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Reproducibility Summary

Scope of Reproducibility
In this paper we present an analysis and elaboration of [1], in which an algorithm is
posed by Plumb et al. for the purpose of finding human-understandable explanations
in terms of given explainable features of input data for differences between groups of
points occurring in a lower-dimensional representation of that input data.

Methodology
We have upgraded the original code provided by the authors such that it is compatible
with recent versions of popular deep learning frameworks, namely the TensorFlow
2.x- andPyTorch 1.7.x-libraries. Furthermore, we have created our own implemen-
tation of the algorithm in which we have incorporated additional experiments in order
to evaluate the algorithms̓ relevance in the scope of different dimensionality reduction
techniques and differently structured data. We have performed the same experiments
as described in the original paper using both the upgraded version of the code and our
own implementation taking the authorsʼ code and paper as references.

Results
The results presented in [1] were reproducible, both by using the provided code and our
own implementation. Our additional experiments have highlighted several limitations
of the explanatory algorithm in question: the algorithm severely relies on the shape and
variance of the clusters present in the data (and, if applicable, the method used to la-
bel these clusters), and highly non-linear dimensionality reduction algorithms perform
worse in terms of explainability.

What was easy

The authors have provided an implementation1 that cleanly separates different exper-
iments on different datasets and the core functional methodology. Given a working
environment, it is easy to reproduce the experiments performed in [1].
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[Re] Explaining Groups of Points in Low-Dimensional Representations

What was difficult
Minor difficulties were experienced in setting up the required environment for running
the code provided by Plumb et al. locally (i.e. trivial changes in the code such as the
usage of absolute paths and obtaining external dependencies). Evidently, it was time-
consuming to rewrite all corresponding code, including the architecture for the varia-
tional auto-encoder provided by an external package, scvis 0.1.02.

Communication with original authors
No communication with the original authors was required to reproduce their work.

1 Introduction

As AI models are getting more integrated into applications with economic or social im-
plications, the need for explaining decisions made by (potentially complex) models is
increasing. In many AI applications, big datasets form the basis of a decision-making
algorithm [2]. As these datasets often involve data of high dimensionality, the dimen-
sionality of data is, in many different applications, often reduced using dimensionality
reduction (DR) techniques [3].

Data, and consequently the decisions made by an algorithm that are (in)directly based
on that data, often involve some sort of ʻgrouping,̓ either by utilizing a clustering method
or by (manually) pre-defined ʻclusters of data.̓ The ʻgrouping processʼ may happen be-
fore the dimensionality reduction, forwhich, assumingwell-organized data inwhich the
dimensions correspond to explainable ʻreal-lifeʼ features of the phenomena measured
in the data, the distinguishing characteristics of a certain group becomes relatively ex-
plainable as these groups aremarked by boundaries in terms of explainable dimensions.
However, this process can also happen after the dimensionality of the data has been re-
duced, which results in the groups being defined in terms of dimensions in a latent space.
Especially when grouping occurs after dimensionality reduction, different clusters in
data often play a key role in the decision-making process of an algorithm – one could,
for example, when regarding credit riskmodelling, point out a group in latent spacewhich
ʻposes a high riskʼ when provided a loan [4]. Moreover, such groupings arise naturally
under the context of (variational) auto-encoders, which are the architecture of prefer-
ence for many deep learning applications [1, p. 8].

Thus, considering the above-mentioned need for explainable machine decisions, in
combinationwith the increasing use of DR algorithms and the reliance on observed data
clusters in abstract latent spaces which are not understandable to the humanmind, it is
of great relevance and importance to develop methods to explain differences between
groups in the light of the application of a certain dimensionality reduction technique.

