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Abstract 7 

The dynamical nucleation of martensite in polycrystals is simulated by means of 8 

Lagrange-Rayleigh dynamics with Landau energetics, which is capable of obtaining 9 

the local stress as a result of the interplay of the potential of transformation and 10 

external loadings. By monitoring the spatio-temporal distribution of the strain in 11 

response to the local stress, we demonstrate that the postcursors, high angle grain 12 

boundaries and triple junctions act as favorable heterogeneous nucleation sites 13 

corresponding to different loading and cooling conditions, and predict the phase 14 

diagram of the nucleation mode of martensite. 15 
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1. Introduction	20 

A preference for heterogeneous nucleation in Martensitic Transformations (MT) has 21 

been evidenced by a wide body of experimental explorations on steels [1-3], 22 

shape-memory alloys [4-6], ceramics [7-8], etc. The heterogeneous processes of 23 

nucleation and subsequent growth at various defects present distinct microstructure 24 

[9-10], diverse transformation pathways [11-12], and hence give rise to different 25 

properties of materials [13-14]. To understand the mechanisms underlying the observed 26 

phenomena, different models of martensitic nucleation have been developed for 27 

different defects like dislocations [15-21] and grain boundaries [22-31] in perspectives 28 

of thermodynamics, kinetics and crystal lattice dynamics. These models are at least 29 
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classified into two categories considering the classical and non-classical nucleation 1 

paths [32-33]. The models describing classical nucleation paths believe that the 2 

embryos of martensites are formed via the dislocation dissociation mechanism and 3 

thereafter increase in size by motions of interfaces. During these processes, the nuclei 4 

have a fixed structure and/or the same composition as those of fully formed martensite 5 

variants. This is the case such that the driving force and kinetics of martensitic 6 

nucleation can be discerned by evaluating the time evolution of individual energy 7 

contributions from  misfit elastic energy, chemical energy in bulk 8 

(composition-dependent lattice stability) and surface energy. Pioneered by Cohen [15], 9 

Kaufman [16], Christian [17], and consolidated by Olson [18, 32-35] et al., the model 10 

for classical paths has been developed into a self-consistent and unified interpretation 11 

to heterogeneous martensitic nucleation on a basis of dislocation theories, 12 

thermodynamics and crystallography of martensitic transformation, and it has been 13 

widely applied to the martensite nucleation in steels and a few shape memory alloys, 14 

where the dislocation plays the primary role.  15 

In contrast, the models for non-classical martensitic nucleation paths describe a 16 

continuous change in structure and/or composition in a finite temperature region. 17 

Among the most prominent is the dynamical nucleation model [36], where the 18 

Landau-type free energy, incorporating physical nonlinearity describing the symmetry 19 

breaking in MT and nonlocal terms accounting for the long-range interactions of elastic 20 

oscillators, is formulated in a frame of Lagrangian-Rayleigh (LR) or Bales-Gooding 21 

(BG) [37-38] dynamics to present a physics scenario of ‘elastic solitary wave’ for 22 

martensitic nucleation [37-45]. Different from the classical models, the dynamical 23 

nucleation method is able to investigate the complete process of martensitic interface 24 

motion and interpret the phenomena at early stage of MT such as the formation of 25 

tweeds, dynamical twinning, autocatalysis, etc. Thus, it is helpful and has persistently 26 

been used in studying the homogeneous coherent nucleation of improper and weak 27 

proper MTs in shape memory alloys, which arise from lattice softening and/or weak 28 

distortion near the critical point. Meanwhile, further uses of the model towards 29 

studying heterogeneous nucleation in weak proper MT have been performed. The 30 
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fundamental physical picture of heterogeneous dynamical nucleation model is depicted 1 

as follows: The interaction of the defects with the material allows a spatiotemporally 2 

varying potential of phase transformation and gives rise to local stress field in the 3 

correct tensor expression and magnitude to exert influence on MT [46]. Clapp et al. [39] 4 

incorporated for the first time the Ginzburg-Landau (GL) phenomenological theory to 5 

determine the ‘spinodal’ strains during martensite nucleation by introducing the 6 

interaction of a single ‘misfit’ planar defect with the host. They denominated this type 7 

of nucleation as ‘localized soft mode’. Later, the initial concept of heterogeneous 8 

dynamical nucleation was further consolidated with the efforts of Cao [40-41], Reid 9 

