Amp s Amp si i, , , ,1 Ω Ω( ) = ( )  Ω Ω∈ 0 1, ,( )
b

Amp s Amp si i, , , ,2 Ω Ω( ) = ( )  Ω Ω Ω∈ b b
( ) ( ), ,1 2  …,

Amp s Amp si i, , , ,5 Ω Ω( ) = ( )  Ω Ω∈ + ¥ )b
( ), ,4  / , /;i = 1 2 	 (38)

– from formula (33), the amplitudes of oscillations of the 
dimensionless perturbing force:

A s A sR R, , , ,1 Ω Ω( ) = ( )  Ω Ω∈ 0 1, ,( )
b

A s A sR R, , , ,2 Ω Ω( ) = ( )  Ω Ω Ω∈ b b
( ) ( ), ,1 2 …,

A s A sR R, , , ,5 Ω Ω( ) = ( )  Ω Ω∈ + ¥ )b
( ), .4 	 (39)

Based on the results of calculations in the (n, Amp) plane, 
the charts of the dimensionless oscillation amplitudes are built:

– platform ( ( ), ( , )),,n Amp sj i jΩ Ω  / , ; , /;i j= =1 2 1 5
– dimensionless perturbing force ( ( ), ( , )),,n A sj R jΩ Ω  

/ , / .j = 1 5
Note that the charts of dependences (38), (39), built in 

the (W, Amp) plane, are also informative. They can be used to 
study the influence of external and internal viscous resistance 
forces on the vibration characteristics of platforms [19].

5. 3. Numerical study of the dynamics of a resonant 
antiphase vibratory machine

All calculations involve dimensionless quantities. The 
results are also obtained in a dimensionless form. 

The estimated data (dimensionless parameters) are:

n1 1 3= / ,  n12 2 3= / ,  n2 1 3= / ,  ρ = 1,  s = 1,

β = 1,  h1 0 01= . ,  h12 0 01= . ,  h2 0 01= . . 	 (40)

Substituting (40) in (23), we find two resonance (natu
ral) oscillation frequencies of the system in the absence of 
resistance forces:

nr
( ) . ,1 0 3333=  nr

( ) .2 1=

The bifurcation frequencies of load jamming are found as 
the roots of equation (31):

Ωb
( ) . ,1 0 3339=  Ωb

( ) . ,2 0 3806=  

Ωb
( ) . ,3 1 0015=  Ωb

( ) . .4 1 2154= 	 (41)

Substituting (41) in (35), we find the corresponding bi-
furcation speeds of rotor. We arrange them in order of ascend:

nb
( ) . ,1 0 4141=  nb

( ) . ,2 0 7978=  

nb
( ) . ,3 1 3932=  nb

( ) . .4 5 1829= 	 (42)

Fig. 2 shows the built charts of 5 possible load jamming 
modes (37).

 
 
 

   

a
 

 
 

   
b c

Fig. 2. Charts of possible load jamming modes: a – a general 
view; b – in the vicinity of the origin of modes 2 and 3; 	

c – in the vicinity of the merge of modes 3 and 4

In Fig. 2, solid lines show the stable modes of jamming, 
dotted lines – unstable.

Fig. 3 shows the dependences of the dimensionless ampli-
tudes of platform oscillations and the dimensionless perturb-
ing force on the frequency of load jamming.

Fig. 3 demonstrates that the platforms oscillate at signi
ficant amplitudes when loads get stuck in the vicinity 
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of the first and second resonance frequencies of platform 
oscillations. At the same time, in the vicinity of the first 
resonance frequency, the amplitude of the perturbing force 
is an order of magnitude greater than this amplitude in the 
vicinity of the second resonance frequency. The simulta
neous increase in the number of loads and viscous resistance 
forces that impede the motion of loads leads to a proportional 
increase in the amplitude of platform oscillations and per- 
turbing force.

