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Abstract— We consider the problem of regulating by means
of external control inputs the ratio of two cell populations.
Specifically, we assume that these two cellular populations are
composed of cells belonging to the same strain which embeds
some bistable memory mechanism, e.g. a genetic toggle switch,
allowing them to switch role from one population to another
in response to some inputs. We present three control strategies
to regulate the populations’ ratio to arbitrary desired values
which take also into account realistic physical and technological
constraints occurring in experimental microfluidic platforms.
The designed controllers are then validated in-silico using
stochastic agent-based simulations.

I. INTRODUCTION

The aim of Synthetic Biology is to engineer biomolecular
systems to achieve new useful functionalities [1]. Potential
applications range from designing bacteria that can produce
biofuels or sense and degrade pollutant in the environment
(like hydrocarbons and plastic), to immune cells that can
track and kill cancer cells, or that can release drugs at specific
points and conditions to avoid side effects (see [1] for ref-
erences). This is possible by designing genetic circuits with
programmed functionalities and embedding them into living
cells. However, most of the engineered genetic circuits have
been designed to work at single-cell level. As a consequence,
their functional complexity is limited by inherent factors such
as excessive metabolic burden on the cell, competition of
limited resources, and incompatible chemical reactions.

A promising approach to overcome these issues is to
engineer synthetic microbial consortia in which the effort
is divided and assigned to different subpopulations of cells
to achieve more sophisticated functionalities [2]. Recent
cooperative consortia designs include a predator-prey system
[3], an emergent oscillator [4], a toggle-switch implemented
across two species [5], and a multicellular feedback control
scheme where the control functions are split between two
species [6]. Unfortunately, the correct functioning of a mul-
ticellular consortium requires cocultivating and maintaining
multiple cell populations. As different cells in the consortium
embed specific sets of genetic circuits, they also present
different growth rates due to uneven metabolic burdens
and might show additional undesired dynamics, such as
oscillations [5]. Therefore, when different strains are mixed

1Davide Salzano, Davide Fiore and Mario di Bernardo are
with the Department of Electrical Engineering and Information
Technology, University of Naples Federico II, Via Claudio 21,
80125 Naples, Italy. davidesalzano94@gmail.com,
davide.fiore@unina.it

2Mario di Bernardo is also with the Department of Engineering Math-
ematics, University of Bristol, University Walk, BS8 1TR Bristol, U.K.
mario.dibernardo@unina.it

together, it is essential to maintain their stable coexistence by
controlling their relative population numbers (i.e. their ratio).
This is usually achieved by encoding in the synthetic design
some dynamic equilibrium between the two populations, e.g.
[7], [8]. However, if one of the two populations eventually
dies out, these solutions can either lead to uncontrolled
growth of one population or to the extinction of both.
Moreover, the steady-state value of the populations ratio is
hard-coded into the genes without any possibility of being
changed online.

In this paper we present an alternative approach to control
the populations’ ratio in mono-strain consortia by means of
external control inputs. Specifically, we consider the case
in which there exists a bistable memory mechanism inside
the cells, such as the genetic toggle switch circuit [9], whose
current internal state defines which of the two possible roles,
or “working-condition”, the cell is playing in the consortium.
We assume that, by changing the concentrations of some
inducer molecules in the growth medium, it is possible to
make cells switch their role and hence keep the populations
ratio to a desired value. Albeit requiring a possibly more
complex design with respect to other multi-strain scenarios,
this approach has the advantage of being intrinsically robust
to extinction events that could undermine the operation of the
entire consortium. Also, it allows the ratio of the populations
to be changed online, in real-time, if needed.

The crucial problem we address in this paper is to de-
sign feedback control strategies able to steer the inducer
molecules inputs to achieve and maintain a desired cell
ratio. We define this problem as “ratiometric” control of
cell populations.

We propose and test three different external control strate-
gies to regulate the populations ratio to any value, namely a
Bang-Bang controller, a PI controller and a model predictive
controller (MPC). The control laws are designed taking into
account realistic physical and technological implementation
constraints that are present in microfluidic-based experimen-
tal platforms. Finally, the proposed controllers are validated
in-silico using realistic stochastic agent-based simulations in
BSim [10] that appropriately model also spatial and diffusion
effects in the microfluidic device and cell growth.

