
A Web service for executable research
compendia enables reproducible publications and
transparent reviews in geospatial sciences
 Daniel Nüsta

aInstitute for Geoinformatics (ifgi), University of Münster, Germany (daniel.nuest@uni-muenster.de)

Preprint published on Zenodo at https://doi.org/10.5281/zenodo.4818120 under CC-BY-4.0 license. This version was compiled on 2021-07-08 based on git commit d00c4205 from
the repository https://zivgitlab.uni-muenster.de/d_nues01/architecture-paper.

The Executable Research Compendium (ERC) is a concept for pack-
aging data, code, text, and user interface configurations in a single
package to increase transparency, reproducibility, and reusability of
computational research. This article introduces the ERC reproducibil-
ity service (ERS) for a publication workflow enhanced by ERCs. The
ERS connects with existing scientific infrastructures and was deployed
and tested with a focus on data and visualisation methods for open
geospatial sciences. We describe the architecture of a reference im-
plementation for the reproducibility service, including the created Web
API. We critically discuss both the project set-up and features of ERC
and ERS, and examine them in the light of various classifications for
reproducible research. The ERC and ERS are found to be a powerful
tool to improve reproducibility and thereby enable better investigating
and understanding of computational workflows during peer review. We
derive lessons learned and challenges for future scholarly publishing
of computer-based geospatial research.

reproducible research | reproducibility | open science | executable research com-

pendium | ERC | research infrastructure | research compendia | containerisation

1. Introduction

Open Science and reproducibility are enormous chal-
lenges for research, as computers and algorithms infuse
all scientific disciplines, including geography and geo-
sciences (David et al., 2016; Nüst and Pebesma, 2020),
and the scientific paper falls short in communicating the
actual scholarship (Brammer et al., 2011; Marwick, 2015;
Gil et al., 2016). The relevance of openness and repro-
ducible reusable research are undisputed, just as the prob-
lems applying them in daily work, challenges around re-
producibility, and handling in digital scholarly publishing
workflows are real (e.g., Davison, 2012; Freire et al.,
2016). Software failures have led to wrong results and
retractions (Miller, 2006; Gronenschild et al., 2012) and
“the lack of reported failures from geography and geosciences
is not reassuring” (Nüst and Pebesma, 2020). Repro-
ducibility in geospatial sciences, similar to most scien-
tific disciplines, is low (e.g., Konkol et al., 2019a; Nüst
and Pebesma, 2020; Yan et al., 2020; Nüst et al., 2018).
Although progress is made on openness in geospatial
sciences, reproducibility has not been systematically ad-
dressed and increasing requirements for publication has
just begun (Minghini et al., 2020; cf. Peng and Hicks,
2021). A continued development of infrastructure sup-
porting reproducibility is needed (Peng and Hicks, 2021).
To achieve sufficient openness and reproducibility, all as-
pects of science must be adopted with the common goal
of a culture change in mind. Only a general broad change
can support and motivate researchers shift towards good
Open Science and reproducible research practices. Exam-

ples for areas where change is needed are (a) require-
ments of funders and journals (cf. Hardwicke et al., 2018,
and Stodden et al. (2018); Nüst et al., 2018), mechanisms
to award recognition to all types of research outputs (Pi-
wowar, 2013), and (c) education and tools, so that all
stakeholders have the means, i.e., resources, time, and
knowledge, to create, examine, review, and publish re-
producible open scientific workflows. To facilitate change
on these levels, we have conceptualised and implemented
an infrastructure to lower the barriers for creating, shar-
ing, and reviewing reproducible publications. This work’s
main contribution is a detailed description of that infras-
tructure and the demonstration of it’s functionality.

We present a Web service for open and reproducible
publications for computational research in geography and
geosciences: the ERC reproducibility service (ERS). The
ERS is connected with the existing processes, services,
and platforms for scholarly publications and serves the
particular needs of geospatial data sciences. Examples
and applications are taken from these domains as well,
i.e., data-based workflows using observational data of the
Earth. The ERS focuses on the third area of cultural
change, education and tools, by putting the concept of
the Executable Research Compendium (ERC, Nüst et al.,
2017) into practice as part of the scholarly publication
process. The ERC at the centre of scholarly communica-
tion enables communicating, sharing, and collaborating
on the actual scholarship as it includes data, software, and
documentation (cf. Buckheit and Donoho, 1995; Daven-
port et al., 2020). Previous work presented the benefits
for authors and readers (Konkol et al., 2019b). Here we
describe the technical background and implementation of
the ERS, and how it provides a missing functionality in
scholarly publishing infrastructure.

In the remainder of this work, we first present related
initiatives and approaches. Then we introduce a techni-
cal specification for the ERC followed by an architecture
and reference implementation for a Web service for ERC
creation and examination, which is connected with the ex-
isting landscape of scholarly publication infrastructures.
Finally, we discuss limitations and lessons learned, and
conclude with a summary and an outlook on future work.