[36, 43-45], Chu [47], van Zyl [48-49] and Gröger [50] et al. Based on the dynamical 10 

twinning [37], Reid et al. [43] extensively analyzed the dynamical nucleation with a 11 

predefined local strain field (as an analog of heterogeneous nucleus) along with 12 

generalized boundary conditions. Their results demonstrated that the variation of 13 

morphology in MT, e.g. the presence of twin or single-domain martensite, depends on 14 

the quenching temperature and dissipation, while it is independent of the boundary 15 

conditions. Afterwards, van Zyl [48-49] et al. inferred that the surface nucleation, a 16 

mode by which the intrinsic inhomogeneous strain field coupled with the boundaries 17 

leads to a lower saddle point on the transformation energy surface, would always be 18 

preferred over homogeneous bulk nucleation. Cao [40-41] introduced a planar defect 19 

with a predefined stress field (instead of aforementioned predefined strain field) and 20 

ascertained the critical stresses and the effective temperature for the onset of MT in the 21 

square-to-rectangular ferroelastic materials. A similar formalism of heterogeneous 22 

nucleation was also presented by Gooding et al. [42], yet the latter focused on the 23 

concentration of the local strain at the defect arising from undercooling. It was further 24 

applied by Reid et al. [45] to the Eshelby’s inclusion problem where the functional 25 

forms or the values of the local stress field due to the presence of the inclusion become 26 

available. 27 

Other than the aforementioned works which focus on the MT induced by the single 28 

planar defect with a predefined stress or strain, few works of heterogeneous dynamical 29 

nucleation have been applied to grain boundary with more complicated geometry of 30 
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defects. It is in comparison with the great achievements of modern phase-field methods 1 

on this topic [22-31]. The phase-field models have advantages to represent the perfect 2 

martensitic microstructure by taking a mutually advantageous conjunction of interface 3 

motion and clarified energy contributions in models for classical paths and the 4 

continuously varying order parameters in models for non-classical paths, which as a 5 

whole describe a hybrid transformation path. However, the over-damped dynamics in 6 

phase field method encounters difficulties in accounting for the correct dynamic 7 

behaviors for the formation of precursors [51] and the near sound velocity of interface 8 

propagation in weak proper MT [38]. This is due to the fact that these behaviors are the 9 

consequence of competition among inertia, damping and undercooling, as well as the 10 

minimization of kinetic energy [38]. The interplaying of these effects in a strained 11 

system undergoing weak first-order MT reflects the under-damped dynamics of elastic 12 

oscillators [36]. Therefore, the development of the complete dynamical nucleation 13 

model in polycrystals remains open. Recently, Ahluwalia et al. [52] extended strain 14 

based Landau energetics and LR dynamics to investigate the grain size effects on the 15 

MT in nano-polycrystalline shape memory alloys, especially when the MT is inhibited 16 

around grain boundaries in nano-polycrystals. However, the phenomenon where the 17 

alignment of martensite variants rotate at certain angles with respect to the grain 18 

orientations in individual grains, generally observed by microscopy, is unnoticeable in 19 

their simulated morphology. This is because they adopted global stresses in the 20 

dissipative force balance equation which led to the mechanical equilibrium of global 21 

stresses rather than local transformation stresses. Therefore, we modified the existing 22 

polycrystalline MT model by replacing the global stresses with local transformation 23 

stresses and then rewrote them in global variables, i.e. displacement gradients in global 24 

coordinates [53]. The updated model is not only consistent with kinematic 25 

compatibility in Phenomenological Theory of Martensite Crystallography (PTMC), but 26 

also has the ability to explicitly explore the spatiotemporal distribution of local stress 27 

during the MT. It also allows us to generalize the conceptual dynamical nucleation 28 

theory within our updated model to simulate the heterogeneous martensitic nucleation 29 

in polycrystals. The present simulations aim at extending the application of dynamical 30 
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nucleation model and at gaining an in-depth understanding of the collective 1 

(competitive and/or cooperative) effects of the martensitic nucleation and subsequent 2 

growth assisted by grain boundaries and external loadings following the non-classical 3 

transformation paths. In turn, it allows evaluating the ability of different 4 

defects/positions as martensitic nucleation sites originating from the interaction of 5 

intrinsic polycrystalline defects with the applied loading in a weak proper MT. 6 

