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Abstract— Cells are defined by their unique ability to self-
replicate through cell division. This periodic process is known as
the cell-cycle and it happens with a defined period in each cell.
The budding yeast divides asymmetrically with a mother cell
generating multiple daughter cells. Within the cell population
each cell divides with the same period but asynchronously.
Here, we investigate the problem of synchronising the cell-
cycle across a population of yeast cells through a microfluidics-
based feedback control platform. We propose a theoretical and
experimental approach for cell-cycle control by considering
a yeast strain that can be forced to start the cell-cycle by
changing growth medium. The duration of the cell-cycle is
strictly linked to the cell volume growth, hence a hard constraint
in the controller design is to prevent excessive volume growth.
We experimentally characterised the yeast strain and derived
a simplified phase-oscillator model of the cell-cycle. We then
designed and implemented three impulsive control strategies
to achieve maximal synchronisation across the population and
assessed their control performance by numerical simulations.
The first two controllers are based on event-triggered strategies,
while the third uses a model predictive control (MPC) algorithm
to select the sequence of control impulses while satisfying
built-in constraints on volume growth. We compared the three
strategies by computing two cost functions: one quantifying
the level of synchronisation across the cell population and the
other volume growth during the process. We demonstrated
that the proposed control approaches can effectively achieve an
acceptable trade-off between two conflicting control objectives:
(i) obtaining maximal synchronisation of the cell cycle across the
population while (ii) minimizing volume growth. The results can
be used to implement effective strategies to unfold the biological
mechanisms controlling cell cycle and volume growth in yeast
cells.

I. INTRODUCTION

Attempts to apply engineering principles to biological
processes to understand and build new functions in cells
have led to a growing interdisciplinary research community
blending Synthetic Biology with Control Engineering, aptly
named Cybergenetics. Currently synthetic circuits can per-
form only very basic functions thus having a limited impact
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in biotechnology and biomedicine. Control engineering is
a key discipline that provides the theoretical and method-
ological tools to engineer complex systems and make sure
they behave in the desired way across a range of operating
conditions. Application and adaption of established theories
and techniques from conventional control engineering have
been hampered by the peculiarities of biological systems,
such as cell-to-cell variability, metabolic load, cross-talking
and practical realizability [1].

Several studies have demonstrated the feasibility of using
real-time feedback control approaches to drive simple cellu-
lar processes by means of optogenetics or microfluidics ap-
proaches [2]–[8], guaranteeing an accuracy that was hitherto
unachievable. However, besides proof-of-concepts, the real
potential of these approaches has not yet been thoroughly
investigated.

Here, we investigate the feasibility of controlling a fun-
damental and complex mechanism present in each cell:
the cell-cycle. This process can be seen as a biological
oscillator characterised by a fixed period in each cell, but
with different phases across cells. During the cell-cycle, the
cell progresses in a sequential and unidirectional manner
through different phases (growth, DNA synthesis, mitosis)
to make a copy of itself. The control objective we want
to achieve is to synchronise the cell cycle across the cell
population, thus having all yeast cells budding at the same
time. All the available methods in yeast biology do not really
“synchronise” the cell population, at least according to the
terminology of dynamical system theory, but rather just force
each cell in the population to start from the same initial
condition. Previous studies addressed the synchronisation
problem by considering only an open-loop control strategy
where an external periodic input was used to entrain the
population of yeast cells, with limited success [9]. Here, we
consider the implementation of a feedback control strategy
based on an external control approach where a computer
interfaced with living cells steers their dynamics by means
of microfluidics whereas a microscope measures the cells’
output.

We first derived a simplified phase-oscillator model of cell-
cycle motivated by previous work [9], whose parameters
were fitted from experimental data. We used this model
both for numerical simulations and for designing control
strategies. We designed, numerically simulated and compared
three different control strategies, two of which are based on
input-output control and one on a model predictive control
(MPC) strategy.

We then compared the three strategies against three per-
formance indices that take into account the level of syn-
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Fig. 1. Cell cycle process in a budding yeast manipulated genetically to
halt the cell cycle in the G1 phase, unless an external stimulus is provided
[10].

chronisation across the cell population quantified through
the Kuramoto’s order parameter and the cell volume growth
during the process.