Elaborating upon the earlier introduced example of credit risk, one could argue that a
reasonable explanation for a machine decision is of the kind: “Your loan was rejected,
but if you would have earned e422,86 more per month, your loan would have been accepted.”
This type of explanation is a counterfactual explanation – a decision on the basis of a
ʻfake,̓ counterfactual, ʻworld,̓ in which featureswould have been shaped differently. The
proposed explanatory technique in [1] does exactly this: it reverse-engineers obtained
cluster labels in latent space to label corresponding data in original space; then ʻtweaksʼ

1GitHub, Explaining Low Dimensional Representations, https://github.com/GDPlumb/ELDR, accessed on January
29th, 2021

2GitHub, shahcompbio/scvis: Python package for dimension reduction of high-dimensional biological data, https:
//github.com/shahcompbio/scvis, accessed on January 22nd, 2021
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[Re] Explaining Groups of Points in Low-Dimensional Representations

an initial cluster by translating that cluster in original space, so that it is mapped to
(approximately) the area of the target cluster in latent space. Since the dimensions in
original space correspond to explainable features—the groupsʼ characteristics—which
are comprehensible for a humanmind; a translation that corresponds to merely adding
or subtracting values to each of these features can be perfectly explained in ʻhuman
language.̓ Since it is desirable for the explanations to be concise, the translation should
be as sparse as possible: the translation should ʻtweakʼ as few dimensions as possible.
The intuition behind this idea is visualized in figure 1.
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Figure 1. Visualisation of themethod described by Plumb et al. Each point represents an individual
cluster. The difference between clusters 1 and 3 are explained. Note that although point 1maps to
1′, which is far from point 3 in original space, point 1′ is almost identical to 3 in latent space – this
is the goal, as we want to find a point 1′ which maps 1 close to 3 in latent space while keeping the
translation from 1 to 1′ as sparse as possible. Note that the shown clusters (1–4) are determined
in latent space and back-engineered to original space. r(Xi) is also referred to in [1] byRi.

2 Scope of reproducibility

As follows from the introduction, the authors of [1] opted for a counterfactual, sparse
explanation for key differences between (naturally arising) groups. Plumb et al. propose
an algorithm that generalizes this idea and attempts to find global differences between
all groups, constructed through a composition of simpler explanations and introduced
as Transitive Global Translations (TGT). The main tested contributions are that “TGTs pro-
vide a global and counterfactual explanation between all groups which is mathematically
consistent (i.e. symmetrical and transitive)” and that “TGTs overcome the shortcomings
of statistical andmanual interpretation which do not use themodel that learned the low
dimensional representation that was used to define the groups in the first place.”

In addition to replicating these claims using the provided code, we further evaluated
these statements by testing compatibility with other DR methods than the originally
used variational auto-encoder and tested the applicability of the algorithm on different
datasets with different internal structures. All the latter mentioned experiments were
performed by rewriting and implementing the algorithm in PyTorch (taking the au-
thorsʼ code andpaper as references), whereas the original code iswritten inTensorFlow,
motivated by the development of PyTorch in becoming the preferred framework by re-
searchers [5] and the assertion that it offers clearer coding structure3. For the sake of
ensuring future reproducibility of the experiments originally presented in [1], as an ad-
dition, we have also provided an upgraded version of the original code, without further
modifications, to make it compatible with recent versions of TensorFlow.

3Kirill Dubovikov, PyTorch vs TensorFlow – spotting the difference, https://towardsdatascience.com/
pytorch-vs-tensorflow-spotting-the-difference-25c75777377b, accessed on January 25th, 2021
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3 Methodology

In accordancewith section 2, for the purpose of reproducing [1], several stepswere taken
in order to best cover the scope of the original paper with limited resources. Firstly, the
provided artifactswere ʻmodernized.̓ Concretely – the code provided by Plumb et al. and
the external library scviswere upgraded to be compatible with TensorFlow 2.4.14

and matplotlib 3.3.35. Secondly, the provided code was rewritten from scratch
– both the code complementing the original paper; and the scvis library, to make the
computation of the explanations independent from the DR algorithms. Thirdly, we have
run our implementation on different DR algorithms—both linear and non-linear (see
section 3.1)—and on different datasets (see section 3.3). Both the reproduced version
(using the original code) and the rewritten version are further explained in section 3.2.
All relevant code complementing [1]—the chunks which we have chosen to rewrite—are
explicitly stated in the paper, making the method by Plumb et al. reproducible, even if
the code would not have been provided by the authors.

3.1 Dimensionality reduction algorithms
Throughout [1], DR algorithms are only mentioned in the general sense. Only in sec-
tion 4 the algorithm which Plumb et al. use for their experiments is introduced: a vari-
ational auto-encoder (VAE), which is a non-linear family of dimensionality reduction
algorithms based on (deep) symmetrical neural networks with a bottleneck in themiddle
layers which form the latent representation of the input data. The implemented VAE is
based on the architecture proposed by [6].

