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Abstract

FixMatch is a semi-supervised learning method, which achieves comparable re-
sults with fully supervised learning by leveraging a limited number of labeled data
(pseudo labelling technique) and taking a good use of the unlabeled data (consistency
regularization ). In this work, we reimplement FixMatch and achieve reasonably
comparable performance with the official implementation, which supports that Fix-
Match outperforms semi-superivesed learning benchmarks and demonstrates that
the author s̓ choices with respect to those ablationswere experimentally sound. Next,
we investigate the existence of a major problem of FixMatch, confirmation errors, by
reconstructing the batch structure during the training process. It reveals existing
confirmation errors, especially the ones caused by asymmetric noise in pseudo labels.
To deal with the problem, we apply equal-frequency and confidence entropy regu-
larization to the labeled data and add them in the loss function. Our experimental
results on CIFAR-10 show that using either of the entropy regularization in the loss
function can reduce the asymmetric noise in pseudo labels and improve the perfor-
mance of FixMatch in the presence of (pseudo) labels containing (asymmetric) noise.
Our code is available at the url: https://github.com/Celiali/FixMatch.

1 Introduction

Ghahramani1 summarized the reasons for the success of deep learning in his talk given
as the chief scientist in Uber. Firstly, with the availability of large datasets, large mod-
els can work well. Secondly, training such large models with stochastic descent works
surprisingly well. Moreover, staying close to identity (such as ReLU) makes it stable to
be trained. The automate differentiation and a large number of open source softwares
make it scale well. Therefore, we can see deep learning in many applications, such as
computer vision, natural language processing, bioinformatics, etc.
However, it is not always the case where a huge number of labeled data are available. In
some areas, it is difficult, expensive, or even impossible to have a large labeled dataset,
such asmedical images [2]. In this case, it can be difficult to train aDeepNeural Network
(DNN) from scratch with the limited labeled data. Luckily, Tajbakhsh et al.3 shows that
a DNN trained based on a pre-trained DNN, fine-tuning, can outperform the one trained
from scratch. Moreover, Semi-Supervised Learning (SSL) is also a common method to
deal with the scarcity and often high acquisition cost of labelled data [4]. SSL efficiently
leverages labeled data and the relation with unlabeled data to train a DNN. Among SSL
methods, there is a class of ”match”-based methods, such as FixMatch [5], MixMatch [6],
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ReMixMatch [7] and DivideMatch [8]. These methods utilize the consistency regulariza-
tion, pseudo-labelling and ensembling methods to boost the performance with the use
of unlabeled data. In fact, they are leveraging prior knowledge to regularize the train-
ing of DNNs. In this project, we focus on reproducing and investigating one of such
methods, FixMatch [5].
Nevertheless, SSL is still facing many challenges in theory and in practice. Ben-David,
Lu, and Pál9 show that “as long as one does not make any assumptions about the behav-
ior of the labels, SSL cannot help much over algorithms that ignore the unlabeled data.”
Moreover, SSL can actually degrade performance if certain assumptions are not met
[10]. In this line of works, Schölkopf et al.11 consider the problem from a causal mod-
eling perspective and conclude that in fact SSL is impossible when predicting a target
variable from its causes (causal learning) but possible from anti-causal learning. Re-
cently, the relation of causality and semi-supervised learning is further explored in [4],
i.e., predicting a target variable from both causes and effects at the same time. More-
over, in the light of consistency regularization and pseudo-labelling, a significant issue
of the ”Match”-based methods is confirmation error. It happens especially when noisy
samples are in the labeled set. A DNN can keep having lower loss by fitting the noise
and be furthermaintained after trainingwith thewrong pseudo labels of unlabeled data
, which keeps the errors in themodel and limits its generalization and performance [12].
This problem becomesmore serious in the presence of asymmetric noise in the training
labels, which roughly speaking tends to label a class of data as another specific class.
Therefore, in this work, we are not only reimplementing FixMatch, but also investigat-
ing whether the pseudo labels made by the DNN contain harmful noise leading to con-
firmation errors. First, we design a stable and reliable method to examine the existence
of confirmation errors and noisy pseudo labels by reconstructing the batch structure.
Secondly, we find methods to deal with (asymmetric) noise in (pseudo) labels of the
training dataset. We reconstruct the batch structure and add an equal-frequency en-
tropy regularization on labeled data to the loss function of FixMatch. Moreover, we
also use a confidence entropy regularization on labeled data to avoid the over-confident
prediction. It turns out that both entropy regularization is helpful for dealing with the
noisy (pseudo) labels (even for the asymmetric noise) and confirmation errors. Our ex-
perimental results show that