II. THE RATIOMETRIC CONTROL PROBLEM

We want to design some feedback control strategy such
that, by acting on some input signals common to every
cells, the ratio between the two populations is asymptotically
regulated to some desired value.
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Fig. 1: Regions of the state space (LacIi, T etRi) such
that cells belong to set At (red color) or Bt (green color).
The positions of the stable equilibrium points A and B
are reported in the phase plane with several examples of
solutions starting from different initial conditions.

A. Population model

We assume that the bistable memory required by the cells
to guarantee their the correct operations in the consortium is
realized by means of an inducible genetic toggle switch [9].
This genetic regulatory network consists of two repressor
proteins, LacI and TetR, both repressing each other’s pro-
moter, so that only one protein is fully expressed at any time.
From a modelling viewpoint, the genetic toggle switch is a
bistable dynamical system, possessing two stable equilibria,
A and B, each associated to a fully expressed protein, and
a saddle equilibrium point, whose stable manifold is the
boundary separating the regions of attraction of the other two.
Thus, given an initial condition, its solutions will converge
to one of the two stable equilibria. The expression level
of the two repressing proteins can be flipped by changing
the concentration of two inducer molecules, aTc and IPTG.
This causes the occurrence of two saddle-node bifurcations
yielding the required reversible bistable memory function.
We use the inducible toggle switch model described in [11]
and further analyzed in [12], [13]. Namely, we assume the
dynamics of the i-th cell in the consortium can be written
as follows:

dmRNAi
LacI

dt
= κm0

L + κmL ΦT(t) − γmL mRNALacI (1)

dmRNAi
TetR

dt
= κm0

T + κmT ΦL(t) − γmT mRNATetR (2)

dLacIi

dt
= κpLmRNA

i
LacI − γpL LacI

i (3)

dTetRi

dt
= κpTmRNA

i
TetR − γpT TetR

i (4)

d aTci

dt
= kaTc

(
ua − aTci

)
(5)

d IPTGi

dt
= kIPTG

(
up − IPTGi

)
(6)

where the state variables denote concentrations of molecules
inside the cell. The parameters κm0

L/T, κmL/T, κpL/T, γmL/T,
γpL/T, kaTc/IPTG are leakage transcription, transcription,
translation, mRNA degradation and protein degradation rates,

κm0
L 3.045 · 10−1 mRNA min−1 γpL 1.65 · 10−2 min−1

κm0
T 3.313 · 10−1 mRNA min−1 γpT 1.65 · 10−2 min−1

κmL 13.01 mRNA min−1 θLacI 124.9
κmT 5.055 mRNA min−1 ηLacI 2.00
κpL 0.6606 a.u. mRNA−1 min−1 θTetR 76.40
κpT 0.5098 a.u. mRNA−1 min−1 ηTetR 2.152
kaTc 4 · 10−2 min−1 θaTc 35.98
kIPTG 4 · 10−2 min−1 ηaTc 2.00
γmL 1.386 · 10−1 min−1 θIPTG 2.926 · 10−1

γmT 1.386 · 10−1 min−1 ηIPTG 2.00

TABLE I: Value of the parameters of the cell population
models (taken from [11]).

and diffusion rates of the inducers across the cell membrane,
respectively. The variables ua and up denote the concentra-
tions of the inducer molecules in the growth medium and
they also represent the control inputs common to every cell
in the populations. Moreover, in the previous equations, the
input effects are modelled by the following terms:

ΦT(t) :=
1

1 +

(
TetRi

θTetR
· 1

1+
(
aTci

θaTc

)ηaTc

)ηTetR

ΦL(t) :=
1

1 +

(
LacIi

θLacI
· 1

1+
(
IPTGi

θIPTG

)ηIPTG

)ηLacI

All parameter values of are provided in Table I and are also
the same used in [11].

The previous dynamical model is a deterministic descrip-
tion of the evolution of the molecule concentrations in
the system and, therefore, it is only an approximation of
the stochastic biochemical processes taking place inside the
cells. To obtain a more accurate description of the stochastic
processes governing the dynamics, for validation we adopted
the SDE-based algorithm described in [14] that provide a
better approximation of the Chemical Master Equation [15],
[16] of the system. Formally, we solved:

dx(t) = S · a(x(t)) · dt + S · diag
(√

a(x(t))
)
· dw (7)

where x(t) is the state of the process, S is the stoichio-
metric matrix, a(x(t)) is a vector containing the propensity
functions associated to each reaction and w is a vector of
independent standard Wiener processes. Both S and a(x) are
the same used in [11].
As shown later in the in-silico validation of the control
approaches, the heterogeneity in the response of the cells,
provided in our case by the biochemical noise, is a funda-
mental ingredient to solve the ratiometric control problem.