The presented explanatory method should work for any DR algorithm while effectively
treating the algorithm as a ʻblack box.̓ Apart from testing this hypothesis, it is relevant to
compare ʻexplanatory performanceʼ on different DR algorithms as different algorithms
suit different types of data. Furthermore, an explanation based solely on translations
could possibly perform worse in situations wherein data is transformed in a non-linear
manner, especially when methods inherently non-linearly transform (and warp) the in-
put space. Therefore, as an addition to simply reproducing the implementation, exper-
iments were done with several commonly known DR algorithms listed below.

Linear methods —We have opted for two different linear DR algorithms: truncated SVD
(TSVD) and sparse PCA (SPCA) [7]. Both TSVD and SPCA reduce the dimensionality in
a linear fashion. However, a key difference between both algorithms is that SPCA cen-
ters the data before computing the decomposition, where TSVD does not. As a result,
TSVD handles sparse data more efficiently. The objective of SPCA is to find the sparse
components that best reconstruct the data. While standard PCA, in most cases, extracts
components using dense expressions, these are often hard to interpret. However, the
sparse vectors extracted by sparse PCA naturally match the latent components, which
increases explainability.

Non-linear methods — The implemented VAE is based on a Gaussian distribution, which
results in a probabilistic generative model that preserves both local and global neigh-
bor structures in the data [6]. As the VAE is solely used for encoding a constant latent
space, themodel is trained on the entire dataset. We further incorporate the use of three
additional non-linear methods: kernel PCA (KPCA), locally linear embedding (LLE) [8]
and isomaps. The latter twomentioned techniques are examples ofmanifold learning [9].

4TensorFlow, Automatically upgrade code to TensorFlow 2, https://www.tensorflow.org/guide/upgrade, accessed on
January 22nd, 2021

5Matplotlib, API Changes, https://matplotlib.org/3.3.3/api/api_changes.html, accessed on January 22nd, 2021
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To achieve a non-linear tranformation, KPCA [10] extends standard PCA through the
use of kernels. These kernels effectively mimic a complex function that projects the
input data on a higher dimensional space in which, consequently, a lower-dimensional
subspace is found in which the data is represented, resulting in a more efficient low-
dimensional latent representation. The advantage is that KPCA is able to identify clus-
terswhich are not linear separable. For our experiments, we found that a sigmoid kernel
provided the best performance (measured by the metrics proposed in section 3.2) when
the latent space resulting from the KPCA was used to find TGTs.

Finally, manifold learning techniques are implemented to analyse whether TGTs can
still perform on a higher-dimensional embedding of a low-dimensional manifold, espe-
cially for datasets of which its data might not lay on an underlying low-dimensional
manifold. Isomaps can be seen as an extension of KPCA. Isomaps present a lower-
dimensional space while maintaining distances between all points, while LLE aims to
map to a lower-dimensional space while maintaining the distance in local neighbor-
hoods. While Isomap could be seen as an extension of KPCA, LLE can be understood as
a combination of PCAs run on local neighborhoods.

As shown in section 4.1, different latent spaces (resulting from applying different pro-
cesses for the purpose of reducing dimensions) seem to perform better in terms of ex-
plainability, which is further discussed in section 5.

3.2 Model descriptions
The original paper aimed to find an explanation for the key differences between a pair
of groups in latent space where the explanation is expressed in terms of the original di-
mensions. This explanation is represented by a counterfactual translation of one of the
groups (in the pair) in original space: “what if all points in group A, thus ∀x ∈ A, x ∈ Rd,
would have been translated, so that ∀x ∈ A, δ ∈ Rd, x′ = x + δ? Would group A have
been roughly the same as group B after the groups have beenmapped to latent space, so
that ∀x ∈ A,∀y ∈ B, x ∈ Rd, y ∈ Rm, r : Rd → Rm, r(x′) ≈ r(y)?”.