1. our implementation can achieve almost the same performance even better for low-
label regimes.

2. there exists asymmetric noise in the pseudo labels leading to confirmation errors.
With such pseudo labels, the model is biased which in turn leads to more asym-
metric noise in pseudo labels.

3. FixMatch with equal-frequency entropy regularization and FixMatch with confi-
dence entropy regularization can reduce (asymmetric) noise in the pseudo labels
and perform better than the baseline FixMatch in the presence of asymmetric
noise in (pseudo) labels .

2 Related work

As introduced in Sec. 1, confirmation error is a serious issue of ”Match”-based SSLmeth-
ods and our study is mainly about the confirmation error and FixMatch in the presence
of noisy (pseudo) labels. Therefore, here we mainly introduce the noisy labeling and
some related works for dealing with the noisy label and confirmation error in SSL.

Noisy labeling and noise-robust loss. Suppose a dataset D = {(xi, yi)}ni=1 where yi is
given by noisy labeling. Tomodel noisy labeling process, we have p(yi|ỹi)where ỹi is the
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ground truth label under the assumption that the noise label is conditionally indepen-
dent from the input data given the ground-true label; formally, p(yi = k|xi, ỹi = j) =
p(yi = k|ỹi = j) = ηkj . In general, such noise is called class dependent, which is also
named as the asymmetric noise[13]. In contrary, when ηkj = η, it is called symmetric
noise. Under the symmetric noise assumption, Ghosh, Manwani, and Sastry14 studied
the functional form of loss function and concluded that by using the symmetric loss
function, one can get a global optima such that the learned model is noise tolerant. For
example, the MAE loss function is a symmetric function while the cross entropy loss
function is not. However, using MAE loss function has poor accuracy performance on
classification tasks compared with the cross entropy loss function [13]. One can con-
vince oneself with Eqn. (5) in [13], i.e., the cross entropy loss function enables the op-
timization process weighting the sample importance while the MAE loss function con-
siders samples equally. Furthermore, Zhang and Sabuncu13 combine MAE and cross
entropy loss functions with LʼHôpital s̓ rule, i.e.,

Lq(f(x), j) =
(1− fj(x)

q)

q
, (1)

where f(x) is the model, j indexes the class, and fj(x) is the softmax output of j. In-
terestingly, when q = 1 , Lq(f(x), j) is a MAE loss function; while limq→0 Lq(f(x), j)
is a cross entropy loss. Therefore, one can manipulate trade off by selecting a good
hyper-parameter q. Furthermore, it also introduces a better loss function, the truncated
Lq(f(x), j), which is essentially a practically improved version of Lq(f(x), j). However,
in theory the proposed method is based on the symmetric noise assumption [13], which
can be quite easy to be violated. This is a trade-off between using a stricter assumption
and estimating noisy labelling mechanisms [15] (which is a challenge).