2. Related work

Containerisation is widely adopted as a technology to
capture computing environments around computational
workflows in general (Boettiger, 2015), but also more
specifically for academic papers (Liu and Salganik, 2019)

https://doi.org/10.5281/zenodo.4818120 ERC Web service | July 8, 2021 | 1–21

https://orcid.org/0000-0002-0024-5046
https://www.uni-muenster.de/Geoinformatics/
mailto:daniel.nuest@uni-muenster.de
https://doi.org/10.5281/zenodo.4818120
https://zivgitlab.uni-muenster.de/d_nues01/architecture-paper
https://doi.org/10.5281/zenodo.4818120

and for research infrastructures (Konkol et al., 2020). The
common drivers behind using containers are the need
to capture data, code, and the computational environ-
ment ideally in an automated fashion, portability, e.g., be-
tween researcher’s computers and cloud infrastructures,
and ease of use, i.e., abstracting away the complexities of
managing the environment from researchers. Workflow
tools can automate the process to capture experimental
details required for reproducibility (Davison et al., 2014;
Wolstencroft et al., 2013), but they are not directly con-
nected with scholarly review and publishing procedures.

The approaches to capture environments are mani-
fold, and once the respective package exists, portability
is given. However, the approaches do vary considerable
in their usability and accessibility.

Binder (Project Jupyter et al., 2018) uses common con-
figuration and dependency management files from differ-
ent programming languages as part of its Reproducible
Execution Environment Specification (REES) specification1.
The user cannot access the created container specification
or image, instead the project promises to consistently cre-
ate images that remain similar enough over time. In the
Whole Tale project a related underlying technology is used
to create and share reproducible computational research
(Chard et al., 2019). The project provides a multi-user
platform, which goes well beyond o2r’s scope, and uses
references to code and data, but core steps are very sim-
ilar to the ERS, e.g., publishing a tale to repositories and
interactive examination for reproduction and verification.
Tales are published in a format extending DataONE Data
Packages (Mecum et al., 2018), which rely on BagIt for
serialisation.

ReproZip (Chirigati et al., 2016) is a prominent ex-
ample for tools that use tracing of system calls to cre-
ate ReproZip packages, which can be extracted into dif-
ferent environments, e.g., a container. Umbrella (Meng
and Thain, 2015) is another tracing-based tool with a
particular focus on high-performance computing. These
solutions, however, are less portable and require the au-
thors to execute them, being overall slightly less accessi-
ble than requiring just a Notebook-based workflow. The
Popper (Jimenez et al., 2017) convention therefore gives
authors a lot of flexibility by allowing them to combine
software from the DevOps toolbox. The convention pro-
vides generic domain-independent templates for project
structure, but also require authors to be familiar with a
number of complex tools. Chuah et al. (2020) bridge be-
tween tracing and declarative approaches and also gen-
erate Dockerfiles for workflows, however, using log
files and for C/C++ and Python-based workflows. For
the tracing, they use a command-line only tool, Sciunit
(That et al., 2017), developed by the same group. Sci-
ence Capsules (Ghoshal et al., 2021) and the Cloud of Re-
producible Records 2 capture end-to-end workflows, but
put an emphasis on collaboration and their respective
scientific disciplines, and are not connected to scientific
publishing. Similarly, RENKU is a platform for creating
workflows with interlinking of artefacts, like the ERC, yet

1https://repo2docker.readthedocs.io/en/latest/specification.html
2https://www.nist.gov/programs-projects/cloud-reproducible-records

with a focus on collaboration and providing interactive
environments, not with preserving a specific state. Oc-
cam (Oliveira et al., 2018) focuses on preservation of the
full source code to mitigate shortcomings of only saving
executable binaries. Boutiques (Glatard et al., 2018) is
an application description frameworks for packaging CLI
tools. The REANA platform (imko et al., 2019) enables
creation and manipulation of reproducible computational
workflows of complex large scale analyses that go be-
yond the computational Notebooks at the core of the ERC.
Maneage (Akhlaghi et al., 2021) focuses on the lineage as-
pect of computational workflows, capturing contributions
pre-publication and extensions post-publication relying
on GNU Make, requiring familiarity with low-level tools.
Encapsulator (Pasquier et al., 2018) creates time capsules
for reproducible code, capturing the computational envi-
ronment in a virtual machine using Vagrant (Wikipedia
contributors, 2021h). Encapsulator generates a Vagrant
file and can be used with a command line interface.