Our results show the feasibility of applying feedback con-
trol strategy to steer a complex biological process such as the
cell-cycle and can be instrumental for their implementation
in-vivo.

II. DESCRIPTION OF THE BIOLOGICAL SYSTEM AND
CHARACTERISATION

To address the cell-cycle synchronisation problem, we
chose a budding yeast strain whose cell-cycle (shown in
Figure 1) can be halted at the G1 phase in the presence
of methionine, or allowed to progress to the S phase in the
absence of methionine [10].

A. Biological system

In the chosen yeast strain, all the endogenous genes
encoding the G1 cyclins (CLN1, CLN2 and CLN3) are
deleted, thus making the cells unable to progress towards
the S phase. To enable control of the cycle progression by
changing growth medium, the endogenous CLN2 gene was
inserted downstream of the methionine repressible promoter
PMET3. In this way, the cell-cycle can progress to the S phase
only in the absence of methionine. To track the cell-cycle
progression, a yellow fluorescent protein (YFP) was inserted
downstream of the endogenous CLN2 promoter. Since the
CLN2 promoter is activated in G1 and repressed in G2, the
yellow fluorescence reporter can be used as a proxy of the
cell-cycle phase.

B. Experimental characterisation

We previously implemented a microfluidics experimental
platform to enable real-time observation and control of gene
expression in yeast cells [8], [11]. We employed this platform
to perform a preliminary time-lapse experiment in which
cells were grown in the absence of methionine for 18 hours,
thus enabling them to cycle. We quantified at single-cell level
the YFP fluorescence signal expressed by the endogenous
CLN2 promoter, as well as the area occupied by each cell
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Fig. 2. Experimental characterisation of the biological system. (A)
Experimental data of a single cell tracked for 500 min. The top panel
shows the fluorescence signal measured by a fluorescence microscope at
2 min intervals. The middle panel shows the cell area in pixels. Cells were
grown in the absence of methionine, as shown in the bottom panel. (B)
Histogram of cell cycle duration across cells. (C) Histogram of cell area
across cells.

in the field, as shown in Figure 2A. To reduce the effect
of measurement noise, we applied a bandpass Butterworth
filter to the fluorescence signals. The filter cut-off frequencies
(fH = 5 · 10−4 Hz and fL = 4 · 10−5 Hz) are chosen in the
range [30, 400] min, as the cell-cycle duration is biologically
constrained within this interval.

The measured cell-cycle duration across cells (Figure 2B)
can be approximated by a normal distribution N (µ, σ2) with
mean µ = 84.47 min and standard deviation σ = 19.33 min.
As expected, the mean value µ is in line with previous
observations [10]. We noted a high value for the standard
deviation σ, which may be explained by the presence of cells
in the field that are not cycling despite the activation of the
endogenous gene CLN2. The estimated cell areas, which are
proportional to the volume, are distributed as a log-normal
distribution with mean µ = 4.48 px and standard deviation
σ = 0.4 px (Figure 2C).

C. Model derivation

To model the cell-cycle, we exploited the concept of phase
reduction [12], [13]. We assumed that the cell-cycle can be
described as a dynamical system of the general form:

ẋ = f(x, t) , (1)

where x ∈ Rn is the state vector and t ∈ R is time. If (1) has
an exponentially stable limit cycle γ ⊂ Rn with period Td,
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then (1) is an oscillator that, according the phase reduction
method, can be modelled as a dynamical phase oscillator

ϑ̇ = ω , (2)

where ϑ is the phase of the oscillator on the unit circle S1
and ω = 2π

Td
is the angular frequency.

Let ϑc be the cell-cycle phase at budding, i.e. the phase at
which the G1/S transition occurs. As the cell cycle is always
in G1 in the presence of methionine, the phase dynamics can
be described as:

ϑ̇ =

{
0 if ϑ ∈ [0, ϑc[

ω if ϑ ∈ [ϑc, 2π[
. (3)

Thus, the phase linearly increases with rate ω only when the
cell is in either S, G2 or M. As the cell-cycle is coupled to
cell growth [9], we consider also cell volume dynamics. To
this aim, we assume that a cell grows exponentially only
during the G1 phase . Thus, the volume growth can be
described as:

V̇ =

{
βV if ϑ ∈ [0, ϑc[

0 if ϑ ∈ [ϑc, 2π[
, (4)

where β > 0 is the volume growth rate. We assume that cell
division occurs at ϑ = 2π. At each division event, the phase
ϑ is reset to ϑ = 0.

