ICCG 2018, Tehran, February 27, 2018

Kinetic Nearest Neighbor Search in Black-Box Model

Bahram Sadeghi Bigham*

Abstract

Proximity problems is a class of important problems
which involve estimation of distances between geomet-
ric objects. The nearest neighbor search which is a sub-
set of proximity problems, arises in numerous fields of
applications, including Pattern Recognition, Statistical
classification, Computer vision and etc. In this study, a
nearest neighbor search is presented to move points in
the plane, while query point is static.

The proposed method works in the black-box K DS
model, in which the points location received at regu-
lar time steps while at the same time, an upper bound
dmaz 18 known on the maximum displacement of any
point at each time step. In this paper, a new algorithm
is presented for kinetic nearest neighbor search problem
in the black-box model, under assumptions on the dis-
tribution of the moving point set P. It has been shown
how the kinetic nearest neighbor will be updated at each
time step in O(kAylogn) amortized time, where Ay, is
the k-spread of a point set P.

Key words: Computational Geometry, Black Box
Model, Kinetic, Nearest Neighbor.

1 Introduction

In recent years, there has been a growing amount of
research dealing with moving, or kinetic, data. Algo-
rithms dealing with objects in motion traditionally dis-
cretized time and recompute the structure of interest at
every time step from scratch. This can be wasteful, es-
pecially if time steps are small. Since objects will move
more slightly, and the structure may not change at all.
Ideally an object receives attention if and only if, its new
location triggers an actual change in the structure. A
basic assumption in the Kinetic Data Structure (KDS),
which is introduced by Basch et al. [1], is that the ob-
ject trajectories are known. This assumption severely
limits the applications of KDS framework.

*Corresponding author: Department of Computer Science and
Information Technology, Institute for Advanced Studies in Ba-
sic Sciences (IASBS), Prof. Yousef Sobouti Blvd., Zanjan, Iran.
b_sadeghi_bQiasbs.ac.ir

TDepartment of Computer Science and Information Technol-
ogy, Institute for Advanced Studies in Basic Sciences (IASBS),
Prof. Yousef Sobouti Blvd., Zanjan, Iran. mnezami@gmail.com

tDepartment of Computer Science and Information Technol-
ogy, Alzahra University, Tehran Province, Tehran, Vanak Village
Street, eskandari@alzahra.ac.ir

63

Maryam Nezami T

Marziyeh Eskandarit

Sometimes in an online manner, the object locations
are available only at time steps. So when future
tracking moving object is not available, the basic
assumption in the KDS model is not always valid (refer
to surveys by Guibas for more information about KDSs
[5, 6]). Certainly, there is a need for a hybrid model,
which combines ideas from the KDS model with a
traditional time-slicing approach. De Berge et al. [2]
introduced kinetic data structures in black-box model
with fewer restrictions, instead of knowing knowledge
of the trajectories. They only assume that they know
upper bounds on objects’ speed and can compute their
positions at regular time steps. They develop KDSs
in the black-box model that consider under certain
assumptions on the trajectories which is proved to be
more efficient than recomputing the structure from
scratch. Additionally, in recent years, some problems
(e.g., convex hull, 2-center) have been studied in black
box model [2, 3].

Proximity problems is a class of important problems
in computational geometry which involve estimation
of distances between geometric objects. The nearest
neighbor search problem arises in numerous fields of
applications, including Pattern Recognition, Statistical
classification, Computer vision and etc.

In this paper, a black-box KDSs has been studied to

find the nearest neighbor in a set P of n points moving
to a static query point ¢ in the plane. There is a need
to make assumptions on the point movements and time
steps to obtain proved efficient solutions. Time steps
should be small enough to have coherency between the
objects’ positions in consecutive time steps. Otherwise,
there is no better way than recomputing the structure
from scratch. Also, it has been assumed that in most
of our results that P is fairly distributed at each time
step.
In the following, firstly, the black-box model which was
introduced by de Berg et al. [2] and the concept of
k-spread will be described. Furthermore, an algorithm
that updates the nearest neighbor search at each time
step in O(kAglogn) amortized time, where Ay is the
k-spread of a point set P will be presented.