2. Model	and	Numerical	Implementation	7 

 The dynamical nucleation of MT induced by grain boundary in polycrystals can 8 

be achieved once the predefined planar defects in Refs. [40-42] are specified as the 9 

grain boundaries and triple junctions. The grain boundaries and triple junctions can 10 

perceive the applied stress and feel back to couple with Landau transformation 11 

potential, which leads to a local stress field and modifies the transformation 12 

temperature. Similar to Cao’s work on single crystal [40], we assume that 1) the 13 

inhomogeneous distribution of stress is produced by defects, specifically in this work, 14 

the local stress fields around the grain boundaries and triple junctions, rather than the 15 

defects themselves; 2) the interface between austenite and martensite is coherent which 16 

is imposed by the compatibility condition; 3) the displacement at grain boundaries is 17 

continuous as required by the displacement-based LR dynamics [38]. It is inferred that 18 

martensitic nucleation against free surfaces and incoherent grain boundaries is not 19 

taken into consideration. It is also noted that we are not intending to obtain various 20 

morphologies by tuning the damping parameters as what conventional dynamical 21 

nucleation modeling did, rather, we focus on how intrinsic MT potential involving 22 

grain boundaries and applied stresses leads to different nucleation modes or sites. 23 

There are two critical issues to be addressed in our Landau modeling of the 24 

dynamical nucleation in polycrystals: the Landau free energy in the expansion of order 25 

parameters and the deterministic dynamic equations. In the single crystal model, 26 

non-linear Landau free energy is developed based on the linearized strain tensor with 27 

the component  , ,

1

2ij i j j ie u u  , where iu  denotes the local displacement, and 28 
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,i j i ju u x    is the displacement gradient in the intragranular coordinates. The 1 

symmetry-adapted linear strains ke , written as the linear combination of the strain 2 

components, are selected as the Order Parameters (OP). Now we consider a MT in 3 

polycrystals. The degrees of freedom in a system undergoing MT are the global 4 

displacements, iU , and they should be connected with the OP strains by introducing an 5 

additional variable ( , )t r


 describing the grain orientation field. As such, the local 6 

strains and symmetry-adapted OP strains are the functional of the global displacement 7 

gradients, viz.  ,ij I Je U  and  ,k I Je U . For the sake of clarity, the variables in global 8 

coordinates are denoted by capital letters while those in local coordinates by lowercase. 9 

The specific expressions of free energy and dynamic equations for the simulation of 10 

2D square-to-rectangular martensitic nucleation are detailed as follows. 11 

2.1. Landau	free	energy	12 

The free energy functional of the system is written as the spatial integral of free 13 

energy density f,  14 

 elastic grain loadF fd d f f f    r r
 

,   ……(1) 15 

while f is intuitively defined as the summation of three energy density contributions: 16 

the transformation energy density in elasticity felastic, the energy of a polycrystalline 17 

microstructure fgrain, and the energy due to the applied load fload.  18 

In our model, the grain orientation field of polycrystals is described by the 19 

conventional phase field method. It defines the spatially distributed grain orientation20 

 ,i t   r


with respect to a set of arbitrarily selected intragranular coordinates which 21 

should serve as the referential global coordinates. The grain orientation field is 22 

expressed as  23 
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where,  1 2, ... Q   
 is a vectorial indicator, by which a given grain orientation 2 

corresponds to one component ηi being positive nonzero while the remaining 3 

components are equal to zero [52]. The energy contribution fgrain quantifies the spatial 4 

inhomogeneity in crystal orientation and can be written as  5 

 22 3 4 2 232 4

1 1 12 3 4 2 2

Q Q Q Q
grainc

grain i i i i j i
i i j i i

a aa a
f


      

   

           
  

,  
……(3) 6 

where, the coefficients are a2, a3 < 0 and a4, ac > 0 to ensure a potential with Q 7 

degenerate minima, (η1,0, . . . , 0), (0, η2, . . . , 0), etc. up to (0, 0, . . . , ηQ) (ηi > 0), is 8 

an adjustable parameter to mediate the magnitude of grain boundary energy density. It's 9 

worth noting that the polycrystalline structure in our model is simply described by the 10 

spatial distribution of different grain orientations, thus the internal stress at grain 11 

boundaries are absent in comparison with the real polycrystals. 12 

The elastic transformation energy density felastic can be further divided into three 13 

parts, i.e., local transformation energy density flocal, energetic contribution originating 14 

from non-OP strains fnon-OPs, and gradients of OP strains fgrad. The first term flocal 15 

describes the two degenerated martensite variants due to the symmetry breaking in 16 

square-to-rectangular MT, and is expressed in the polynomial expansion of the 17 

symmetry-adapted deviatoric strain, e2 , up to sixth order, 18 

2 4 620 64
2 2 22 4 4

c
local

m c

A T T AA
f e e e

T T

 
    

  , ……(4) 19 

where, 2 20
c

m c

T T
A A

T T

 
   

 is temperature dependent deviatoric modulus expressed in 20 

linear combination of the elastic constants as 2 11 12( ) ( )A c T c T  . A4 and A6 are 21 

related to higher order nonlinear elastic constants. Tc and Tm are critical point and MT 22 
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starting temperature, respectively. The OP strain  2 2xx yye e e    has to be 1 

rewritten as the derivation of the global displacements in global coordinates, i.e. 2 