Let u ∈ {0, 1} be the external trigger input to the system.
We assume that, if u = 1, the cells are growing in the absence
of methionine; conversely, if u = 0, they are growing in the
presence of methionine. We then model the phase transition
from G1 to S as the following reset condition:

if ϑ ∈ [0, ϑc[ ∧ u = 1 ∧ V ≥ Vc =⇒ ϑ 7→ ϑc , (5)

where Vc is the critical volume, defined as the minimum
amount of volume needed to have the cell cycle progress
towards the S phase.

III. PROBLEM STATEMENT

Let N ∈ N be the number of cells in the population.
Consider each cell as an individual agent whose cell-cycle
progression is mathematically described by the model com-
posed by (3) and (4), together with the reset condition (5).

The control aim is to synchronise the cell-cycle across the
cell population. As the duration of the cell-cycle is coupled
to the volume growth, a desirable feature of the controller is
to avoid excessive volume growth, which can be lethal for
the cell.

Synchronisation in a population of oscillators can be
quantified by means of the Kuramoto order parameter R [13]
defined as the magnitude of the complex number

Z(t) :=
1

N

N∑
i=1

eϑi(t) = R(t) eΘ(t) , (6)

where ϑi is the phase of cell i. R ∈ [0, 1] represents the mean
phase coherence, an index to evaluate the synchronisation

among a population of oscillators. When R is equal to 1, all
cells are synchronized onto the same phase.

Cell volume is quantified by measuring the average vol-
ume in the population:

V̄ (t) =
1

N

N∑
k=1

Vi(t) . (7)

To evaluate the performance of the control algorithms, we
introduce two cost functions:

JR = 1 − 1

tf

∫ tf

0

R2(τ)dτ , (8)

so that all cells are synchronized over the whole time interval
when JR is equal to zero; and:

JV =

(
V̄ (tf )− V̄0
V̄max − V̄0

)2

, (9)

with JV ∈ [0, 1], V̄0 = V̄ (0) and V̄max = V̄0 e
βtf . Here

V̄max is the maximum value of the average volume that
would be reached if all cells exponentially grew for all
t ∈ [0, tf ]. Notice that volume growth is minimized over
the time interval being considered if JV is rendered as close
as possible to 0.

The control problem can thus be stated as follows:
Problem 1: Given a population of N individual cells,

which are described by (3), (4), (5), compute the control
input u that minimises JR and, possibly, JV .

A. Numerical simulations
All in-silico simulations were performed using the Matlab

ode45 solver with event detection routines to accurately
detect cell division at ϑi = 2π and the hitting of the critical
volume Vi = Vc for cells with initial volume Vi < Vc.

We considered a synthetic population consisting of
N = 100 cells with random initial conditions. Specifically,
the initial volumes Vi(0) were drawn from the interval
[0.8Vc, 1.2Vc] and the initial phases ϑi(0) from the interval
[0, 2π[, both with uniform distributions, and setting ϑi to 0
if Vi < Vc. Moreover we set ϑc = π

4 .
The volume growth rate is chosen as β =

0.0083 [a.u.]min−1 and the critical volume as
Vc = 1000 [a.u.], following the same choice reported
in [9].

Due to the high standard deviation in the cell cycle periods
Ti identified from the experimental data, we considered also
an additional case with a lower standard deviation (hence a
lower value of the coefficient of variation CV = σ/µ, where
µ is the nominal cell cycle period T ). Specifically:

• High variability case (CV = 22.88%): Ti drawn
from the normal distribution with parameters µ =
84.47 min and σ = 19.33 min, winsorizing samples
outside [40, 138] min.

• Low variability case (CV = 10%): Ti drawn from the
normal distribution with parameters µ = 84.47 min
and σ = 8.447 min, winsorizing samples outside
[67, 101] min.