SSL for noisy labeling and a potential solution for asymmetric noise. Li, Socher, and
Hoi8 consider the noisy label problem as a semi-supervised learning problem by find-
ing the similarity of unlabeled samples in semi-supervised learning and noisy labels.
Suppose that we can successfully separate the noisy and clean samples, we can treat the
noisy ones as unlabeled data in semi-supervised learning, and then leverage the success
of semi-supervised learning to tackle the noisy labeling problem. Firstly, by observing
that the loss of clean samples tends to be lower than the noisy ones [16], Li, Socher,
and Hoi8 fit a Gaussian Mixture Model for the two components, the noisy group and
the clean one. Then given a loss, it can be inferred whether the sample is a noisy one
or a clean one. Consequently, following the mentioned idea, semi-supervised learning
methods are applied to such a separated dataset. Moreover, Li, Socher, and Hoi8 con-
sider the influence of asymmetric noise in the supervised learning phase. Because the
bias introduced by the asymmetric noise can lead to severe consequences (confirmation
errors). [8] added a negative entropy penalty term −H =

∑
j fj(x) log fj(x) for an input

x in the cross-entropy loss function at the beginning of training to avoid over-confident
prediction, which works well emperically. To further reduce the influence of the con-
firmation error introduced by the symmetric noise, it uses the MixMatch [6] procedure
to train two independent DNNs and attractively exchange datasets with each other for
filtering errors made by the other one. This is actually an ensemble method, which
reduces the random noise in the prediction, especially in the presence of symmetric
labelling noise.

Model bias in SSL. Kurakin et al.7 propose a distribution alignment method utilizing
a principle introduced by Bridle, Heading, and MacKay17. It formulates an ideal classi-
fier which maximizes the mutual information of model inputs and model outputs. Fur-
thermore, it argues that the second term of mutual information encourages a model
to output with low entropy and high confidence, while another one encourages equal

ReScience C 7.2 (#9) – Li, Tu and Zhang 2021 3

https://rescience.github.io/


[Re] Reimplementation of FixMatch and Investigation on Noisy (Pseudo) Labels and Confirmation Errors of FixMatch

frequency across the entire training set as shown in

I(y;x) =

∫∫
log

p(y, x)

p(y)p(x)
dydx

= H[E[p(y | x; θ)]]− Ex[H[p(y | x; θ)]], (2)

where θ is the model parameters. As what Kurakin et al.7 said, when themarginal distri-
bution of a training dataset labels is not uniformly distributed, it is not proper to regular-
ize the frequency. In our work, to deal with such case, we augment the training dataset
and make the labels of labeled data in each batches to be uniformly distributed.

3 Methods

3.1 FixMatch
As one of the SSL methods, FixMatch [5] leverages labeled data and introduces prior
knowledge about unlabeled data in the training process. For labeled data, FixMatch
simply uses the cross entropy loss function for a batch,

ls =
1

B

B∑
b=1

H(yb, f(α(xb))), (3)

where B is the number of labeled data in a batch, xb is a labeled sample, yb is the label,
andα(·) is weak augmentation. However, due to limited number of labeled samples, the
performance of suchDNN is not ideal. Therefore, the question is how tomake a gooduse
of the sufficient unlabeled data to improve the performance? Ideally, the performance
can be close to the DNN trained with the fully labeled dataset.
FixMatch considers the consistency of model prediction on the unlabeled data with
weak and strong augmentation (the augmentation methods are introduced in Sec. 4).
It first uses the model to predict pseudo labels for unlabeled data and then compute the
loss of unlabeled data with the pseudo labels and the consistency regularization. The
loss function for the unlabeled samples ub is

lu =
1

µB

µB∑
b=1

1(max(f(α(ub))) ≥ τ)H(ŷb, f(A(ub))), (4)

where µB is the number of unlabeled data in a batch, ŷb := argmaxy p(y|α(ub); θf ) is
the pseudo label of ub, θf is the neural network parameters of function f , and A(·) is
the strong augmentation. Note that to make pseudo labels reliable to be used, FixMatch
considers the pseudo labels in the loss function only if the prediction has a higher proba-
bility than τ . Next, together with the cross entropy loss of labeled data, the loss function
of FixMatch is ls + λulu.