   2 , ,, , 2x x y ye u U u U       , ……(5.1) 3 

   , , , ,cos 2 sin 2 2X X Y Y X Y Y XU U U U         , ……(5.2) 4 

where, θ is the angle of grain orientation, see Eq.(2). There are two non-OPs, i.e. 5 

dilatational strain    1 , ,2 2xx yy X X Y Ye e e U U     and the shear strain 6 

 3 , , , ,

sin(2 ) cos(2 )
2 ( ) ( )

2 2xy yx X X Y Y X Y Y Xe e e U U U U
 

        to construct the 7 

fnon-OPs in square-to-rectangular MT as:  8 

2 231
1 32 2non OPs

AA
f e e     ,  ……(6) 9 

where, 1 11 12A c c   is the bulk modulus in 2D, 3 444A c  is the shear modulus in the 10 

isotropic approximation. The gradient energy density fgrad is the square of the OP strain 11 

gradient, i.e.   12 

 2

2gradf g e    , ……(7) 13 

and g is the gradient coefficient. 14 

  Since we are interested in a simple uniaxial stress in this work, the free energy 15 

contribution due to the applied stress σapp yields  16 

app app xxf e    ,    ……(8) 17 

Thus, the free energy is finally expressed in global coordinates as 18 
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2.2. Dynamic	equations 20 

The evolution of grain orientation and displacement fields are treated differently 21 

in this work. The time dependent Ginzburg-Landau equation 22 
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is used to describe the evolution of the order parameter field  , t r
 

of the grain 1 

orientations with Lη as kinetic coefficient for interface mobility.  2 

When the spatiotemporal evolution of displacement and strain fields is considered, 3 

a variation method of Lagrange mechanics is utilized. We incorporate the kinetic 4 

energy density / 2T  2U  and the free energy density f to construct the Lagrangian 5 

 =
V

d T f rL . By taking the variation of the Lagrangian with respect to the 6 

displacement U and velocity U  and explicitly substituting the Lagrangian into the 7 

Lagrange-Rayleigh equations
i i i

d

dt U U U

  
  

   
L L R , the Lagrange-Rayleigh equations 8 

yield the general equations of motion 9 

pq pq pqk k k
i

j k pq i j k pq i j k pq i j

e e ee e ef f R
U

X e e U e e U e e U


                       


 

, , ,

  ,  ……(11) 10 

where, ρ is density;R and R are Rayleigh dissipation and dissipation density, written 11 

as the functional of strain rates to describe the friction in the system. If the isotropic 12 

approximation is adopted for the Rayleigh dissipation density with viscosity γ, and the 13 

local stress expressed in global coordinates is defined as  14 

pq pqk k
ij

i j k pq i j k pq i j

e ee eF f f

U e e U e e U




   
  

     , , ,

,  ……(12) 15 

the dynamics of displacement fields is given by dissipative force balance equations  16 

2ij
i i
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  , ……(13) 17 

Differing from Ref [52], the local stresses in our model enter dissipative force balanced 18 

equations via the chain rule of functional differentiation of free energy with respect to 19 

global displacement gradients. By numerical solving Eqs. (10), (12) and (13), the 20 

spatiotemporal evolution of displacements, strains and grain orientations are obtained. 21 

Finally, the viscous term drives the system to the mechanical equilibrium state.   22 

2.3. Numerical	Implementation 23 

Our simulations were carried out using a Fast Fourier Transform (FFT)-based 24 

spectral method under periodic boundary conditions in a 256×256 grid with 5 grain 25 
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orientations of 0°, 7.5°, 15°, 22.5° and 30° (=θmax), respectively (Fig. 1-a). For the 1 

formation of the polycrystalline structure, we used the parameters, a2=-1, a3=-1, a4=1, 2 

and ac=2. kgrain was adjustable to produce appropriate configuration. Since we took a 3 

Fe-Pd ferroelastic alloy as an example in our simulation, the following materials 4 

parameters were chosen based on the experimental results of elastic constants: A1 = 5 

333.91 GPa, A20 = 11.5 GPa, A3 = 282 GPa, A4 = -1.7*103 GPa, Tm = 295 K and Tc 6 

=270 K [50,54-55]. Note that the temperature dependence of the elastic constant A2 in 7 

experiments and linear fitting was well represented by the parameter 2 20
c

m c

T T
A A

T T





, 8 

while the other elastic parameters are constant with temperature for simplicity. A6 was 9 

determined from A20, A4, and quenching temperature T, satisfying the constraints of 10 