All simulations were stopped at tf = 6T .
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IV. CONTROL ALGORITHMS

We designed three control algorithms to solve Problem 1,
that is to achieve the synchronisation of the yeast cell cycle,
and concurrently the minimisation of the volume growth in
heterogeneous populations of cells. The first control algo-
rithm we present, named Stop&Go control, is trivial and
hence it is used as benchmark to assess the performance of
the other two more advanced control algorithms. The second
control algorithm, that we named Threshold control, is an
empirical control strategy. The third control algorithm is a
model predictive control (MPC), which is widely exploited
for external in-silico control of biological systems [6]–[8],
[14].

A. Stop&Go control

The Stop&Go control algorithm consists into applying a
control trigger u = 1 every time all cells are at ϑi = 0, that
is they have stopped at the G1 phase:

u =

{
1, if ϑi = 0, for all i
0, otherwise

(10)

At steady-state, that is after the first trigger, the control signal
u(t) becomes periodic with period Tu ≈ 3π/2

ωmin
, where ωmin

is the angular frequency of the slowest cell in the population.
This algorithm does not attempt to minimise the cell volume
growth. Figure 3(a) depicts the phase ϑi(t) and volume Vi(t)
normalised by the critical volume Vc of the cells in the
population together with the control input generated by this
algorithm. The time evolution of the mean phase coherence
R(t) and the normalised average population volume V̄ (t)/Vc
are reported in Figure 3(b) where they are averaged over 10
trials with random initial conditions.

B. Threshold control

The Threshold control algorithm is a heuristic control
strategy where a trigger u = 1 is applied only when there
are no cells with phase ϑi in a certain interval I(k), that is

u =

{
1, if ϑi /∈ I(k), for all i
0, otherwise

(11)

This interval is defined as

I(k) :=

[
ϑc, ϑc +

3π

4n
k

]
,

where n is the first control parameter and represents the
number of sub-intervals in which the sector

[
ϑc, ϑc + 3π

4

]
is

divided, as shown in blue in Figure 4. The right endpoint
of the interval I(k) defines the current threshold ϑu(k) =
ϑc + 3π

4nk whose values grows with k ∈ {1, . . . , n, 2n}. The
evolution in time of k is defined as

k(t) =

{⌈
t
Tf
n
⌉
, if dte ≤ Tf

2n, otherwise
,

where Tf < tf is a second control parameter that represents
the first time instant at which we want k = 2n. Therefore, at
t = Tf we have ϑu(2n) = 2π, as ϑc = π

4 . Notice that when

(a) Time evolution of ϑi(t) and V̄i(t)/Vc, for one simulation trial, are
reported in red colour. Their average values over the whole population
are reported in blue. The corresponding control signal u(t) generated by
the Stop&Go algorithm is reported in the bottom panel.

0 1 2 3 4 5 6
0

0.5

1

R
(t
)

0 1 2 3 4 5 6

time/T

2

4

6

8

V
(t
)/
V
c
[a
.u
.]

(b) Time evolution of R(t) and V̄ (t)/Vc averaged over 10 simulation
trials with random initial conditions.

Fig. 3. Stop&Go control: High-variability of Ti (CV = 22.88%).

Fig. 4. Illustration of the evolution of the threshold ϑu in Threshold control
algorithm. The phase interval [ϑc, ϑc + 3π

4
] (depicted in blue) is divided

into n equal subintervals. As k(t) grows in time from 1 to 2n, the interval
I(k) with ϑu. The G1 phase is depicted in green, corresponding to the
phase interval [0, ϑc]. Cell phases are assumed to positively evolve in the
anticlockwise direction.
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this condition is met, the control laws (10) and (11) become
equivalent and therefore this control algorithm behaves as
the Stop&Go control.

Were the algorithm to be applied to a single cell, then
the number of control triggers, say Nu over a certain time
interval [0, tf ] could be analytically computed as :

Nu(tf ) =
n∑
k=1

⌊(
ω
Tf
n

)/(3π

4n
k

)⌋
+

⌈
tf − Tf
T

⌉
.

However, due to the heterogeneity of cell-cycle duration
across cells this number represents only an upper bound
on the actual number of control triggers generated by the
algorithm.