As both the original space (Rd) and latent space (Rm) are Euclidean spaces, translations
between any pair of groups within a larger number of groups (> 2) can be constructed
by composing two translations (a vector addition in this context) or negating a transla-
tion (in this context equivalent to vector-scalarmultiplicationwith λ = −1). Using these
operations and a reference group, explanations (δ) can be obtained for every possible pair
of groups. The intuition behind this idea is illustrated in figure 2. Points in figure 2 do
not directly correspond to the groups for which we want to find differences, since these
locations will be approximated using sparse translations (see figure 1). Moreover, this
linearity enables the possibility to measure the difference between the points in the two
groups in latent space using the l2-norm of the squared differences. At the same time, it
is also possible tomeasure the sparsity of δ using l1-regularization, which directly relates
to the comprehensibility of the explanation posed by δ.

In order to obtain adequate components for the δ-vector between a group and the refer-
ence group, all δ-vectors can be initialized to zero and optimized by adjusting the com-
ponents of δ corresponding to two randomly chosen groups in the negative direction
of the gradient of a loss function which accounts for the above-mentioned constraints.
This loss function is formulated in equation 9 of the original paper. While Plumb et al.
decide to incorporate the calculation of the gradient as an ʻextensionʼ of the scvis pack-
age, whichwe have reproduced using the provided code, we have decided to analytically
compute the gradient using SciPy 1.6.0 (using the optimize.approx_fprime-
method). This implementation choice is in line with our aim to rewrite all code from
scratch to obtain a ʻstand-aloneʼ division between the explanatory algorithm (which is
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the main idea of the original paper) and various ʻblack-boxʼ dimensionality reduction
algorithms, including the variational auto-encoder (the only algorithm Plumb et al. ex-
periment with), as introduced in the beginning of this section.
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5

Figure 2. Visualisation of the intuition
behind the composition of two transla-
tions with regard to a reference group
0, of which one is negated. Note that
in this example every data point repre-
sents a whole group.

The model s̓ performance is measured by two sep-
arate, but related (see section 4.1), metrics defined
by [1, p. 3]: correctness, whichmeasures the degree
to which projected points are actually in the vicin-
ity of points they should map to (which they, in a
sense, should ʻimitateʼ) and coverage, which mea-
sures the degree to which projected points cover
the target group. Both are defined in equation 3–4.

3.3 Datasets
In the upgraded-code model, we decided to repro-
duce the explanations on all provided datasets, in-
cluding the synthetic and corrupted versions. The
datasets used in the experiments in the original
paper are the Heart Disease, Boston Housing, and
Iris datasets; and the single-cell RNA dataset [11].
Our from-scratch model has incorporated all pro-
vided datasets, except for the latter, due to lack of
computation power. However, experiments were
run on three additional UCI datasets: Seeds, Wine and Glass.6 The additional data allow
us to understand how varying underlying structures in data influence explainability us-
ing different DR algorithms. Not all datasets can be reduced by all techniques: all three
added datasets do not yield eigencomponents for a sigmoidal Kernel-PCA procedure.

3.4 Hyperparameters
A constraint on the resulting explanations is that theymust be sparse. The sparsity level
is formally defined by k, representing the number of dimensions in the original space
(with ʻreal-lifeʼ features) used as the main components of the translation that forms the
explanation. The hyperparameter k is enforced after the learning process by truncat-
ing the δ-vector. To enforce sparsity during the learning process, the δ-vector is being
l1-regularized by a term λ, as follows from [1, p. 5] and was inspired by the field of com-
pressed sensing. The resulting equation, which is minimized, is stated in equation 1. As
further explained in section 3.5, different values for λ are tested for optimization.

loss(δ) = ||r(x̄initial + δ)− r̄target||22 + λ||δ||1 (1)

Following [1, p. 6], in equation 2 a similarity measure is defined to capture the degree of
which the features of a k1-sparse explanation correspond to k1 dimensions of a k2-sparse
explanation where k2 > k1.

similarity(e1, e2) =

∑
|e1[i]|1[e2[i] ̸= 0]

||e1||1
(2)

Lastly, hyperparameter ϵ defines a threshold for the correctness and coverage metrics, as
defined in equation 3–4. Although Plumb et al. do hint on the type of search they have
performed to find values for ϵ, it is not clearly expanded upon [1, p. 4]. For the purpose of
analysing reproducibility, wehave adopted the same values for ϵ (whichwere not present