3.2 Investigation of noisy (pseudo) labels and confirmation errors of FixMatch
Nosiy pseudo labels and confirmation errors in FixMatch. A main issue of ”Match”-
based SSL methods is confirmation errors. Since FixMatch is trained on batches with
both labeled and unlabeled data, it is very likely to make prediction errors at the begin-
ning of the training. When the model makes wrong predictions of labeled data, since
we have their ground-truth labels, themodel can become better with the loss for labeled
data. But when it comes to unlabeled samples, since we donʼt have the ground-truth la-
bels, the model uses the confident pseudo labels as the labels for training. In this case,
if the pseudo-labels are noisy, the model can fit such errors and become biased. In the
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next batch, it can generate more wrong pseudo-labels with higher confidence. More-
over, the consistency regularization can keep reinforcing the model to fit such wrongly
labeled data. Finally, it demonstrates a biasedmodel with a poor performance on gener-
alization and robustness. Therefore, noise in the pseudo labels can lead to confirmation
errors in FixMatch.
Both asymmetric noise and symmetric noise in pseudo labels can lead to confirmation
errors, but in general asymmetric noise is more harmful and harder to deal with. For
example, to reduce the impact of symmetric noise and get an unbiased model, one can
use ensembling methods like [8] to train multiple DNNs at the same time; however, this
can fail in the presence of asymmetric noise. In this work, we focus on asymmetric
noise and one can simply extend the method to deal with the influence of symmetric
noise with ensemble methods.

Investigation with class-balanced batches. To check whether there exist confirmation
errors, we need to check that during the training process errors are reinforced by the
model. Moreover, to see the asymmetric noise in the pseudo labels, we need to check
that in the training phase whether FixMatch predicts a certain class of unlabeled data
into certain other classes. Thus, these require us to investigate the performance of Fix-
Match at each batch and check the pseudo labelling performance regarding asymmetric
noise in the pseudo labels. However, in [5], a batch is not necessary to contain all the
classes of training dataset and it can contain different classes with different numbers.
Therefore, the performance of pseudo labelling regarding asymmetric noise inherits
the randomness of batch composition, which makes the investigation conclusion unre-
liable.
To deal with this issue, we reconstructed the batch structure which requires each batch
to contain an equal number of images for all the classes on both labeled and unlabeled
data, called Balanced-Class (BC) batches. With such batches, we can fairly check the per-
formance of pseudo labelling in each batch howmany errors are made when the model
predicts each class and whether it tends to label a class as other certain classes causing
asymmetric noise. Note that without further introducing regularization, BC batches on
their own cannot improve the performance of FixMatch, which has indistinguishable
results without BC as shown in Sec. 5.3.
Furthermore, we leverage the reconstructed batch structure to regularize the training
process for reducing the noise in pseudo labels and improving the performance. With
the reconstructed batches, we know that the class of labeled data1 is uniformly dis-
tributed, thus we can regularize the output of labeled data with the negative entropy
loss of the prediction frequency. In this way we force the output of labeled data to be
uniformly distributed. Potentially this can regularize the asymmetric noise in the la-
beled data because the output class distribution is not likely to be uniformly distributed
in the presence of asymmetric noise. Consequently, it can reduce the asymmetric noise
in pseudo labels because the prediction on both labeled and unlabeled data uses the
same network which is unlikely to have different prediction behavior. Therefore, we
add an equal-frequency entropy regularization to the loss function, which is

l′ = l′s + λulu, (5)
l′s = ls − λefH(Exb

[f(α(xb))])

= ls + λef

c∑
j=1

{( 1
B

B∑
b=1

fj(α(xb))) log(
1

B

B∑
b=1

fj(α(xb)))},

1In fact, the class of both labeled and unlabeled data are equally distributed in reconstructed batches, but
it is unrealistic to use the prior knowledge about labels of unlabeled data. Although it is fine for ”debugging”
the training behavior of FixMatch, when aiming at improving the performance of FixMatch, we cannot use the
information about labels of unlabeled data, because it is very likely to have unbalanced classes of unlabeled
data in practice. Then it makes no sense to regularize the outputs of unlabeled data in the training phase.
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where c is the number of classes and λef is a hyperparameter. We also consider the
confidence entropy loss regularization which can avoid over-confident prediction,

l′′s = ls − λceExb
[H(f(α(xb)))]