To limit volume growth (JV ), this algorithm is comple-
mented with a time-dependent control. Specifically, even
when the condition (11) on the phases is not satisfied, a
control trigger is applied if the last trigger was applied more
than

(
3π
4nk
)
/ω minutes ago, where ω is the nominal cell

cycle angular frequency, that is ω = 2π/T . This allows to
avoid unnecessary volume growth due to wasted time waiting
for “slow” cells to reach the current threshold ϑu(k).

Figure 5(a) shows the response of the cell population
to the control input generated by the Threshold algorithm
with control parameters (n, Tf ) = (8, 2T ). The evolution of
R(t) and V̄ (t)/Vc averaged over 10 simulation trials with
random initial conditions and selected values of the control
parameters (n, Tf ) are reported in Figure 5(b).

C. Model Predictive Control

The MPC algorithm consists in solving an open-loop
optimal control problem repeatedly over a receding horizon
[15]. This means that at each iteration of the algorithm, the
solution of the optimal open-loop control problem gives an
optimal input that minimises a cost function over a finite
prediction horizon Tp. The optimal input is applied over
a finite control horizon Tc ≤ Tp, hence discarding the
remaining part of the computed optimal control action. Then,
the optimisation is repeated again.

To address the problem of minimising the two conflicting
performance indices JR and JV , we chose the cost function

J = αR JR + αV JV , (12)

which combines both JR and JV , defined in (8) and (9),
with tf = Tp, by assigning a different weight to each index
function (weighting method) [16]. The choice of the weights
αR and αV , with αR ≥ 0, αV ≥ 0, αR + αV = 1,
affects the overall performance of the algorithm, hence they
are considered as further control parameters, and represent a
trade-off between the two different control objectives.

To reduce the computational complexity of the optimal
control problem, the control input u ∈ U is assumed to
be a finite sequence of triggers. Defining P ∈ N as the
maximum number of triggers that may be applied in a finite
prediction horizon, then the time interval occurring between
two consecutive triggers is Tp

P . The feasible set U is defined
as the set of all admissible control sequences. Considering

(a) Time evolution of ϑi(t) and V̄i(t)/Vc, for one simulation trial, are
reported in red. Average values over the whole population are reported in
blue. The corresponding control signal u(t) generated by the Threshold
control algorithm with parameters n = 8, Tf = 2T is reported in the
bottom panel.
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(b) Time evolution of R(t) and V̄ (t)/Vc averaged over 10 simulation
trials with random initial conditions for three different sets of control
parameters: (n, Tf ) = (3, T ) in solid blue lines, (n, Tf ) = (8, 2T ) in
green dashed lines, (n, Tf ) = (12, 4T ) in red dotted lines.

Fig. 5. Threshold control: High-variability of Ti (CV = 22.88%).

only the finite prediction horizon Tp, the set U is composed
by 2P possible combinations of triggers. Thus, the optimal
control problem is solved by minimising the performance
index J over the prediction horizon Tp. The optimisation
is achieved by exploring all the possible combinations of
sequence of triggers.

For the numerical analysis, we set the length of both
the prediction horizon Tp and the control horizon Tc equal
to the nominal cell-cycle duration T , and the number of
triggers P equals to 6. To assess the feasibility of the control
algorithm, a set of simulations was carried out by varying
the weights αR and αR. Figure 6(a) shows the response
of the cell population to the control input generated by
the MPC algorithm with control parameters (αR, αV ) =
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(a) Time evolution of ϑi(t) and V̄i(t)/Vc, for one simulation trial, are
reported in red colour. Their average values over the whole population are
reported in blue. The corresponding control signal u(t) generated by the
MPC algorithm with weight factors (αR, αV ) = (0.4, 0.6) is reported
in the bottom panel.
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(b) Time evolution of R(t) and V̄ (t)/Vc averaged over 10 simulation trials
with random initial conditions for three different sets of weight factors:
(αR, αV ) = (0.2, 0.8) in solid blue lines, (αR, αV ) = (0.4, 0.6) in green
dashed lines, (αR, αV ) = (0.6, 0.4) in red dotted lines.

Fig. 6. MPC: High-variability of Ti (CV = 22.88%).