6UCI Machine Learning Repository, https://archive.ics.uci.edu/ml/datasets/{heart+disease,iris,seeds,Wine,glass+
identification} and https://archive.ics.uci.edu/ml/machine-learning-databases/housing/, accessed on January 29th, 2021;
note the set notation in the latter section of the URL.
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in the paper) for the same datasets. For all new data, we have introduced similar static
values for ϵ. Plumb et al. do, however, propose an evaluationmethod for ϵ, although it is
again notmentioned in the paper. The authors take themean, minimum andmaximum
of the diagonal values of the matrix of the correctness measures for all clusters (similar
to the matrices shown in figure 4). These values can be misleading, as larger values for
ϵ would inherently score high on correctness. Therefore, we have constrained ϵ ∈ [0, 2]
and dynamically scale the latent spaces to force the data to be spread out (see section
3.5). We evaluated all values for ϵ and outline the means in table 1.

correctness(t) =
1

|Xinitial|
∑

x∈Xtarget

1[∃x′ ∈ Xtarget|||r(t(x))− r(x′)||22 ≤ ϵ] (3)

coverage(t) =
1

|Xtarget|
∑

x∈Xinitial

1[∃x′ ∈ Xinitial|||r(x)− r(t(x′))||22 ≤ ϵ] (4)

VAE PCA TSVD KPCA SPCA ISO LLE |clusters| ϵ
Housing 0.99 1.00 1.00 1.00 1.00 1.00 0.83 6 1.50

Iris 0.98 0.96 0.98 0.94 0.96 0.85 0.99 3 0.75
Heart 0.96 0.99 1.00 0.99 0.99 0.98 1.00 8 1.00
Seeds 1.00 0.97 1.00 - 0.97 0.98 0.94 3 1.00
Wine 1.00 0.99 1.00 - 0.99 0.99 1.00 3 1.00
Glass 0.99 0.94 0.94 - 0.94 0.94 0.98 7 1.75

Table 1. Evaluation of fixed epsilon values present in equations 3–4: mean of the diagonal of the
correctness matrix.

3.5 Experimental setup and computational requirements
We have reproduced the experiments in [1] by using the upgraded TensorFlow-code.
Additionally, we have run our from-scratch code on three additional datasets and six
other dimensionality reduction algorithms. All experiments were run for five trials for
eleven different values of λ (evenly spaced between 0 and 5), for which the best set of
δ-vectors is chosen for all values of k (k is evenly spaced between 1 and the number of
dimensions d in the original space, with a step size of 1 for d ≤ 5, and 2 otherwise).

As pointed out in the previous section, an inadequately high value for ϵ poses a problem
if the data in latent space is of low variance (especially if variance < ϵ), as the perfor-
mance measures, introduced in section 3.2 and shown in equations 3–4, would unjustly
report very high scores. We have solved this problem by rescaling the data in latent
space so that a variance of 10 is preserved (which amounts to a standard deviation of
≈ 3.16). We have deliberately chosen not to utilize a method for removing outliers prior
to defining the factor with which to rescale the data in latent space, as to preserve ʻthe
spirit of the data,̓ especially since the internal structure of some datasets contain out-
liers which potentially correspond to groups with a significantly different character, as
opposed to outliers resulting from noisy measurements. We further discuss our choice
in section 5. However, as we failed to preserve an adequate amount of variance when
performing TSVD on the Glass-dataset using this method, we manually scaled the data
in this latent space, for this particular dataset, with an additional factor of 20.

In the from-scratch implementation, K-means is used for clustering, while for the repli-
cated experiments in the original notebooks, following the code provided by the authors,
clusters were manually selected.

ReScience C 7.2 (#16) – Reijnaers et al. 2021 7
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Experimental meta-results are shown in table 2. The original code, the ʼmodernizedʼ
version of the original code and the code for the from-scratch implementation can be
found on our GitHub repository [12].