 
 

 

a

b
Fig. 3. Dependences of the dimensionless amplitudes 	

of platform oscillations and the dimensionless perturbing 
force on the frequency of load jamming: a – one load; 	
b – three loads and three times the large resistance 	

forces to the motion of the load

Note that the third mode of load jamming is stable in the 
range of rotor speeds n n nb b∈( )( ) ( ), .1 4

Fig. 4 shows the built charts of dependences of the fol-
lowing, under the third mode of load jamming, on the rotor 
speed: the dimensionless amplitude of platform oscillations; 
the amplitude of the dimensionless perturbing force.

    
a b

Fig. 4. Dependence of the dimensionless amplitudes of 
platform oscillations and the amplitude of the dimensionless 
perturbing force on the rotor speed under the third mode of 
load jamming: a – one load; b – three loads and three times 

the large resistance forces to the motion of the load

Fig. 4 demonstrates the following:
– the antiphase mode of platform motion is manifested 

the stronger the larger the rotor speed in the range n nb b
( ) ( ), ;1 4( )

– with an increase in the rotor speed there are increases 
in the amplitude of platform oscillations while the amplitude 
of the dimensionless perturbing force decreases;

– the simultaneous increase in the number of loads and 
viscous resistance forces that impede the motion of loads 
leads to a proportional increase in the amplitude of platform 
oscillations and the perturbing force. 

The integration of the differential vibratory machine 
motion equations (2) confirms that the third mode of load 
jamming is locally asymptotically stable across the entire 
range n nb b

( ) ( ), .1 4( )
Fig. 5, a–c shows, respectively, the charts of changes 

over the dimensionless time of the following dimensionless 
quantities: the platform coordinates v1, v2; the frequency of 
load jamming (under the third mode) Ω3; the dimension-
less projection Ry  onto the y axis of the perturbing force  
at n nb= +( ) . .1 0 005

     
(1) 0.005, bn n  (0,3 )   

                 a                                b                                   c

Fig. 5. The charts of change over the dimensionless 	
time of the following dimensionless quantities: 	

a – platform coordinates v1, v2; b – frequencies of load 
jamming (under the third mode) Ω3; c – projections Ry onto 

the y axis of the perturbing force

Fig. 5 demonstrates that at the beginning of the range 
n nb b

( ) ( ),1 4( ) the antiphase form of platform motion is almost 
unobservable.

Fig. 6 shows the charts built for the same quantities as in 
Fig. 5, but at n nb= −( ) . .4 0 005

     
(4) 0.005, bn n  (0, )   

                 a                                    b                              c

Fig. 6. The charts of change over the dimensionless 	
time of the following dimensionless quantities: 	

a – platform coordinates v1, v2; b – frequencies of load 
jamming (under the third mode) Ω3; c – projections Ry  onto 

the y axis of the perturbing force

Fig. 6 demonstrates that at the end of the range n nb b
( ) ( ),1 4( ) 

the antiphase mode of platform motions appears in the most 
explicit fashion. 

The results of integrating the differential motion equa-
tions, as well as the charts in Fig. 4, lead us to conclude that 
the vibratory machine under consideration can be used as an 
antiphase one in the range of rotor speeds of 1 4, .( )nb( )  That is,  
the rotor speed should exceed the highest resonance frequen-
cy of the vibratory machine.



Applied mechanics

49

The amplitudes of platform oscillations can be changed:
– by changing the rotor speed;
– by a simultaneous increase in the number of loads and 

viscous resistance forces preventing the motion of loads.

6. Discussion of results of studying the resonance anti-
phase two-mass vibratory machine whose operation is 

based on the Sommerfeld effect

We have considered a two-mass vibratory machine with 
a vibration exciter in the form of a passive auto-balancer. In 
the vibratory machine, platforms 1 and 2 are viscoelastically 
attached to the stationary bed and are tied together visco-
elastically. A passive auto-balancer is mounted on platform 2.