= ls + λce
1

B

B∑
b=1

{
c∑

j=1

fj(α(xb)) log(fj(α(xb))},

l′′ = l′′s + λulu. (6)

Note that since the loss function (6) aims for avoiding over-confident predictions, it
seems to be fine to regularize the unlabeled data as well. However, we cannot do that
for the same reason as the loss function (5) which has been discussed in the footnote.
Because −H(·) is a convex function, we have the Jensens̓ inequality

−H(Exb
[f(α(xb))]) ≤ −Exb

[H(f(α(xb)))].

In other words, confidence entropy regularization can implicitly regularize the equal
frequency of the data labels. Therefore, with the same reason, we should only apply it
to the labeled data of which label distribution is under our control with augmentation.

4 Data Preprocessing and Augmentation

FixMatch requires a weak augmentation α(·) and a strong augmentation A(·). For the
weak augmentation, we randomly flip an image with probability 0.5 as [5] and translate
an image up to 12.5% with probability 0.5 2. For the strong augmentation, FixMatch
uses either RandAugment (RA) [18] or CTAugment [7] for their experiments. However,
we use RA for our experiments with the maximum magnitude 10 (same as the official
experiment setup) and 2 randomly selected operations per image.
Due to the limitation of computational resources, we examine the reproducibility of [5]
on the dataset CIFAR-10 [19]. In CIFAR-10, there are 50000 training data and 10000 testing
data. We take 5000 training data as the validation dataset. Then we use the remaining
training dataset tomake labeled and unlabeled datasets and augment both datasets into
the same target number as in [5]. After augmentation, we have 213 labeled images and
213 × 7 unlabeled images for the CIFAR-10 training dataset.

5 Experiment

In the reproducibility experiments, we re-implement FixMatch from scratch using Py-
Torch and reproduce the essential experiments in the original paper with the similar
results. We use the hyperparameters (λu = 1, η = 0.03, β = 0.9, τ = 0.95, µ = 7, B =
64, K = 220) given by [5] and focus on reproducing the performance on CIFAR-10 (Sec.
4.1 of [5]) and barely supervised learning experiments (Sec. 4.4 of [5]). Besides the early
introduced hyper-parameters, we use SGD with β = 0.9 for training the model, and the
learning rate is decay with η cos( 7πk

16K ), where K is the total time step and k is the cur-
rent time step. Each experiment takes around 68 hours on a single V100. And all the
error rates is generated from EMA (exponential moving average) of models in the SGD
training trajectory.
Then, we investigate confirmation errors of ”Match”-based SSL methods to see whether
there exists such error and asymmetric noise of pseudo labels in FixMatch with the offi-
cial experiment setup, i.e. unbalanced batches, in [5]. Next, we examine the existence
of confirmation errors and asymmetric noise for FixMatch again in a more reliable way
using re-constructed batches as introduced in Sec. 3. Furthermore, we respectively add

2Here, [5] didnʼt indicate what probability they use for the translation.
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the equal-frequency entropy regularization and confidence entropy regularization on
the labeled training data in the loss function and compare with the baseline FixMatch
without entropy regularization on the BC batches. Finally, we add asymmetric noise
to the labeled data in the training dataset and compare the performance of baseline
FixMatch and FixMatch with different entropy regularization.

5.1 Reproducibility
CIFAR-10. We reproduced the experiments on CIFAR-10 with 40, 250, 4000 labeled data
and 5000 validation samples as the official implementation of FixMatch3. But due to the
limitation of computational resources, we didnʼt reproduce 5 ”folds”. Thus, our result
based on 1 fold doesnʼt have the standard deviation. Our model uses the Wide ResNet-
28-2 [20] with leaky ReLU activation function. Our results are shown in Table 1 which is
comparable to the performance in [5].