Landau polynomial for first-order transformation [56]. The value of the gradient 11 

coefficient was set to g=3.0*10-8 N [52,57] based on microstructural observations, 12 

while the dissipation coefficient was estimated as 0.015N s/m2 [57]. Based on these 13 

parameters, the interface energy density of full twinned martensites can be estimated 14 

around 0.5J/m2 from multi-wells degenerated Landau free energy near the critical 15 

point*.  16 

 17 

The interface energy density in our simulation (in Subsection 3.1) has the correct order 18 

of magnitude, consistent with theoretical estimations and first principles calculations 19 

[58-59]. To tackle the numerical instability, both the materials and the simulation 20 

parameters were subjected to a normalization [60], wherein the spatial and energetic 21 

variables were rescaled by introducing the normalization factors d0=7*10-9m and f0 22 

~1010J, respectively; such that 0/x x d , and 0/i iA A f . The time variable was 23 

rescaled as 2
0 0 0/t t t t d f   and the rescaled viscosity is  0 0d f   . At 24 

the beginning of the simulation, the random fluctuations of displacements 
iu obtained 25 

from a Gaussian noise were introduced. The mean value and correlation of fluctuations 26 

*If the viscous term is removed, the conservation equation of motion utilized in our simulation describes a 
physical picture in which the decrease of local free energy in Landau potential triggers the formation of the 
habit planes and/or twin boundaries during the martensitic nucleation and drives the interface propagation 
during martensite growth. In fact, the existence of a viscous term minimizes the finite kinetic energy density. 
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satisfy  1 

 , 0
iu t r , ……(14) 2 

       , ', ' 2 ' '
i ju u Bt t k T t t      r r r r .……(15) 3 

More details of the model and of the numerical implementation can be found in Refs. 4 

[53,60-61]. 5 

3. Results	and	Discussion	6 

  The martensitic nucleation and the relevant microstructure evolution are obtained 7 

from the simulations under the conditions of (1) different applied stresses at a fixed 8 

temperature, (two cases of martensitic nucleation under applied stresses of 50 MPa and 9 

500 MPa are selected as the examples to be discussed in detail), (2) different 10 

temperatures with a constant applied stress, and (3) the combination of varying stresses 11 

and temperatures. These external processing conditions interacting with intrinsic MT 12 

energy lead to different scenarios of martensitic nucleation. 13 

 14 

3.1 Heterogeneous nucleation under an applied stress of 50 MPa 15 

To examine the MT in the vicinity of grain boundaries, the system was first 16 

quenched to T = 275K (Tc<T<Tm), followed by an isothermal simulation under a 17 

constant applied stress of σapp= 50 MPa. The set temperature is slightly higher than Tc, 18 

which ensures the existence of an energy barrier to describe the nature of first-order 19 

MT yet allows a small strain fluctuation to jump over. The sequential process of 20 

nucleation and growth of martensite is shown in Fig. 1, where martensite is depicted by 21 

the distribution of the deviatoric strain e2 at different times during the isothermal 22 

simulation. The displacement fluctuations give rise to local inhomogeneities of the 23 

deviatoric strain at the initial stage of the isothermal simulation that trigger the onset of 24 

a fine-scale assembly of cross-hatched tweeds (Fig. 1-b). Differing from single crystals 25 

[62], the tweeds exhibit different stretch directions in individual grains. Note that 26 

tweeds similar to those in Fig. 1-b can also develop above Tm in the absence of applied 27 

stresses. The local distortion of deviatoric strain caused by the local stress field is 28 
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hence accumulated at the grain boundaries with larger misorientation, as those between 1 

blue and red grains in Fig.1-b, indicating that the free energy minima have been 2 

momentarily shifted toward the grain boundaries due to the synergistic contribution of 3 

the grain boundary energy and the strain gradients.   4 

                                               5 

     6 

     7 
 8 

Figure 1. (a) Spatial distribution of the grain orientation angle as indicated in each grain (b)-(f) Martensitic 9 

nucleation and growth in polycrystals, as shown by the deviatoric strain e2 at 275K under an applied stress σapp= 10 

50MPa, at time steps of 800, 12000, 92000, 94800 and 104000, respectively. The red and blue domains represent 11 

two martensite variants while the green domain is austenite. The grain boundaries are displayed in white. 12 

(d) (c) 

(f) (e) 