The Back-Box model: Let P be a set of moving
points in plane. In black-box model, the exact motions
of the points are unknown and a new location p(t) for
each point p € P is available at regular time steps t =

1st Iranian Conference on Computational Geometry

t1,ta,ts,.... The goal is to update the nearest neighbor
to ¢ at each time step.

For any point p € P, it is assumed a maximum dis-
placement d,,,, that indicates how far the point can
move between two consecutive time steps. For a (static)
set S of points and a point s € S, let NNy(s,.S) denote
the k-th nearest neighbor of s in S\{s}. Let dist(p1,p2)
denotes the Euclidean distance between two points pq
and po, and

mindisty(S) = mingcgdist(s, NN(s.9)).

dmaz 18 assumed the most

At any time step ft,
mindisty(P(t)).
Displacement Assumption: There is a maximum
displacement d,,q., such that at any time step ¢;:

o dar < mindisti(P(t;)), and
o dist(p(t;),p(ti+1)) < dmas for each point p € P.

This means that there are no more than k points within
a distance d,,q, of each other.

The k-spread of a point set: In this model, a
conception called k-spread is utilized, as introduced
by Erickson [4] for distribution of a set of point. The
k-spread, Ay of a set P of static points is defined as:

diam(P)

Ap(P)= —————
k(P) mindisty(P)

in which diam(P) is diameter of P.

Lemma 1 Let P be a set of points and R be a region
in the plane such that diam(R) < mindisty(P), then R
contains at most k points of P [2].

2 Maintaining the nearest neighbor search

Let P be a set of n moving points in the plane and ¢
be static query point that adheres to the Displacement
Assumption with parameters k and d,,4,. The goal is to
compute the nearest neighbor to ¢ from moving points P
at regular time steps t = ¢1,t9,¢3,---. Let NNS(P(t))
denotes the nearest neighbor in P(t):= {p(¢) : p € P} to
q. NNS(t) is used as a shorthand for NNS(P(t)).

The maintenance of some structures always depends on
all the points and the others are defined by only a sub-
set of the points. The nearest neighbor search is latter
type; so as previously mentioned, the algorithm does
not need to ask for all new positions at every time step.
It may ignore some points, if the new locations of these
points cannot change the structure. Thus, an efficient
algorithm is potentially exist. A subset Q(t) C P(¢) is
introduced in this paper, so that NN.S(Q(¢))= NNS(¢).
A point in P(t) is called active if it is part of Q(¢) at
time step ¢; and the points that are not in Q(t) are

called inactive. NNS(t) can be computed using only
points from Q. If @ is much smaller than P, this may
be much faster than computing NNS(t) directly. In a
kinetic setting, knowledge from previous time steps can
be used to find @ quickly. The coherency between struc-
tures at successive time steps are to find @ quickly at
each time step. To this end, a bound can be computed
for each point, on the number of time steps that must
pass before it can become part of Q.

Let P be a set of moving points and ¢ be a time step.
A function 7y ns(p,t) is called an inactivity function if
the point p is inactive at any time ¢; with t < ¢; <
t+1nns(p,t).

For the nearest neighbor search problem, it is defined

dist(p,q) — dist(q, NNS(t))
Qdmam

]

TNNs(pt) = |

where dist(p1,p2) denotes the minimum Euclidean dis-
tance p; to po. The following lemma shows that this is
a valid inactivity function.

Lemma 2 For any point p € P and any time step t,
p(t;) is inactive at any time step t; with t < t; < t +
TNNs(P,t)-

Proof. In the black-box model, each point p can move
at most d,,q. per time step. This includes the near-
est neighbor of ¢, therefore the distance between a
point p and ¢ can decrease by at most 2d,,.. per
time step. Also, the distance between NNS(t) and ¢
can increase by at most 2d,,., in each time step; as
dist(p,q) — dist(q, NNS(t)) can decrease by at most
2d,,q2 per time step. As a result, p cannot be active
point at any time step ¢; with ¢ < t; < t+7yns(p,t). O

For each point p € P, a time stamp 7T}, maintained that
indicates the first time in the future at which p can be
active. At the time step ¢t = T}, we say that the time
stamp of p has expired.