Table 1. Error rates for CIFAR-10 on test data. FixMatch (RA) uses RandAugment [18]. BC means
that the experiment uses balanced-class batches as introduced in Sec. 3. We use the experiment
with BC and RA as a comparison baseline results for the investigation in Sec. 5.3.

CIFAR-10
Method 40 labels 250 labels 4000 labels

Official FixMatch (RA) 13.81± 3.37 5.07± 0.65 4.26± 0.05
Ours (RA) 10.04 5.29 4.36

Barely supervised learning. We also reproduce the one example per class experiment.
[5] hypothesize that the repressiveness of the chosen labeled data influences the results
significantly. Since there are only one/few samples per class, this hypothesis is reason-
able intuitively. Then, Sohn et al.5 categorized the training dataset into eight levels of
“prototypicality”, i.e., representative of the underlying class and then ordered the train-
ing samples by their “prototypicality”. With the same hyperparameters, the model is
trainedwith 10 providedmost representative labeled data under RandomAugment. The
accuracy is 84.41% compared with the official implementation: a median of 78% accu-
racy and a maximum of 84% accuracy.

5.2 Ablation studies
The ablation studies are based on FixMatch with 250 labels using CTAugment.

Study for Confidence threshold. We performance the ablation studies for confidence
threshold. Due to the limited computation resource, we hypothesize that experiments
with lower confidence threshold will achieve worse performance and explore more val-
ues around the optimal value of confidence threshold, 0.95 chosen by the authors. Thus
our examined threshold value is between 0.7 to 0.98. As shown in Figure1 (c), the error
rate is between 6.54% and 6.19% and the highest performance is under the threshold
0.98.

Ratio of unlabeled data. WeperformFixMatch under different ratios of unlabeled data.
Figure1 (d) shows the error rate which is decreasing when the ratio of unlabeled data
is higher. A significant increase of the accuracy happens using a large number of unla-
beled data. The results show the consistency with the finding in the original paper.

3The official implementation: https://github.com/google-research/fixmatch. From the reproducibility and read-
ability, the official code is not a valid submission.
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Figure 1. Plots of various ablation studies on FixMatch compared with those reported in the paper.
(a) Varying the confidence threshold for pseudo-labels in the original paper. (b) Varying the ratio
of unlabled data (µ) in the original paper. (c)Varying the confidence threshold for pseudo-labels
based on our implementation. (d) Varying the ratio of unlabled data (µ) based on our implemen-
tation.

5.3 Investigation on confirmation errors and asymmetric noisy (pseudo) labels
In this section, we show the investigation on confirmation errors and asymmetric noise
in labels and pseudo labels and whether the entropy regularization in loss functions
(5) and (6) can deal with them and improve the performance of FixMatch. The training
dataset contains 150 labeled data before augmentation and each BC batch in the training
phase contains images with uniformly distributed classes.

Existence of asymmetric noise and confirmation errors in pseudo labels. We examine
the existence of asymmetric noise in pseudo labels by checking the confusionmatrix of
the prediction of unlabeled data in different batches. Top figures of Figure 2 show the
confusionmatrices in the experimentswithout using BC batches. Wefind that asymmet-
ric noise appears in a randommanner, which is as our expectation as analyzed in Sec. 3.
The stochastic behavior is inherited from the randomness of batch composition. Next,
we evaluate the asymmetric noise with BC batches, which is amore reliable way asmen-
tioned in Sec. 3. We found that there exists consistent asymmetric noise, which leads
to the confirmation errors, i.e., the model always tends to wrongly predict certain im-
ages into certain classes as shown in bottom figures of Figure 2. Moreover, the accuracy
of our implementation is 93.6% without BC batches and 93.8% with BC batches, which
shows that using BC batches has rarely influence on the model performance compared
with the one without BC batches.