B. Problem Statement

We denote byNt the finite set of all cells in the consortium
at time t, and with N(t) = |Nt| its cardinality. Note that
the number of cells may vary in time as a consequence of
cell births and deaths or of their accidental outflow from the
microfluidic chamber in which they are hosted. We define the
following sets: At := {i ∈ Nt : TetRi(t) > 2LacIi(t)},
Bt := {i ∈ Nt : LacIi(t) > 2TetRi(t)}, and Ct := {i ∈



Nt : i /∈ At, i /∈ Bt}. We also denote with nA(t) and nB(t)
the cardinalities of At and Bt at time t, respectively. It is
clear from Figure 1 that these sets are disjoint and form a
partition of Nt for all t.

Noticing the relative position in state space
(LacIi, T etRi) of the stable equilibria A and B of
the toggle switch, we say that at time t cell i belongs
to the population A (population B), if i ∈ At (i ∈ Bt,
respectively). Moreover, we define as rA(t) = nA(t)

N(t) and

rB(t) = nB(t)
N(t) the ratio of cells that belong to population A

and population B, respectively.

Definition Given a consortium of cells whose dynamics is
described by (1)-(6) and a desired ratio r ∈ [0, 1] of cells
belonging to one population, for example B, we say that
the control law u(t) = [ua(t), up(t)]

> solves the ratiometric
control problem if, for some small positive constant ε,

lim
t→∞

|eA(t)| < ε and lim
t→∞

|eB(t)| < ε, (8)

where eB(t) = r − rB(t) and eA(t) = (1− r)− rA(t).

III. PROPOSED CONTROL STRATEGIES

In this section we propose three control strategies to solve
the ratiometric control problem. Specifically, we present a
Bang-Bang controller, a PI controller and a model predictive
controller (MPC). All controllers are ad-hoc implementations
that take explicitly into account the physical and techno-
logical constraints related to an experimental microfluidic
platform. Then, in Section IV we validate the controllers
in-silico. In contrast to [11] where the objective of the
controllers proposed was to regulate at an intermediate level
the expression of the genes of a single toggle-switch, here
the feedback loop is closed on the entire cell population and
the cells are split in two groups, each fully expressing either
of the two genes.

Experimental Constraints

The experimental platform we consider as a reference is
based on microfluidics as the one described in [17], [18]
which uses a fluorescence microscope to measure the current
state of the cells. We then have to take into account the
following realistic constraints:

1) the state of the cells cannot be measured more often
than 5 min to avoid excessive phototoxicity;

2) there is a time delay between 20 and 40 s on the
actuation of the control inputs due to the time that
the flow of the chemical inducers takes to reach the
chambers on the microfluidic chip where cells are
hosted;

3) the minimum time interval between two consecutive
control inputs cannot be less than 15 min to limit
excessive osmotic stress on the cells;

4) the maximum duration of any experiment cannot ex-
ceed 24 hours, to avoid substantial cell mutations
during the experiments.

Moreover, the specific implementation of the microfluidic
device also introduces constraints on the possible classes of

input signals u(t) = [ua(t), up(t)]
> that can be generated

by the actuators.
We consider two possible implementations:
1) a T-Junction, which limits ua and up to be mutually

exclusive and with fixed amplitudes, that is u is either
set to [Ua, 0]>, which causes eB to decrease and eA to
increase, or to [0, Up]>, which does the opposite;

2) a Dial-A-Wave (DAW) system [19], which constraints
ua and up to be in a convex combination. Namely,
given ua ∈ [0, Ua] we have

up =

(
1− ua

Ua

)
Up (9)

In the above equations, Ua ∈ [0, 100] and Up ∈ [0, 1] are
control amplitudes to be selected and denote the maximum
concentrations possible of the inducers that are present in
the reservoirs (These values are the same as those that were
used in-vivo in [11].).

Depending on which implementation is considered, only
specific controllers are feasible. More precisely, for the T-
Junction implementation only a Bang-Bang controller is
considered, while for the Dial-A-Wave system we design a
PI controller and an MPC.