13 
 

For σapp = 50 MPa, no concentration of deviatoric strain is found in the vicinity of 1 

triple junctions because the strain gradients stemming from individual grain boundaries 2 

cancel each other and lead to a relatively more homogenous strain field at the triple 3 

junction. The fine tweeds inside the grains and deviatoric strain distortion at grain 4 

boundaries are fading away with time, and the system responds to the local stress field 5 

with a metastable microstructure exhibiting a long-range straining pattern (Fig. 1-c), 6 

denominated ‘postcursor’ [63]. The postcursors, modulated partially transformed 7 

martensites, show the same texturing pattern as what the subsequent twins would have. 8 

They arise from a balance between the nonlinearity of transformation energy 9 

represented by the anharmonic terms in Eq. (4) and nonlocality stemming from the 10 

contribution of strain gradients. This modulated metastable equilibrium will be broken 11 

when the reduction of local energy due to the stress released in martensite domains 12 

cannot be compensated by the increase of energy originating from the steeper strain 13 

gradient with respect to the spatial coordinates, and the total energy is progressively 14 

reduced to the stable energetic wells of martensite [63]. Therefore, the postcursors can 15 

play the role of potential embryo of martensite inside the grains, as shown by the 16 

martensite plate marked (1) in Fig.1-e, which grows from an intragranular postcursor. 17 

Simultaneously, the strain distortion at the grain boundary can assist nucleation. If the 18 

grain boundary is parallel to one of the postcursors, the first stable martensite plate will 19 

form preferentially along the grain boundary, as shown in Fig.1-d. As soon as the first 20 

stable martensite plate forms (see the blue variant and the local deviatoric stress21 

      2 2xx yy   r r r
  

 in inset of Fig 1-d), it grows rapidly in length 22 

following the tracks of postcursors due to the large local stress and the curvature at the 23 

tip. When the growing front of the martensite plates crosses the triple junction, the 24 

martensite plate penetrates into the grain and is aligned with the favored orientation. 25 

However, the coarsening of the blue variant in the direction perpendicular to the habit 26 

plane is momentarily arrested by the modified local energy around the plate, and gives 27 

rise to a cascade of pairing red variants, i.e. autocatalysis phenomenon. It should be 28 

noted that branched martensite plates are hardly found due to the limitations of the 2D 29 
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model that allows only two different twin-related variants. The branched martensite 1 

plates are only found when the grain boundary is located between the orientations of 2 

the postcursors in the neighboring grains (see inset in Fig. 3-b). This is different to the 3 

richer accommodated patterns consisting of all 24 Kurdjumov–Sachs orientation 4 

variants widely observed in the experiments for other Fe-C based alloys [64]. Figure 5 

1-f illustrates the morphology of full martensite after long-time simulation. The 6 

alternative alignments of twinned red and blue martensites are in agreement with the 7 

kink solution of the solitary wave in Ref. [42]. The width and energy density of the 8 

twin boundary shown in Fig.1-f correspond to about 2-3 nm and 0.45J/m2, respectively. 9 

Although the simulated twin boundary energy density agrees well with that of 10 

stationary analysis, the width of the twin boundary in the simulation is three times 11 

broader than the several atomic diameters observed from TEM image. It is an inherent 12 

consequence of the diffuse interfaces utilized in Landau modeling. In this work, the 13 

gradient coefficient was selected by considering a compromise between the twin 14 

boundary width and the size of the grains.  15 

3.2 Heterogeneous nucleation under an applied stress of 500 MPa 16 

The evolution of microstructure under σapp = 500 MPa shows similar features (Fig. 17 

2-a) at the early stages of the simulation as those for 50 MPa: the tweed pattern 18 

develops within the grains and the strain distortions appear at grain boundaries, but 19 

both occur more rapidly because of the higher stresses. The accumulation of the 20 

deviatoric strain raised by the local stress is supposed to smear out or weaken the effect 21 

of postcursors. At the same time, the interplaying of elastic transformation energy and 22 

lattice curvature drives the ‘twinned’ strain distortion to split into ‘diploes’ (indicated 23 

by the arrows in Fig.2-a) and to be concentrated at the triple junctions and high angle 24 

grain boundaries, both of which serve as the preferential sites for martensitic 25 

nucleation and growth, as shown in Fig.2-b. Three martensite plates (marked (1), (2) 26 

and (3) in Fig. 2-c) are nucleated at the triple junctions, and grow into the twins aligned 27 

with their optimum martensite orientations in individual grains. For instance, the pairs 28 

of needle-like martensites in the grains with the orientation θ = 22.5° (i.e. the grains in 29 
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yellow in Fig. 1-a) align along the 67.5° with respect to the horizontal axis of global 1 

reference. 2 

 3 

     4 

 5 

 6 
Figure 2. Martensitic nucleation and growth in polycrystals, as shown by the deviatoric strain e2 at 275K under an 7 

applied stress σapp=500MPa at time steps of 800 (a), 5200 (b), 6400 (c), 8000 (d), and 28000 (e), respectively. The 8 

red and blue domains represent two martensite variants while the green domain is austenite. The grain boundaries 9 

are displayed in white. 10 

A different scenario is found in the twinned martensite plates marked (4) in Fig. 2-c. 11 