It has been established that the vibratory machine has two 
resonance frequencies and two corresponding forms of platform 
oscillations. In the absence of resistance forces in the system:

– we have found such a speed of load jamming (16) at 
which the antiphase mode of motion is executed, under which 
platforms 1 and 2 oscillate in opposite phases while the per-
turbing force acting on the bed from the elastic supports is zero;

– we have selected such values of support parameters (21) 
at which the frequency of platform oscillations under an anti-
phase mode coincides with the (second) resonance frequency.

It has been established that the antiphase mode is 
achieved due to the Sommerfeld effect when the loads get 
stuck in the vicinity of the second resonance frequency. 

The laws of platform motion (25) have been found in 
the presence of viscous resistance in the system. It has been 
established that the antiphase mode of platform motions is  
not ideal. The perturbing force acting on the side of supports 
on the bed is not zero. The dynamic characteristics of the vi-
bratory machine have been investigated by numerical meth-
ods. It has been established that in the case of small internal 
and external resistance forces:

– there are five theoretically possible modes of load jam-
ming (Fig. 2); 

– the antiphase (second) form of platform oscillations is 
theoretically implemented under jamming modes 3 and 4; 

– locally asymptotically stable is jamming mode 3 while 
mode 4 is unstable; 

– for the loads to get stuck in the vicinity of the second 
resonance frequency, one needs to provide the vibratory 
machine with initial conditions close to jamming mode 3, or 
smoothly accelerate the rotor to the working frequency.

The antiphase mode of platform motion is more pro-
nounced under the over-resonant rotor speeds (Fig. 4). 

The amplitude of the antiphase oscillations of platforms 
can be increased (Fig. 4):

– by the increased rotor speed;
– by a simultaneous increase in the number of loads and 

viscous resistance forces preventing the motion of loads.
Our results are applicable for designing the above vibra-

tory machines for general purposes. 
It should be noted that the numerical studies have been 

conducted for specific values of the dimensionless parameters 
of some abstract vibratory machine. However, the devised 

procedure can be used to calculate the parameters of a speci
fic vibratory machine for certain purposes. 

In the future, it is planned to fabricate a prototype of 
the two-mass anti-phase resonance vibratory machine and 
experimentally investigate the dynamic characteristics of the 
vibratory machine.

7. Conclusions

1. It has been established that the two-mass vibratory 
machine under consideration has two resonance frequencies 
and two corresponding forms of platform oscillations. In the 
absence of resistance forces in the system:

– there is such a speed of load jamming at which the mode 
of motion is executed under which platforms 1 and 2 oscillate 
in opposite phases while the perturbing force acting on the 
bed from the elastic supports is zero; 

– it is possible to choose such values for support parame-
ters at which the frequency of platform oscillations under an 
anti-phase mode coincides with a higher resonance frequency.

In the synthesized vibratory machine, the antiphase 
mode would be achieved due to the Sommerfeld effect when 
loads get stuck in the vicinity of the second resonance fre-
quency. However, the onset of the Sommerfeld effect requires 
the presence of the forces of viscous resistance.

2. In the presence of viscous resistance forces in the system, 
the antiphase mode of platform motion is not ideal. The perturb-
ing force acting on the side of supports on the bed is not zero.

3. The dynamic characteristics of the vibratory machine 
have been investigated by numerical methods. It has been 
established that in the case of small internal and external re-
sistance forces:

– there are five theoretically possible modes of load jamming; 
– the antiphase (second) form of platform oscillation is 

theoretically implemented under jamming modes 3 and 4; 
– locally asymptotically stable is jamming mode 3 while 

mode 4 is unstable; 
– for the loads to get stuck in the vicinity of the second 

resonance frequency, one needs to provide the vibratory ma-
chine with the initial conditions close to jamming mode 3,  
or smoothly accelerate the rotor to the working frequency.

The antiphase mode of platform movements is more pro-
nounced at the over-resonant speeds of rotor rotation. The am-
plitude of the antiphase platform oscillations can be increased:

– by the increased rotor speed;
– by a simultaneous increase in the number of loads and 

viscous resistance forces preventing the motion of loads.
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