VAE + model PCA TSVD KPCA SPCA ISO LLE |k|
Housing ∈ R13 3.7 + 0.1 0.3 0.3 4.4 0.4 4.5 4.7 7

Iris ∈ R4 0.8 + 0.1 0.1 0.1 0.7 0.1 1.0 1.1 4
Heart ∈ R14 2.6 + 0.1 0.6 0.5 4.9 0.5 4.3 3.6 7
Seeds ∈ R7 0.4 + 0.1 0.2 0.1 - 0.2 3.0 2.7 4
Wine ∈ R13 1.6 + 0.1 0.2 0.2 - 0.2 4.2 4.8 7
Glass ∈ R10 0.9 + 0.1 0.4 0.3 - 0.3 2.8 2.8 5

Table 2. Rounded TGT training time in hours per dataset and DR algorithm for all values of k,
measured on an i7-4720HQ CPU @≈ 2.6GHz. Measured for 5 trials per λ ∈ {0, 0.5, . . . , 5}. VAE
models train on a minimum of 3000 iterations.

4 Results

(a) Plumb et al.
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(b) Implemented from scratch

Figure 3. Comparison of VAE on Housing data

Using our upgraded TensorFlow-code
and the provided pre-trained VAE mod-
els, the obtained results are identical
to those provided by the paper s̓ code-
base for all datasets and methods.7 Af-
ter re-training all VAE models and re-
learning all explanations, using the same
upgraded TensorFlow-code, we obtain
very similar results.8 The results are not
identical, as the models learn slightly dif-
ferent representations, in which the man-
ually selected clusters also differ. This indicates that the used cluster generation tech-
niques influence themodel s̓ ability to explain based on a translation. An example arises
with the Iris dataset: Plumb et al. yield 0.833 coverage, while we get only 0.66. This dif-
ference caused by a different organization of clusters propagates further into the results
for the corrupted data. Except for minor differences arising from this same issue, we
successfully reproduced the results for all other datasets.

When running the Housing, Iris and Heart datasets on the from-scratch implementa-
tion of the explanation algorithm using our implementation of scvis, we obtain either
similar (see figure 3) or even better results than Plumb et al. do. This again indicates
that the method for dimensionality reduction does impact the results.

For different datasets and different dimensionality reduction algorithms that map the
datasets to different latent spaces, we have encountered the same problem related to the
inability of explaining pairs of groups of which the clusters have a different standard
deviation, as shown in the original paper in figures 4-7 [1, p. 4]. This problem occurs,
among others, in figure 5f in appendix A (and the corresponding measures in figure 6f).

7To compare, open the .ipynb in all folders (except ʻcode,̓ ʻscvis,̓ ʻMiscFigures,̓ and ʻIntegrated-Gradients-
masterʼ) on both repositories, and look at the resulting plots: https://github.com/GDPlumb/ELDR and https://github.
com/damiaanr/fact-ai/tree/main/ELDR-TF2.x_(pre_trained_models)

8Now, compare the plots with https://github.com/damiaanr/fact-ai/tree/main/ELDR-TF2.x_(newly_trained_models)
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4.1 Additional results not present in the original paper
As [1, p. 6] pointed out, the correctness and coverage metrics are closely related. If the
translations between arbitrary groups are symmetrical, the former translation—which
is the technical representation of the explanation—is the negative of the latter (and vice-
versa). Thus, when applying different linear dimensionality reduction algorithms, both
metrics will exactly equal each other, as follows from the results shown below in table 3,
and in figure 4 (note that the color map plot for correctness is the ʻtransposeʼ of the plot
for coverage, and vice-versa) and figure 6 (along all different values for k, the graphs
conveying correctness and coverage are on top of each other for all linear algorithms).
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Figure 4. Metrics for Housing on PCA, k = 5

An additional observation is that topology-
based dimensionality reduction techniques
are less suitable for data compression when
the compressed data consequently needs to be
explained using translation-based counterfac-
tual explanations. Locally linear embedding
and isomapping are methods based on mani-
fold mapping: a one- or two-manifold is em-
bedded in two-dimensional space, and points
of a higher-dimensional space are mapped
onto this manifold. This often yields problem-

atic data structures. For instance, when data is represented using a line (a one-manifold)
and embedded in two-dimensional space in which the one-dimensional line is twirled.
Since we are only considering translations (and, e.g., no rotations), themethod is unable
to adequately explain differences between clusters present onmanifolds in latent space.