They nucleate and grow assisted by the high angle grain boundaries, and the leading 12 

(a) (b) 

(d) (c) 

(e) 
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plate in red propagates beyond the neighbor triple junction without apparently 1 

changing orientation. However, it accommodates itself later to match the surrounding 2 

grain misorientation by subtly rotating the residing twin boundary to form the full 3 

martensitic morphology (Fig.2-e). 4 

3.3 The effect of applied stress on heterogeneous nucleation at grain boundaries 5 

In Fig.3, the deviatoric strain as a function of the distance to a high angle grain 6 

boundary is plotted for different applied stresses and times at T = 275 K. Although the 7 

high angle grain boundaries can be intuitively considered analogous to 2D planar 8 

defects in Refs [41-42], we must clarify that our modeling has its roots in the 9 

dynamical nucleation developed by Clapp [65], Cao [40-41], and Gooding [42], et al. 10 

The hyperbolic-type profiles of the deviatoric strain are consistent with the analytical 11 

results of Cao [41] who introduced a predefined stress field as a martensite embryo for 12 

twin. The deviatoric strains raised by the small local stresses rapidly accumulate within 13 

the first hundreds of steps (see inset of Fig. 3 with σapp= 20-100 MPa). However, they 14 

are one to two orders of magnitude smaller than the threshold of ‘spinodal strain’ to 15 

serve as steady martensite embryos to form stable martensite variants. The strain 16 

profile at σapp= 500 MPa and at time step of 6400 (in the direction perpendicular to the 17 

twin plane 4# in Fig. 2-c) exhibits the oscillation between the positive/negative 18 

deviatoric strains of two rectangular martensite variants, demonstrating that the local 19 

stress has driven the martensitic nuclei into stable plates. Beyond the analytical 20 

solution, our results prove that the spatiotemporal evolution is greatly dependent on the 21 

strain gradient. In contrast to the predefined stress solution [41], the asymmetry of the 22 

profile with σapp = 500 MPa and at time step of 2800 indicates that the strain distortion 23 

is influenced by a curvature driving modulation (through either strain gradients or 24 

displacement gradients) and then is concentrated at the triple junctions. As a result, 25 

more martensites nucleate at the triple junctions under σapp= 500 MPa (see martensites 26 

1#-3# in Fig. 2-c) than at high angle grain boundaries. All the above findings reveal 27 

that intragranular nucleation around grain boundaries prevails over other nucleation 28 

modes under small applied stress, whereas nucleation at triple junctions and high angle 29 
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grain boundaries is the dominant mode under moderate applied stress. These results 1 

support the argument of Clapp [39], who states that high angle grain boundaries are the 2 

favored nucleation sites if the free surface and incoherent grain boundaries are absent. 3 

It should be further emphasized that the triple junctions are more suitable nucleation 4 

sites than high angle grain boundaries in the case of the relative large local stresses. 5 

 6 

 7 

Figure 3. Evolution of the deviatoric strain e2 as a function of the distance to a high angle grain boundaries at the 8 

time step of 800 under different applied stresses σapp=20, 50, 100 and 500 MPa, respectively, and at later times of 9 

2800 and 6400 steps with σapp= 500 MPa .  10 

3.4 The effect of quenching temperatures on heterogeneous nucleation at grain 11 

boundaries 12 

The effect of quenching temperatures on the Landau energy landscape and the 13 

transformation pathways is addressed in Fig. 4, which illustrates the morphology of the 14 

principal martensitic plates at different temperatures under σapp=100 MPa. When 15 

quenching the system to a low temperature T = 250K <Tc, the martensite plates prefer 16 

to form and grow at the triple junctions prior to the boost of homogenous 17 

decomposition inside grains. Quenching to Tc<T=275 K<Tm, in contrast, leads to a 18 

diversity of martensitic nucleation sites depending on the localized geometric, 19 

energetic and dynamic conditions, when the stress fields localized at the postcursors, 20 
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grain boundary and triple junctions are comparable in magnitude. The groups of 1 

stripe-like martensites (marked (1) in Fig. 4-b) nucleate to grow intragranularly 2 

following the tracks of postcursors. On the contrary, the red variant nucleates at the 3 

high angle grain boundary, proceeds along the prestrained postcursors after crossing  4 

