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Quantification of loading effects in interconnections of stochastic
reaction networks

Ankit Gupta1, Patrik Dürrenberger2 and Mustafa Khammash3

Abstract— Modular design of networks in synthetic biology
is highly desirable but difficult to achieve due to loading
effects that change the properties of upstream modules upon
connection with downstream networks. Precise quantification
of these loading effects would allow us to predict the behavior
of large interconnected networks more accurately, and enable
us to systematically identify insulator circuits that can help in
achieving modularity. Most of the existing results on this topic
apply only in the deterministic setting and hence they do not
account for the stochastic nature of biomolecular interactions.
In this work we propose a novel sensitivity-based metric for
quantifying loading effects in the stochastic setting. We discuss
how this metric can be efficiently computed for stochastic
reaction dynamics and demonstrate its usefulness in rational
design of insulator circuits.

I. INTRODUCTION

In recent years it has come to light that intracellular
biological networks often comprise certain recurrent motifs
or modules, across different cell-types and cellular con-
texts [1]. This remarkable property suggests that complex
networks can in principle be studied by viewing them as
interconnections of simple modules whose properties are
well-characterized [2]. Such an approach is highly desirable
and it is known to work extremely well for engineering
systems. However this modular approach often fails for
biological networks because a module’s behavior can change
in unpredictable ways once it is connected to its context [3].
This phenomenon is called loading effect or retroactivity in
the literature [4]. The main reason behind this phenomenon
is that when an upstream module passes information to
a downstream module, this information transfer can either
consume some species of the upstream module or make
them temporarily unavailable, thereby disrupting the normal
dynamics of the upstream module.

The phenomenon of retroactivity has been well-studied
but mainly in the deterministic setting where the network
dynamics is specified by a system of ODEs [5]–[7]. In this
setting, the seminal work of del Veccio et al. [5] shows that
retroactivity can have a profound influence on the dynamics
of the upstream module. For example, loading effects can
increase the response time of the upstream module or disrupt
its oscillatory behavior. Some retroactivity metrics have been
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proposed to quantify the loading effects for gene-expression
networks [7] and using these metrics one can address the
problem of rationally designing insulator components that
attenuate the loading effects, thereby rendering modularity
to the connected network. This methodology has been ex-
perimentally tested and found to be quite successful [8],
which highlights the importance of proper insulator design in
synthetic biology applications, where one typically employs
a “bottom-up” approach for designing complex systems from
simpler well-characterized parts.

Intracellular networks often consist of biomolecular
species that are present in small copy-numbers, like DNA
transcripts or transcription factors in gene-expression net-
works. These low abundance species ensure that the reac-
tions they participate in fire randomly [9], and due to this
intrinsic noise the ODE-based descriptions of the dynamics
become highly inaccurate [10]. Hence one needs to consider
stochastic models of reaction dynamics which represent the
dynamics as a continuous-time Markov chain (CTMC) [11].

The main contribution of this paper is to propose a
sensitivity-based metric for quantifying loading effects for
such stochastic models and highlight the usefulness of this
metric for studying modularity in the presence of noisy
dynamics. Through a couple of illustrative examples we
demonstrate how this metric can enable us to rationally
design insulator modules that reduce the loading effects.
Unlike other existing approaches [5] we focus on the steady-
state behavior of the network which is often of interest in
synthetic biology applications.

II. THE STOCHASTIC MODEL OF A REACTION NETWORK

We now describe the stochastic model of a reaction
network with species S1, . . . ,Sd and K reactions of the form

d∑
i=1

νikSi −→
d∑
i=1

ν′ikSi. (1)

Here νik, ν
′
ik ∈ N0 := {0, 1, 2, . . . } denote the number

of molecules of Si that are consumed (νik) and produced
(ν′ik) by the k-th reaction. Under the classical well-stirred
assumption [12], the state of the system at any time is given
by the vector of copy-numbers x = (x1, . . . , xd) ∈ Nd0
of all the species. Let νk = (ν1k, . . . , νdk) and ν′k =
(ν′1k, . . . , ν

′
dk). At state x, the k-th reaction is assumed to

fire at rate λk(x) and it displaces the state to (x+ ν′k − νk).
The function λk : Nd0 → [0,∞) is called the propensity
function for the k-th reaction and commonly it is given by



the mass-action form

λk(x1, . . . , xd) = γk

d∏
i=1

xi(xi − 1) . . . (xi − νik + 1)

νik!
, (2)

where γk > 0 is the rate constant.
In the continuous-time Markov chain (CTMC) model of

a reaction network the propensity functions specify the
transition rates [11]. Hence at state x, the next jump time
of the CTMC is exponentially distributed with rate λ0(x) =∑K
k=1 λk(x), and unless λ0(x) = 0 (i.e. x is an absorbing

state) the k-th reaction fires at the next jump time with
probability λk(x)/λ0(x).