Equal-frequency and confidence entropy regularization on the labeled data. Due to
limitation of the computational resources, we didnʼt explicitly run grid search for the
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Figure 2. Confusion matrices of the confident prediction on unlabeled data with different batch
structures. Confusion matrices are plotted every 100 training steps in the 1st epoch (1024 steps).
The topmatrices are from the experiments without BC, and the bottommatrices are the ones with
BC. The red areas represent the asymmetric noise in the pseudo labels. The bottommatrices have
a stable and smooth transitionwhile the topmatrices have a fluctuating transition in the red areas.
The yellow color represents larger value and the darker green color represents smaller values.

hyperparameters in the Equal-Frequency (EF) loss function (5) and Confidence-Entropy
(CE) loss function (6). Instead, we found that for the baseline method the training loss
is around 0.2. We then compute the equal-frequency entropy loss for the ideal scenario,
equal frequency for all classes, which is 0.1 × ln 0.1 ≈ 2. We decide to try the hyper-
parameter λce, λef ≤ 0.1 to avoid making the entropy regularization loss dominate the
loss value. Then, we do a hyper-parameter search for the loss function (5) and (6). For
all experiments in this experiment, we used cosine function decay for the parameters
λce and λeq, which starts with value 1 and ends with value 0 in the training phase. We
find that using the loss function (6) can achieve a better accuracy performance 94.01%.
Moreover, as an advantage, using the confidence entropy regularization can reduce the
asymmetric noise as shown in the bottom confusion matrices of Figure 3. As for the
equal-frequency entropy regularization, it has a better accuracy, 93.85%. Moreover, the
equal-frequency entropy regularization can penalize the asymmetric noise, which may
transform it into symmetric noise as shown in the middle confusion matrices of Figure
3. Note that there are plenty of ways to deal with symmetric noise, which is much easier
to handle.

Table 2. Error rates on testing data using the loss function (5) and (6). The experiments use 150
labeled data and CTA for training. The first column is the results without BC batch and the second
column is the baseline result without using EF or CE regularization.

Entropy regularization noBC+Null BC+Null BC+CE BC+EF
λce/λef 0 0 0.1 0.1
Error rate 6.4 6.2 5.99 6.15

Equal-frequency and confidence entropy regularization on the labeled data containing
asymmetric noise. In this experiment, we use RA data augmentation and manually
add asymmetric noise to the labeled data in the training dataset to compare how Fix-
Match with different loss functions performs in the presence of asymmetric noise in
the labeled data. We respectively select 3 images from class 0 and class 1 in the vali-
dation dataset. Then, for the labeled data in the training dataset, we keep the labels
unchanged and replace 3 images in class 2 with the 3 images in class 0. Similarly we
replace 3 images in class 3 with the 3 images in class 1. In this way, the only difference
with the previous experiments in this section is that our final validation dataset has 4994
images and the labeled data in the training dataset contain asymmetric noise. Table 3
shows error rates on 6 runs with different random seeds. In the presence of asymmetric
noise in labeled training data, all proposed methods perform better than the baseline
method, in which FixMatchwith BC batches decreases the average error rate from 8.6 to
7.37, and the combination of confidence-entropy regularization and BC batches further
lowers the error rate to 6.98.
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Figure 3. Confusion matrices of the confident prediction on unlabeled data with BC batches using
loss functions (4) without entropy regularization at top, (5) with equal-frequencey entropy regu-
larization in the middle, and (6) with confidence entropy regularization at bottom. Confusion
matrices are plotted every 100 training steps in the 1st epoch (1024 steps). The red areas represent
the asymmetric/symmetric noise in the pseudo labels. The yellow color represents larger value
and the darker green color represents smaller values.