Furthermore, we observed that certain datasets yield constant results when varying
the sparsity-constraint. In this case, the compression from high-dimensional to two-
dimensional space was (nearly) lossless – a single component suffices to explain the dif-
ference between any group. This phenomenon is shown in figure 6e in appendix A,
indicating that the chemical composition of wine actually depends on only one latent
variable: when using PCA, 99.98% of the variance is explained by only two components
(of which 99.81% by the first component) out of 13 input dimensions. Note that the VAE
seems to learn an approximation of LLE space (see figure 5e).

All results for all introduced performancemeasures, datasets and dimensionality reduc-
tion algorithms, are shown in table 3 below and illustrated in figures 5–7 in appendix A.

Housing Iris Heart Seeds Wine Glass
VAE 0.97; 0.98; 0.99 0.96; 0.94; 1.00 0.83; 0.82; 0.98 0.40; 0.40; 0.99 0.39; 0.39; 0.33 0.33; 0.33; 0.86
PCA 0.99; 0.99; 0.99 0.89; 0.89; 1.00 1.00; 1.00; 0.98 0.95; 0.95; 0.99 0.40; 0.40; 0.33 0.82; 0.82; 0.86
TSVD 1.00; 1.00; 0.99 0.95; 0.95; 1.00 1.00; 1.00; 0.98 0.84; 0.84; 0.99 0.52; 0.52; 0.33 0.94; 0.94; 0.86
KPCA 0.99; 0.98; 0.99 0.82; 0.86; 1.00 0.99; 0.99; 0.98 - - -
SPCA 0.99; 0.99; 0.99 0.88; 0.88; 1.00 1.00; 1.00; 0.98 0.95; 0.95; 1.00 0.39; 0.39; 0.33 0.82; 0.82; 0.86
ISO 0.22; 0.22; 0.99 0.67; 0.66; 1.00 0.16; 0.17; 0.98 0.93; 0.94; 1.00 0.39; 0.39; 0.33 0.58; 0.61; 1.00
LLE 0.20; 0.25; 1.00 0.54; 0.55; 1.00 0.40; 0.51; 1.00 0.88; 0.87; 1.00 0.37; 0.37; 0.33 0.33; 0.45; 1.00

Table 3. Correctness, coverage and similarity scores respectively for eachmodel and dataset. Mean
value is shown for the similarity scores while the score for the largest k is taken for the correctness
and coverage measures.
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5 Discussion

We have been able to successfully reproduce and upgrade the code provided by Plumb
et al., which is the implementation of the technique presented in [1]. We were able to re-
produce results by running the pre-trained models; after re-training these models; and
by rewriting the algorithm from scratch.

The performance depends on themapping to latent space. A limitation of the algorithm
is the lack of variable freedom: only translations can be used to explain differences be-
tween groups. By utilizing different DRmethods, we have shown that not all algorithms
produce latent spaces in which translations suffice for an explanation between clusters.
Especially manifold-based algorithms require a more sophisticated type of explanation
using, for instance, rotation and scaling.

A possible solution would be to generate an explanation in terms of a matrix (so that
x′ = Mx + δ instead of x′ = x + δ). However, explanations using translations are
directly interpretable for humans as the dimensions of the tested datasets correspond
to explainable features. Considering, for example, rotations, would come at the cost of
explainability. However, forcing M to be diagonal (which leads to multiplying all data
features by the corresponding diagonal factors) might yield proper explanations (of the
type “If your monthly income would have been twice as big...”).

Furthermore, by using different datasets, we have shown that some DR techniques do a
better job in terms of explainability between clusters. Data might be structured in dif-
ferent ways and produce different types of clusters. It directly follows from our results
that the explanation method heavily relies on the generated clusters, and more impor-
tantly, its shapes and variance in latent space, which is another limitation.

In section 3.5, we opted for an approach in which the latent spaces are dynamically
scaled for the purpose of achieving a certain amount of variance in the data, as to obey
the fixed hyperparameter ϵwhich was introduced in section 3.4. A more robust method
would be to dynamically define ϵ based on the variance in the latent space depending
on the dataset and, potentially, proper handling of its outliers. We view the lack of ex-
pansion on this hyperparameter in the original paper as a (minor) limitation.

As VAEs are sampling points in latent space from a distribution, an identical point x in
the input spacewhich is repeatedlymapped to latent spacewill yield differentmappings.
It would be interesting to further investigate to what extent explanatory algorithms can
ʻhandleʼ this variance – to what extent such algorithms could find a stable and unchang-
ing explanation in an ever-changing counterfactual world.