Let (X(t))t≥0 be the Markov process representing the
stochastic reaction dynamics. For any two states x and y
let

px(t, y) = P (X(t) = y|X(0) = x) ,

be the probability that the dynamics starts at x and is at y at
time t. The dynamics of px(t, ·) is given by an infinite system
of ODEs, called the Chemical Master Equation (CME)
which is given by

dpx(t, y)

dt
=

K∑
k=1

(px(t, y − ζk)λk(y − ζk)− px(t, y)λk(y)),

where ζk = ν′k − νk and the initial condition is px(0, y) = 1
if x = y and px(0, y) = 0 for all y 6= x. The CTMC is called
ergodic if px(t) converges to a unique stationary distribution
π, as t → ∞, irrespective of the initial state x. In other
words, for any x we have

lim
t→∞

‖px(t)− π‖`1 = 0, (3)

where ‖µ‖`1 =
∑
x ‖µ(x)‖ denotes the `1 norm of a

signed measure µ. A stronger form of ergodicity, called
exponential ergodicity holds when the convergence in (3)
is exponentially fast at a rate which is independent of the
initial state x. Checking exponential ergodicity of the CTMC
model of a reaction network is a difficult problem, but
recently computational approaches have been developed for
this purpose that work well for a wide variety of biological
networks (see [13] and [14]).

Now suppose that the propensity functions (λk-s) can
depend on a scalar parameter θ (like a rate constant or
cell volume) in addition to the state x. Let (Xθ(t))t≥0 be
the corresponding θ-dependent CTMC which we assume
is ergodic with πθ as the stationary distribution. Suppose
f : Nd0 → R is some function specifying the output of the
system at time t as the expectation E(f(Xθ(t))). The effect
of parameter θ on this output can be quantified using the
infinitesimal sensitivity value defined as

Sθ(f, t) :=
∂

∂θ
E(f(Xθ(t))).

Estimating this quantity is complicated but many simulation-
based methods have been developed for this task [15]–[19].
In this paper, we are interested in the steady-state output
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Fig. 1. a) Conceptual figure depicting an upstream module (Module A)
connected to a downstream module (Module B). The connector reaction
strength is parametrized by parameter θ. b) Depiction of an example where
Module A is a simple gene-expression network which expresses a tran-
scription factor that can go and bind to the promoter sites of another gene-
expression network (Module B). Here the connection strength parameter θ
represents the binding affinity.

given by the expectation of function f at the stationary
distribution πθ, i.e.

lim
t→∞

E(f(Xθ(t))) = Eπθ (f(X)) :=
∑
x∈Nd0

f(x)πθ(x).

To assess the influence of parameter θ on this output we need
to evaluate the steady-state sensitivity

Sθ(f) :=
∂

∂θ
Eπθ (f(X)) = lim

t→∞
Sθ(f, t).

The second equality is non-trivial as the limit t → ∞ and
the derivative ∂/∂θ may not commute. However under some
mild conditions on the propensity functions this equality can
be justified [20]. The methods available for estimating finite-
time sensitivity Sθ(f, t) do not work well for estimating the
steady-state sensitivity Sθ(f). Therefore we have recently
developed a simulation-free approach [21] for estimating
Sθ(f) that is based on using the stationary Finite State
Projection (sFSP) method for obtaining an approximation
of the stationary distribution πθ and computing the solution
of a certain Poisson equation for the CTMC (see [22]). We
call this method the Poisson Estimator (PE) and we show
that it applies successfully to many examples of biological
interest (see [21] for more details).

III. QUANTIFICATION OF LOADING EFFECTS

We now come to the main contribution of this paper which
is to propose a sensitivity-based metric for quantifying load-
ing effects for networks whose dynamics may be intrinsically
noisy. Consider the scenario depicted in Figure 1(a) where



the upstream module (Module A) is connected to another
downstream module (Module B) via a reaction with rate con-
stant θ. For example, θ can represent the binding affinity of
transcription factors produced by Module A to the promoter
sites that are part of another gene-expression network given
by Module B (see Figure 1(b)). Let (Xθ(t), Yθ(t))t≥0 be
the joint CTMC dynamics of both the modules (i.e. Xθ(t)
and Yθ(t) denote the state at time t of Modules A and B
respectively). Suppose this CTMC is ergodic with stationary
distribution πθ.