Table 3. Error rates of FixMatch methods in the presence of asymmetric noise in labeled training
data augmented by RA: The baseline method (λ = 0); The method (λ = 0) with BC batches; the
method with confidence-entropy regularization (λce = 0.1) and BC batches; the method with
equal-frequency regularization (λef = 0.1) and BC batches.

λ = 0(noBC) λ = 0(BC) λef = 0.1(BC) λce = 0.1(BC)
Error rates on test data 8.6± 2.81 7.37± 2.05 7.95± 2.2 6.98± 1.83

6 Challenges

It is not clear how many steps are there in each epoch. First the paper only states the
total steps K = 220 and the composition of one batch (B labeled samples and µB un-
labeled samples). And the official code indicates there are 216 labeled images observed
by the model per epoch and a total of 226 images observed which suggests that there
are 212 updates per epoch and 219 updates in total. And this is not consistent with the
total update steps K stated in the paper. When performing weak augmentations to the
input data, the probability for randomly translating images is not specified. And it also
remains unclear the ʻ5 different foldsʼ mentioned in the paper, we are guessing it is a
kind of cross validation while there is not too much evidence supporting this neither in
the paper nor in the official code.
The paper doesnʼt contain sufficient details to reproduce all the experiments. Thus, it
is necessary to look for details about reproducing the experiments in the official code.
We have not optimized or tuned the hyperparameters, and all the hyperparameters are
the same as those mentioned in the paper. Compared to the average error rates in the
original paper, the reproduced results have a reasonable good performance on a larger
number of labeled data (4000/250 labels) and better but also reasonable performance
on fewer labeled data (40/10 labels) since the variance of error rates over 5 different
folds for CIFAR-10 with 40 labels is 3.35%. Moreover, to compare with the results of
ablation studies in the original paper, we also implement CTAugment, which supports
a learnable magnitude. While we failed to confirm the result that CTAugment behaves
better than RandAugment on CIFAR-10. We hypothetically guess this is because it could
affect the consistency regularization because of different levels of distortions controlled
by magnitude.
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7 Conclusion

In this work, we study and reimplement FixMatch from scratch. We reproduced essen-
tial experiments, included themodel performance onCIFAR 10, barely supervised learn-
ing, and ablation studies. Experimental results show that our implementation achieves
similar performance as the original FixMatch results, which supports that FixMatch
outperforms semi-superivesed learning benchmarks and that the author s̓ choices with
respect to those ablations were experimentally sound. We also confirmed the existence
of confirmation errors in pseudo labels by checking the prediction confusion matrix of
unlabeled data in different training stages. We adapted the training batch structure to
be composed of equal number of images in each class, which enable us to stably and re-
liably check the the asymmetric noise in the training phase. Based on the reconstructed
batch structure, we used the equal-frequency and confidence entropy regularization in
the loss function, and theoretically show their relation. The experiments indicate that
these entropy regularization can reduce the asymmetric noise in pseudo labels and im-
proves the performance of FixMatch in the presence of training labels with asymmetric
noise.

8 Ethical consideration

The bias in the collected dataset is a serious problem when applying machine learning
methods to the real-world scenarios. For example, applying machine learning methods
to making automated decision-making systems for criminal prediction, university ad-
mission or recruitment. In these cases, we may very likely collect a dataset containing
certain bias due to the historical reason or selection bias in the data collection process.
If a model cannot deal with such bias in the dataset, it may inherit in the model by fo-
cusing on the unrelated or wrong relations in the dataset. Consequently, the model can
make biased decision which can disadvantage a certain group of people and may even
diminish this group in the society.
Unfortunately, FixMatch cannot only be influenced by the noise in the label of a training
dataset, but also it canmake confirmation errors causing a biasedmodel even when the
dataset itself is unbiased. To deal with such issue, this work focuses on the asymmetric
noise in the data labels and pseudo labels, which can lead to severe confirmation error
and the biased model. And then, we applied different methods to reduce such noise in
pseudo labels and reduce its impact on the model.
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