The general algorithm thus works as follows: NN S(tg)
initially is computed by scratch. Then each point
p € P enter in a queue with the time stamp T, =
to+7nns(p,t)+1 asits key. At each time step ¢, the set
Q(t) of all points with key ¢ retrieved from the queue.
Then NN S(Q(t)) is computed and, hence, NN S(t). Fi-
nally each point p € Q(t) reinserted into the queue with
its new time stamp T, =t + 7nns(p,t) + 1.

To implement this algorithm, an array A is used where
Alt;] contains the points which time stamps expire at
time t;. To restrict the amount of storage, an array
AJ0---n — 1] is used with n entries, where A[i] stores
all points with time stamp ¢ = T}, mod n. The time
stamps are bounded to be at most n steps. This ap-
proach enables us to add and remove points from the
queue in O(1) time per point as opposed to O(logn)
with a standard priority queue structure. The proposed

64

ICCG 2018, Tehran, February 27, 2018

approach is made explicit in Algorithm 1. Note that the
algorithm needs to know only d,,q. to work properly
and it does not need to know bounds on the k-spread.

Algorithm 1 UPDATENNS

Q(t) < set of points stored in At]
Compute NNS(Q(t)) and set NNS(P(t)) <«
NNS(Q()
for each p € Q(t) do

compute Ty ns(p,t)

Add p to A[t + min(txys(p,t) + 1,n) mod n]
end for
t+ (t+1) modn

It is worth mentioning that how can compute NN S(t)
and 7ynys. Computing NNS(Q(t)) can be done by
nearest neighbor search algorithm at static mode in
|Q(¢)| time and clearly computing 7n s is done in O(1)
time, so the time to update algorithm 1 at time step ¢,
depends on the size of Q(t). In the worst case, all points
may expire in a single time step, but when the k-spread
of P is low, it is possible to show that on average only
a small number of points expire.

Lemma 3 At each time step t, UPDATENNS up-
dates the nearest neighbor in P to q in O(|Q(¢)|) time.

The number of points that can expire in a single time
step -the size of Q(t)- can be bounded by amortized
analysis using Yy nys(P) as a parameter, which will de-
fine a bound on the maximum number of points p € P
at any time ¢ which 7n g has the same value.

Lemma 4 The number of points p € P for which
TNNs (D, t) = @ is bounded by ywns(P) = O(kAg) for
any 0 <1< n.

Proof. Let G; denotes the set of points p € P for which
TnNs(p,t) = i, according to the definition Ty ns(p,t)
for any point p € P can conclude the following state-
ment:

i 2dmar < dist(p,q) —dist(q, NNS(t)) < (i+1)-2dmax

So, the number of points which distance
dist(p,q) — dist(q, NNS(t)) is between i - 2dq40
and (i + 1) - 2d;q should be bounded. The points in
G; reside in area C that which are centered at the same
point ¢, but differ in radius length 2d,,., as illustrated
in Figure 1. Now consider overlaying this area with an
axis-aligned grid G of which each cell has edge length
mindisty(P). From Lemma 1, it is clear that each cell
contains O(k) points. This region C' can be subdivided
into four axis aligned rectangles R,, R,, Rs and R,
with edge lengths at most 2d;,.. and dam(P) (see
Figure 2). Firstly, the maximum number of cells in
R,, are computed. From the definition of the k-spread

65

and the Displacement Assumption, it is obvious that
each rectangle of R, intersects at most O(Ay) cells of
this grid and similar argument can be made for R,,, Ry
and R, and so, it follows that R = R,, U R; U R, U R,
contains O(Ayg) cells of this grid. Then, according
the areas defined in Figure 3, should be fixed out the
maximum number of cells in C' is less than R.