(0.4, 0.6). Examples of three time evolution of the mean
phase coherence R(t) and the normalised average population
volume V̄ (t)/Vc both averaged over 10 trials with random
initial conditions are shown in Figure 6(b).

D. Comparative analysis

We performed a comparative analysis the three control
algorithms across several simulated scenarios. For each sce-
nario, we computed the indices JR, JV , and the total number
of triggers applied during the simulation. Results obtained
averaging over 10 trials with random initial conditions are
presented in Table I.

a) Stop&Go control: Although this control algorithm is
very simple and can guarantee a high level of synchronisation
(JR equal to 0.1821 and 0.1031 for high and low cell-to-cell

variability, respectively) reaching a regime after about one
nominal period T of the cell cycle, it has the drawback of
causing excessive volume growth (JV equal to 0.0075 and
0.0009 for high and low cell-to-cell variability, respectively).
Indeed, faster cells, i.e. those having a smaller cycle period
Ti, reach phase 2π before the other slower cells and therefore
they are stuck there growing until the next control trigger is
applied, thus yielding an unnecessary volume increase.

b) Threshold control: This control algorithm guaran-
tees a good level of synchronisation and it contains excessive
volume growth with respect to the Stop&Go control. How-
ever, a trade-off between JR and JV exists in the tuning of
the control parameters (n, Tf ). Specifically, low values of Tf
give lower values of JR but higher values of JV , and vice-
versa for high values of Tf . On the other hand, increasing n
gives lower values of JV but it does not result in significant
reduction of JR.

c) MPC: This control algorithm reaches a high level
of synchronisation, limiting at the same time the volume
growth. Among the control algorithms, the MPC achieves the
best trade-off between the indices JR and JV . One drawback
of the algorithm could be the computational effort needed
to solve the optimal control problem in real-time. However,
the assumption on the finite sequence of triggers reduces
the computational time, allowing the solution of the optimal
control problem to be found in few seconds.

V. CONCLUSIONS

We have presented a theoretical and experimental frame-
work to address the cell-cycle synchronisation problem in
budding yeast in the context of a real biological scenario.
We characterised experimentally a yeast strain whose cell-
cycle can be controlled experimentally by changing growth
medium. We then derived a phase-oscillator model to de-
scribe the cell-cycle phase, as well as the volume growth
dynamics. We demonstrated in-silico the feasibility of syn-
chronizing the cell cycle across a cell population, while
containing at the same time the volume growth. To this
end, we devised and implemented three control algorithms:
Stop&Go control, Threshold control and MPC. A numerical
analysis was performed to assess and compare the three
strategies.

Taken together all the numerical results provide evidence
for the success of the proposed control approaches in living
yeast cells. Nevertheless, several issues remain open both in
terms of control performance and experimental implemen-
tation. Indeed, model uncertainty and parametric variability
could affect the control performance, thus adaptive and
robust control strategies are required. To this aim, we aim
to improve the control strategies by choosing adaptively the
control algorithms’ parameters, e.g. αR and αV of MPC
algorithm, or resorting to alternative heuristic strategies such
as reinforcement learning control.

Finally, ongoing work is aimed at implementing and
validating in-vivo the proposed control strategies which will
be presented elsewhere.
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TABLE I
NUMERICAL COMPARISON OF THE CONTROL ALGORITHMS.

Control parameters Low variability High variability
JR JV # of triggers JR JV # of triggers

Stop&Go – 0.1031 0.0009 6 0.1821 0.0075 5

Threshold
(n, Tf ) = (3, 1) 0.2045 0.0007 8.8 0.2865 0.0042 7.0

(n, Tf ) = (8, 2) 0.3667 0.0004 13.1 0.4173 0.0026 11.2

(n, Tf ) = (12, 4) 0.6550 0.0003 22.1 0.6854 0.0010 20.2

MPC
(αR, αV ) = (0.2, 0.8) 0.1752 0.0009 18.8 0.3623 0.0014 19.0

(αR, αV ) = (0.4, 0.6) 0.1386 0.0012 16.3 0.2664 0.0026 13.3

(αR, αV ) = (0.6, 0.4) 0.0996 0.0016 11.3 0.2211 0.0039 7.1
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