We assume that the output of Module A is measured
by some real-valued function f of the state of this mod-
ule. In particular, the output is the steady-state expectation
Eπθ (f(X)). This output does not depend on the state of
Module B. Notice that when θ = 0, the reaction connecting
the two modules is absent, and hence Module A is isolated
and its output is given by Eπ0(f(X)). To quantify loading
effects, we would like to measure the relative change in the
output of Module A when θ is positively perturbed. There-
fore we propose the following sensitivity-based measure of
loading effects

L =

∣∣∣∣ ∂∂θ log (Eπθ (f(X)))

∣∣∣∣
θ=0

∣∣∣∣ = |S0(f)|
|Eπ0

(f(X))|
, (4)

where we implicitly assume that Eπ0(f(X)) 6= 0. In many
examples the output is measured by the expected copy-
number of some species Si in Module A and hence f(x) =
xi and we refer to Si as the output species. The loading
metric L can be computed by estimating the expectation
Eπ0

(f(X)) and the sensitivity S0(f) using sFSP and the
PE method respectively (see Section II). We have developed
a software library to carry out these tasks (see [21] for more
details) and we shall use this computational tool to compute
L for the examples in Section V.

In typical applications the interconnection strength param-
eter θ can vary from 0 to some maximum value θmax. Since
normalizing all the network reaction-rate constants by θmax
does not change the steady-state, we can assume without loss
of generality that θ is always between 0 and 1. Note that if
L ≈ 0 then for θ ≈ 0 we can expect the output of Module
A to remain “close” to its output in the isolated case (i.e.
θ = 0). Our examples suggest that this remains true even
when θ approaches 1, which suggests that L can be a useful
metric to quantify the loading effects.

IV. RATIONAL DESIGN OF INSULATORS

Now that we have a metric for quantifying loading effects
in the stochastic setting, we can employ this metric for ra-
tional design of insulator modules that can attenuate loading
effects, and make the interconnected network more modular
in its behavior. Two distinct approaches for designing such
insulators have been proposed in the literature. The first
approach is based on a feedback strategy that adds robustness
to the output of the upstream module w.r.t. perturbations
caused by the downstream module [5], while the second
approach is based on introducing a buffering device that
relays the output of Module A to the input of Module B

in such a way that loading effects caused by the connection
are minimized [6]. A conceptual representation of both these
approaches is given in Figure 2.

The task of rationally designing insulators can be viewed
as designing a biomolecular reaction network which, when
introduced into the connected network, significantly de-
creases the loading metric L given by (4). We illustrate this
approach with two examples in the next section. These two
examples demonstrate the two insulator design approaches
depicted in Figure 2.

V. ILLUSTRATIVE EXAMPLES

In this section we provide a couple of examples to illus-
trate our method for quantifying loading effects and using
it for rational design of insulator modules. We shall employ
CTMC descriptions (see Section II) of the reaction dynamics
and all propensity functions are assumed to follow mass-
action kinetics (2) unless otherwise stated.

A. Two-step gene-expression with a feedback insulator

Suppose that the upstream module (Module A) is the
standard two-step gene-expression network in [23], where
mRNA (M ) molecules are first transcribed by a constitutively
expressing gene at rate γ1, and then these mRNA molecules
translate Protein (P ) molecules at rate γ2. Both mRNA and
Protein molecules degrade spontaneously at rates γ3 and
γ4 respectively. Module A can be represented as a reaction
network as

Module A: ∅ γ1−→M, M
γ2−→M + P,

M
γ3−→ ∅ and P

γ4−→ ∅.

We assume that Module A is connected with the downstream
Module B by the reaction

Connector Reaction: P
θ−→ P ∗,

where P ∗ refers to a modified form of the Protein P (e.g.
phosphorylated protein). The species P ∗ drives downstream
processes that are part of Module B. Note that from the
perspective of Module A, the connector reaction serves as
an extra degradation reaction for the protein molecules.

We measure the output of Module A by the steady-state
expectation Eπθ (P ) of the number of protein molecules.
As the propensity functions are linear, we can compute the
output Eπθ (P ) exactly along with its sensitivity w.r.t. θ (see
[24]) to obtain

Eπθ (P ) =
γ1γ2

γ3(γ4 + θ)
and L =

1

γ4
.

When we set the rate constants as γ1 = 47.63 min−1,
γ2 = 4 min−1, γ3 = 0.5 min−1 and γ4 = 0.2 min−1, the
output is Eπ0

(P ) = 1905 when Module A is isolated (θ = 0)
and the loading metric is L = 5. The high value of this metric
suggests that the output of Module A will be significantly
affected as the connector reaction rate θ becomes positive.
This is illustrated in Figure 3.

Now suppose that we are able to design an insulator mod-
ule that senses the Protein copy-number P and implements
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Fig. 2. This figure depicts how the loading effects can be minimized using insulator circuits. There exist two approaches for designing such circuits. In
the first approach, shown in (a), the insulator senses the output species in Module A and then computes a signal that is then passed back to Module A
in a feedback fashion. In the second approach, shown in (b), the output species in Module A is sensed and this information is processed by a buffering
device (insulator circuit) which contains a new output species that connects to Module B.

a high-gain negative proportional feedback (see Figure 2(a)),
by changing the transcription rate of mRNA from γ1 to

γ1(P ) = α+max{κ1 − κ2P, 0}.