 5 

 6 

Figure 4. Morphology of the initial stabilized martensitic plates in polycrystals undergoing isothermal 7 

transformation after quenching to 250K(a), 275K(b) and 295K(c) and continuous cooling at the rate of 0.01K/step 8 

from 300K to 100K(d), as shown by the deviatoric strain e2 under an applied stress σapp= 100 MPa 9 

the grain boundary, but leaves with a kink; while the blue martensite plate nucleated at 10 

the triple junction and accommodates itself to match the optimal orientations in the 11 

neighboring grains. The later morphology at the very high angle grain boundary (see 12 

(a) 

(d) (c) 

(b) 
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the top-right inset in Fig. 4-b) is consistent with the coarse lenticular martensites 1 

observed in Fe-based materials [64]. On quenching to T = Tm =295K, the morphology 2 

exhibits a heterogeneous structure containing austenite-martensite alternated stripes in 3 

the grains (Fig. 4-c). This process takes place via the nucleation and growth relying on 4 

the preexisting postcursors with a morphology much like the stress-induced martensite 5 

at room temperature (>Tm) for certain cubic-to-monoclinic II shape memory alloys [66]. 6 

Note that since the symmetry breaking of cubic-to-monoclinic II MT contains the 7 

elements of cubic-to-tetragonal, a specific 2D projection of the microstructure of the 8 

monoclinic II martensites in a fine wire sample could sustain the lamella features in 9 

tetragonal martensites [67]. The formation of a single martensite variant in equilibrium 10 

with the austenite is energetically allowed at Tm, and even at higher temperature, if the 11 

local stress is above a threshold. Nevertheless, it is constrained by geometrical 12 

compatibility in 3D bulk materials. So far, our simulations have demonstrated that the 13 

martensitic nucleation modes (sites) are sensitive to the quenching temperature. The 14 

primary nucleation sites vary from triple junctions to high angle grain boundaries to 15 

postcursors as the quenching temperature increases. Thus, it can be inferred that a 16 

continuous cooling to a lower temperature is perfectly adequate to yield the formation 17 

of stable martensite plates at the triple junctions, as proven in Fig. 4d. 18 

3.5 Phase diagram of nucleation modes  19 

Most of the discoveries by our simulations can be summarized in the phase diagram of 20 

the Fe-Pd ferroelastics presented in Fig. 5. The phase diagram looks similar to a 21 

conventional TTT diagram, and conveys the information about the principally favored 22 

mode of martensitic nucleation under particular combination of quenching temperature 23 

and applied stress. It is still noteworthy that the nucleation and growth of martensite is 24 

actually governed by the local stresses rather than by the applied stress. However, the 25 

applied stresses can be easily used to control processing in an industrial environment. 26 

The phase diagram manifests that nucleation at the postcursors dominates at high 27 

quenching temperatures. As the quenching temperature decreases or the applied stress 28 

increases, nucleation at the postcursors is replaced by four distinct mixed modes, 29 
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namely, grain boundary + postcursor, triple junction + postcursor, hybrid (i.e. all sorts 1 

of nucleation sites are possible) and triple junction + grain boundary. Only the 2 

postcursors can lead by themselves to the development of a nucleation site, while the 3 

grain boundaries and triple junctions have to cooperate to become viable nucleation 4 

sites, see Fig.5. It is worth pointing out that our results have been obtained assuming 5 

that the material was elastic and continuous. Thus, other aspects associated with grain 6 

boundary nucleation such as plasticity, incoherent interfaces and defect cores have not 7 

been considered. The incorporation of these issues into the simulation will be 8 

necessary to include more physics in the model and enhance the predictive capabilities 9 

of this strategy.  10 

 11 

 12 

Figure 5. Phase diagram of the nucleation modes of martensite in the Fe-Pd ferroelastic polycrystals. 13 

 14 

4. Conclusion	15 

In summary, we investigate the dynamical nucleation of martensite in polycrystals 16 

by means of LR dynamics and Landau energetics. Avoiding the detail of the defect 17 

cores, the simulations capture the heterogeneous processes of dynamical martensitic 18 

nucleation under the local stress field, and are able to predict the phase diagram of 19 
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martensitic nucleation. With the example of Fe-Pd ferroelastic polycrystals, the phase 1 

diagram illustrates that postcursors, high angle grain boundaries and triple junctions 2 

serve as the preferential heterogeneous nucleation sites depending on the loading and 3 

cooling conditions. The information, presented in the form of a phase diagram like Fig. 4 

5, specify how the quenching temperature and applied stress conditions can be 5 

combined to activate particular mechanisms of martensitic nucleation and growth, 6 

leading to complex microstructures in order to meet microstructural design goals. 7 

 8 
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