Let N¢ denotes the maximum number of cells of C
(and similarly for other regions). The areas of rpe, Tse,
Tnw and T4, are pink regions, Cpe, Cse, Cnw and Cgy are
yellow regions and red regions in Figure 3 are sje, Sse,
Snw and Sg. In the following, we define:

Ne = NR+Nc7m +Ncne +Ncse +Ncsw _Nrnw _Nrsw
_N"‘se - Nrne - Nsnw - Nssw - Nsse - Nsne'

It is clear that the area of c¢,,, is less than the area
of rpy; therefore N, < N, . . Similarly it can be seen
that N.,. < N,,,., Ne,, < N,,, and N, < N,_, . So,
according to statement , the maximum number of cells
in C is less than R. As a result, C' contains O(Ay)
cells. As already mentioned, each cell contains O(k)

points from P, so set G; contains O(kAg) points. O

2 tl!:I'I'I.f'I!-!

Figure 1: The area of C include set of points p € P
which Tnns(p,t) =1

Figure 2: Rectangles R,, Rs, R, and R,

1st Iranian Conference on Computational Geometry

Figure 3: The areas of rpu, Tne, Tsw a0d Tse, Snw, Snes
Ssw and Sse, Cnuws Cney Csw and Cge

In the worst case, all points will expire in a single
time step. However, using an amortization argument
and Lemma 4 it can be shown that on average, only
O(kAj logn) point will expire in each time step.

Lemma 5 If the number of points p(t) € P(t) with
TNNs (D, t, P) =i is at most yyns(P) for any 0 < i <
n and any t, then on average only O(ynys(P)logn)
points expire per time step [2].

From Lemma 3 and 5 the following theorem can be
concluded:

Theorem 6 Under the Displacement Assumption, the
nearest meighbor in a set P of n points moving to
static query point q in the plane, can be maintained in
the black-box model in O(kAylogn) amortized time per
time step, where Ay is the mazimum k-spread of P at
any time.

3 Conclusion

In this paper, an algorithm is presented to maintain the
nearest neighbor in a set points moving to static query
point in the KDS black-box model. The algorithm does
not require knowledge of k or Ag. It only needs to know
dmaz, the maximum displacement of any point in one
time step and also does not need to know the point tra-
jectories. It is also shown that the proposed algorithm
can update nearest neighbor in O(kAy logn) amortized
time at each time step. Interesting open problems arise
when someone talks about time bound in worst-case
rather than amortized.

References

[1] J. Basch, L. J. Guibas and J. Hershenberger, Data
structure for mobile Data, Journal of algorithms,
31(1): 1-28, 1999.

66

2]

M. de Berg, M. Roeloffzen and B. Speckmann,
Kinetic convex hulls, delaunay triangulations and
connectivity structures in the black-box model,
Journal of Computational Geometry, 3 (1), 222-
249, 2012.

M. de Berg, M. Roeloffzen and B. Speckmann, Ki-
netic 2-center in the black-boxr model, Proceedings
of the 29th annual symposium on Symposium on

computational geometry, 145-154, 2013.

J. Erickson, Dense point sets have sparse delaunay
triangulations or ... but not too nasty, Discrete and
Computational Geometry, Volume 33, Issue 1, pp
83115, 2005.

L.J. Guibas, Kinetic data structures a state-ofthe-
art report, In Proc. 3rd Workshop Algorithmic
Found. Robot., pages 191-209, 1998.

L.J. Guibas. Kinetic data structures. In: D. Mehta
and S. Sahni, Handbook of Data Structures and Ap-
plications, Chapman and Hall/CRC, 2004.

Agarwal, Pankaj K and Kaplan, Haim and Sharir,
Micha. Kinetic and dynamic data structures for
closest pair and all nearest neighbors, ACM Trans-
actions on Algorithms (TALG), Volume 5 Issue 1,
Article No. 4, 2008.

Rahmati, Zahed and Abam, Mohammad Ali and
King, Valerie and Wohitesides,

Alireza, A simple, faster method for kinetic proz-

Sue and Zarei,

imity problems, Journal of Computational Geome-
try: Theory and Applications, Volume 48, Issue 4,
342-359, 2015.