A. Bang-Bang Controller
The Bang-Bang controller implemented via a T-junction

consists of two mutually exclusive inputs with fixed am-
plitude which are applied to the system depending on
the current value of the error signals eA(t) and eB(t).
Specifically, at any time t the input is applied that causes
the max{|eA(t)|, |eB(t)|} to decrease. More formally, the
control input u(t) = [ua(t), up(t)]

> is chosen as

u(t) =

{
u1, |eB(t)| ≥ |eA(t)|
u2, |eB(t)| < |eA(t)|

, (10)

where

u1 =

{
[0, Up]

>
, eB(t) ≤ 0

[Ua, 0]
>
, eB(t) > 0

, u2 =

{
[Ua, 0]

>
, eA(t) ≤ 0

[0, Up]
>
, eA(t) > 0

.

B. PI Controller
The PI control inputs to be implemented via the Dial-a-

Wave system are chosen as:

ua(t) = kP,aeB(t) + kI,a

∫ t

0

eB(t)dt

−
(
kP,peA(t) + kI,p

∫ t

0

eA(t)dt

) (11)

with kP,p, kP,a, kI,a and kI,p being the control gains, and
up(t) given by (9).

Moreover, to improve the performance and guarantee that
the control signals do not exceed their admissible values,
the PI controller is complemented by a dynamic saturation
defined as: {

ua ∈ [0, 50] , if |eB| < |eA|
ua ∈ [0, 100] , otherwise

(12)

and an anti wind-up scheme.



C. MPC Algorithm

The last algorithm we considered is a Model Predictive
Controller (MPC) [20]. Given the state of the cell popu-
lation, say x = [x1, . . . , xN(t)]

> ∈ R2N(t), where xi =
[LacIi, T etRi]> is the state of the i-th cell, we compute
the optimal control input over the time interval [t, t+ Tp]
which minimizes the cost function

J(x, r, u, t) =

∫ Tp

0

(α‖eB(t)‖+ (1− α)‖eA(t)‖) dt (13)

with Tp being the controller prediction time and α ∈ (0, 1)
a constant design parameter. We then apply the computed
optimal control input over the interval [t, t+ Tc) where Tc <
Tp is a control time to be selected during the implementation.

To reduce the computational burden, in our implemen-
tation we evaluated the cost function J(x, u) using only
a representative subset of cells chosen as a sample of the
entire population. This subset of cells is chosen such that
the reduced ratios (i.e. the ratios rA and rB computed on
the subset) is as close as possible to the ratios of the
entire population. Also, a genetic algorithm taken from [21]
(without the mutation phase) was used to find the optimal
control sequence.

IV. IN-SILICO VALIDATION AND COMPARISONS

We tested all the designed control laws in-silico. First,
we performed a batch of simulations in Matlab assuming
a constant population of 30 cells, then we performed more
accurate simulations using an agent-based simulator specifi-
cally designed for bacterial populations called BSim [10].

In all simulations we consider a desired ratio r = 0.6,
with initial conditions taken in a neighborhood of the saddle
point between A and B, specifically we picked the initial
conditions for each cell with a random uniform distribution in
the intervals: mRNAiLacI,0 ∈ [3, 6], mRNAiTetR,0 ∈ [3, 6],
LacIi0 ∈ [150, 300], TetRi0 ∈ [200, 400]. To mimic the
real experimental constraints, the state of the population
is sampled every Ts = 5 min and the control inputs are
evaluated every Tc = 15 min.

A. Numerical simulations in Matlab

For the Bang-Bang controller we empirically set the con-
trol amplitudes to Ua = 60 and Up = 0.5. With these values
we obtained the evolution of errors and control inputs shown
in panels (a) and (b) of Figure 2. We notice that the Bang-
Bang controller achieves good performance with a settling
time of about 1300 min.

For the PI controller, the control input amplitudes and
control gains were empirically selected as Ua = 100, Up =
1, kP,a = 66.67, kP,p = 2.25, kI,a = 1.2 and kI,p = 0.006
obtaining the results portrayed in panels (c), (d) of Figure 2.
In this case we observe a settling time which is half the one
obtained with the Bang Bang controller, together with lower
error values at steady state.