With this insulator module in place, we can no longer
compute the output Eπθ (P ) and the loading metric L ex-
actly because of the non-linearity of the propensity function
γ1(P ). However if we assume that at stationary κ2P < κ1
holds with probability close to 1, then replacing γ1(P ) with
the linear propensity function γ̃1(P ) = (α+ κ1)− κ2P we
can compute accurate approximations for the output Eπθ (P )
and the loading metric L as

Eπθ (P ) =
(α+ κ1)γ2

κ2γ2 + γ3(γ4 + θ)
and L =

γ3
κ2γ2 + γ3γ4

respectively. Observe that if κ2γ2 � γ3 then L is small,
indicating that negative proportional feedback can indeed
decrease the loading effects. To see this numerically we
set the feedback parameters as α = 0.1 min−1, κ1 =
1000 min−1 and κ2 = 0.5 min−1. With these parameters
the output of Module A in the isolated case (θ = 0) is the
same as before (i.e. Eπ0

(P ) = 1905) but now the estimated
loading metric reduces by 95% to L = 0.24, in comparison
to the earlier case with no insulator. Therefore we can expect
that due to the insulator action, the loading effects will be
sharply attenuated and the output of Module A will be close
to the output in the isolated case when the connector reaction
rate θ is positive. This is indeed the case as Figure 3 shows.

B. Single-step gene-expression with a buffering insulator

We now consider an example from [5] with minor changes.
Here we simplify the two-step gene-expression network (see
Section V-A) by eliminating the mRNA dynamics. This
elimination can be justified in some cases using a time-scale
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Fig. 3. This figure shows how the output of the two-step gene-expression
network (see Section V-A) varies with the connector reaction rate θ. The
loading effects are much higher in the absence of the feedback insulator
module, while these effects are sharply attenuated in the presence of the
insulator module.

separation argument, and the reduced network (Module A)
simply consists of birth and death reactions for the Protein
(Z) molecules:

Module A: ∅ γ1−→ Z and Z
γ2−→ ∅.

We assume that these Z molecules serve as transcription fac-
tors to some downstream gene-expression network (Module
B). Hence the Z molecules can reversibly bind to the free
promoter sites (as in Figure 1(b)) to form an active gene-



complex C, and so the connector reaction is given by

Connector Reaction: Z + p
θkon−−⇀↽−−
koff

C,

where p is the number of free promoter sites in the down-
stream gene-expression module. We set γ1 = 5 min−1,
γ2 = 0.5 min−1, kon = 100 min−1 and koff = 0.01 min−1.
To account for binding by transcription factors other than Z
we add reactions

p
0.0001−−−−⇀↽−−−−
0.01

C.

We choose the total number of promoter sites as ptot = 50,
and hence we have the conservation relation p + C = ptot.
We measure the output of Module A by the steady-state
expectation Eπθ (Z) of the number of Z molecules.

Note that when θ = 0, the forward connection reaction
Z+p −→ C stops, and it can be checked that the backward
reaction C −→ Z + p also approximately ceases at steady-
state as the expected copy-number of C is nearly zero.
Therefore Module A becomes isolated for θ = 0 and its
output is Eπ0

(Z) ≈ 10. We can estimate the loading metric
(4) as L = 4999.9 via the PE estimator (see Section II). As
θ becomes positive, the effect on the output of Module A
can be seen from Figure 4.

We now add a buffering insulator (see Figure 2(b)) that
employs phosphorylation-dephosphorylation cycles as pro-
posed in [5]. Here Z acts like a kinase for another protein
X . Hence it catalyzes the reaction X −→ Xp, where Xp

denotes the phosphorylated form X . There also exists a
phosphatase Y that catalyzes the dephosphorylation reaction
Xp −→ X . The connection with the downstream gene-
expression module is made in the same way as before via the
phosphorylated protein Xp (instead of Z) whose steady-state
expectation Eπθ (Xp) is like the buffered output of Module
A. In summary the insulator module and the new connector
reaction are given by:

Insulator Module: X + Z
k1−→ Xp + Z

and Xp + Y
k2−→ X + Y.

New Connector Reaction: Xp + p
θkon−−⇀↽−−
koff

C.

We set k1 = k2 = 100, and the total number of both X
and Y molecules to 5000. Once we include the insulator the
buffered output of Module A is again Eπ0

(Xp) ≈ 10 in the
isolated case (θ = 0) and we estimate the loading metric
as L = 494.82. Hence we have 90% reduction in loading
strength, bringing the output of Module A upon connection
closer to the isolated case, which can be seen in Figure 4.
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