5.1 What was easy
After having asserted the dependencies needed to run the code provided by the authors
on their GitHub repository, replicating the experiments performed in the paper was
easy; the code was cleanly written, and it was easy to understand the architectural
choices which the authorsʼ made in their model.

5.2 What was difficult
Although the code required for computing the explanations was separated from the im-
plementations in other folders in which it is applied on the different datasets, Plumb et
al. decided to perform experiments using a VAE and intertwined all code for generat-
ing the explanations with the scvis-library. This caused the explanatory model to rely
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on TensorFlow, while the explanation method itself does not require any deep learn-
ing. It is preferred to dissect the model into independent components, considering that
the explanatory model should work with other DR algorithms, including those which
do not require neural pipelines. Because of the authorsʼ choice to use a VAE, the entire
repository relied on TensorFlow. Mainly for this reason, we rewrote everything from
scratch, as to provide the code for the dimensionality reduction methods on a ʻstand-
aloneʼ basis. As we were aiming to reproduce the results provided by the original paper,
we also had to rewrite the external scvis-library, which provided the VAE architecture,
in PyTorch (for the sake of keeping clean, separated and object-oriented code). This
was very time-consuming as both frameworks are fundamentally different (dynamic vs
static graph definition). The process of rewriting took approximately two weeks.

Lastly, the results for the Bipolar dataset could only be replicated with the provided
model configuration file. Although we have re-trained the model using the upgraded
originally provided code, we have chosen to exclude this dataset for the additional ex-
periments due to lack of computation power and time.

5.3 Communication with original authors
A short interaction occurred to gain more insight into the required external libraries as
these were not listed in any documentation. Although the authors responded quickly,
the issue had already been solved in the meantime.
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Appendices
A Additional latent spaces and corresponding measures
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(a) Latent spaces for the Housing dataset
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(b) Latent spaces for the Heart dataset
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(c) Latent spaces for the Iris dataset
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(d) Latent spaces for the Seeds dataset
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(e) Latent spaces for the Wine dataset
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(f) Latent spaces for the Glass dataset

Figure 5. Visualization of two-dimensional latent spaces in which higher dimensional data is com-
pressed after applying various dimensionality reduction techniques for different datasets. This
figure illustrates how the underlying structure of the data, in combination with the involved
method for reducing dimensionality, influences the resulting representational spaces. Every cir-
cle represents a cluster to which the (cluster-colored) data points belong.
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(a)Measures for Housing dataset (all algorithms)
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(b)Measures for Heart dataset (all algorithms)

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of Features Used

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
et
ric

Iris dataset

Correctness
Coverage
Similarity

vae
pca
tsvd
kpca
spca
iso
lle

(c)Measures for Iris dataset (all algorithms)
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(d)Measures for Seeds dataset (note: no KPCA)
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(e)Measures for Wine dataset (note: no KPCA)
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Figure 6. Measures for coverage, correctness and similarity for all involved dimensionality reduc-
tion algorithms on all datasets.
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(a) A proper explanation for clusters in the Seeds
dataset mapped to a latent space generated by
SPCA.
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(b) A well-formed explanation for groups within the
Glass dataset transformed by TSVD.
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(c) Iris dataset mapped with LLE. Note how the
model is unable to learn, caused by the shapes of
the clusters.
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(d) Wine dataset mapped with an isomap. The
model is unable to learn, indicating that a trans-
lation cannot suffice as an explanation here. Note
that k-sparsity does not influence the explanation,
as the Wine dataset has only one significant latent
variable.

Figure 7. Four sample explanations between two arbitrary groups for four different datasets pro-
jected onto four different latent spaces.

ReScience C 7.2 (#16) – Reijnaers et al. 2021 14

https://rescience.github.io/

	Introduction
	Scope of reproducibility
	Methodology
	Dimensionality reduction algorithms
	Linear methods
	Non-linear methods

	Model descriptions
	Datasets
	Hyperparameters
	Experimental setup and computational requirements

	Results
	Additional results not present in the original paper

	Discussion
	What was easy
	What was difficult
	Communication with original authors

	Additional latent spaces and corresponding measures