Finally, for the MPC controller, we chose [Ua, Up] =
[60, 0.5], Tp = 75 min, Tc = Ts = 15 min, α = 0.6.
The genetic algorithm’s parameters were set to Np = 20,

Mmax = 10, where Np is the length of the control sequence
generated at each step and Mmax the number of generations
being considered.

The resulting errors and the control inputs are shown in
panels (e) and (f) of Figure 2, which confirm the MPC as
the best strategy with a settling time almost 40% shorter than
the one observed with the PI.

B. Agent-based simulations in BSim

To provide a more realistic validation of our control
strategies, we used BSim [10], a realistic agent-based sim-
ulator of bacterial populations, which considers also cells
reproduction, spatial distribution and geometry, the diffusion
of the chemicals in the environment and, more importantly,
the flush-out of cells from the chamber. To run the required
stochastic simulations, we extended BSim with an Euler-
Maruyama solver [22].

As a reference for the geometry of the microfluidic device
we used a scaled version of the one described in [23] with
dimensions 13.3µm × 16.6µm × 1µm which can contain a
population of about 50 cells.

We tested in BSim all the proposed controllers and snap-
shots of a typical BSim simulation is shown in Figure 3
where cells fully expressing one of the two repressor genes
are depicted either in red or green.

The errors obtained via BSim in-silico experiments are
reported in Figure 4. It can be noticed that the fluctuations
of the error signals are higher than in the previous Matlab
simulations essentially due to cell growth and splitting, and
the flush-out of the cells from the chamber. However, the
average error evolution is qualitatively the same, confirming
the good performance of the controllers.

C. Performance Comparison

To compare the performance of the controllers, we consid-
ered the following performance indices evaluated averaging
over M simulation trials:

(i) the average value of the error norm
over the total simulation time Tsim, ē =
1
M

∑M
j=1

(
1

Tsim

∫ Tsim

0
‖ej(t)‖dt

)
, and (ii) over the last

180 min, ēf = 1
M

∑M
j=1

(
1

180

∫ Tsim

Tsim−180‖ej(t)‖dt
)
, where

for the j-th trial ej(t) = [ejA(t), ejB(t)]>,
and (iii) the average settling time at 15% of the error, t̄s.
In Table II we report the values of the previous indices

considering M = 30 for the simulations in Matlab and
M = 1 for those in BSim. It can be observed that the MPC
algorithm guarantees excellent performance both in terms of
settling time and steady-state error norm. Therefore, it is the
best candidate for the in-vivo implementation that will be the
next stage of our ongoing research. Nevertheless, the Bang-
Bang controller offers a good compromise between ease of
implementation and performance.

V. CONCLUSIONS

We considered the ratiometric control problem in a mono-
strain microbial consortium made of bacteria embedding a
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Fig. 2: Evolution in time of the error signals eA(t) and eB(t) and of the control inputs ua(t) and up(t) for a consortium of
cells embedding an inducible toggle switch.
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(d) Control input evolution

Fig. 3: Snapshots of a BSim simulation performed using the MPC algorithm. Here, red cells belongs to At while green
denotes cells belonging to Bt. Bacteria with an intermediate coloration belong to Ct. The corresponding control input are
shown in the bottom panel.

bistable toggle switch. We demonstrated that, by varying
global inputs to all the cells, it is possible to control the ratio
between those stabilizing onto one equilibrium and those on
the other. Namely, we presented three control strategies to

regulate the cells in the consortium to the desired ratio. The
control design took into account the constraints of a possible
experimental microfluidic implementation. We tested perfor-
mance of the controllers in-silico by numerical and realistic
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Fig. 4: BSim simulations: evolution in time of the error signals eA(t) and eB(t) for a consortium of cells embedding an
inducible toggle switch.

Controller ē ēf t̄s (min)
Bang-Bang 0.20 (0.13) 0.07 (0.06) 1077 (1185)

PI 0.17 (0.28) 0.02 (0.05) 563 (1020)
MPC 0.13 (0.22) 0.02 (0.05) 329 (820)

TABLE II: Performance indices of the proposed controllers
evaluated using Matlab (BSim, respectively) simulations.

agent-based simulations. In both cases, it emerged that the
MPC algorithm guarantees excellent performance in terms
of both the settling time and the steady-state error values.
Future work will be aimed at validating in-vivo the proposed
controllers and exploiting them for multicellular feedback
control schemes such as the one described in [6].
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