Earlier approaches similar to the ERC and ERS include
Paper Mâché (Brammer et al., 2011), which uses virtual
machines for capturing papers and defines a format quite
similar to the ERC, the Paper Mâché file (.pm). This file
can be inspected using an online workbench or down-
loaded and executed on a local computer. The main differ-
ences are the capturing of reviewer comments and ratings
within the .pm file, the use of VMs, and Inkling (Castle-
berry et al., 2013) has own file formats for documents
and workflow configuration based on LaTeX and creation
of the required CLI commands, which is much less acces-
sible for non-technical users than R Markdown.

The ActivePapers project (Hinsen, 2015) describes a
platform for publishing and archiving computer-aided
research by turning scientific contents of software into
so called pure computations (Hinsen, 2015). Hinsen
presents extensive requirements, two prototypical imple-
mentations, and important lessons learned. Similarly
to ERC and ERS, ActivePapers demonstrate feasibility of
packaging reproducible research, but with a different ap-
proach without containerisation. The strong theoretical
base and implementation from the ground up of that work
are a counterweight to the more practical approach of the
ERS, which largely adapts general purpose tools. Each ap-
proach has its own limitations. Hinsen (2015) concludes
with the idea that computational models and methods
should be separated from software tools for better preser-
vation. However, this requires a deeper intrusion into the
tools used by researchers daily, and thus is a more long-
term change than the current scope of the ERS.

None of these related projects and ideas, just as the
ERC and ERS, have found considerable uptake outside of
specific groups or communities. What could help to close
the adoption gap are author guidelines by journals and
publishers. Several journals have established processes to
execute workflows that belong to submitted manuscripts.
Some of these processes rely on communication between
reviewers and authors to ensure that the reproducing
party can execute a workflow (Nüst and Eglen, 2021; Her-
oux, 2015) while others partner with commercial plat-
forms (cf. Konkol et al., 2020; ?), and others develop their

2 | https://doi.org/10.5281/zenodo.4818120 Nüst

https://repo2docker.readthedocs.io/en/latest/specification.html
https://www.nist.gov/programs-projects/cloud-reproducible-records
https://doi.org/10.5281/zenodo.4818120

own formats for reproducible articles, most prominently
eLife’s ERA (Guizzardi et al., 2021). Only few publish-
ers actually recommend specific tools3. One of the excep-
tions is the journal GigaScience, which suggests multiple
tools, including ERA and Gigantum, giving authors a lot
of flexibility4 and reducing risk of betting on the wrong
approach.

3. Executable research compendium: technical
specification

3.1. Design. A research compendium5 is made up of
parts, namely (i) data, e.g., collected or simulated inputs
and calculated outputs, (ii) software, i.e., a fully auto-
mated or “scripted” computational workflow using, e.g.,
scripts, source code projects, and programming language
libraries/modules, and (iii) text and graphics for con-
sumption, e.g., instructions, a full manuscript, or figures.
The term research compendium was coined by Gentleman
and Lang (2007), reused by Stodden et al. (2015) and ex-
tended to an executable research compendium (ERC) by
Nüst et al. (2017). The ERC extends the parts of a com-
pendium in several respects: (i) it adds a further part al-
lowing interaction, the UI bindings (Konkol et al., 2019b),
(ii) it extends the generic idea of software with a well-
defined runtime environment based on containerisation,
and (iii) it requires a literate programming (Knuth, 1984)
document as the main document to execute the work-
flow. Figure 1 gives an overview of the ERC components.
Based on these extensions, ERCs realise a portable and ex-
ecutable snapshot of a computational workflow with all
documentation and presentation files and can be used as
the core building block within scholarly publishing.

More practically, the ERC technical specification
should support the goals of the ERC as described in Nüst
et al. (2017) and serve as the foundation for the imple-
mentation of a Web service for creation, examination, and
discovery of ERCs. The realisation is guided by several
design goals. All these goals intent to be “preservation
friendly”, in the sense that preservation is never some-
thing that can be completed, but an ongoing activity.
1. Simplicity and convention over configuration The
specification should not re-do something which already
exists, e.g., in form of an open specification or tool, and
not duplicate metadata unnecessarily. The risk of scatter-
ing information is mitigated by clear documentation and
outweighed by the advantages of reuse. Furthermore, it
must be possible to create a valid and working ERC man-
ually and every researcher should be able to fully under-
stand how ERCs work. Therefore, ERCs should be gener-
ally text file based, e.g., no embedded database or bina-
ries unless needed. Supporting tools should be used to
cover typical use cases with minimal required input by a
creating user. We must also acknowledge that most ERCs
will be created “post-hoc”, so before submission or after
completing a research project. While it would be bene-
ficial to steer researcher’s workflows on a highly repro-

3Cf. ACM SIGMOD’s reproducibility initiative recommending ReproZip, http:
//reproducibility.sigmod.org/.

4http://gigasciencejournal.com/blog/gigantum-joins-giga-reproducibility-machine-learning-toolkit/
5For a full list of publications on research compendia see https://research-compendium.science/.

ducible track from the beginning, because it provides a ba-
sis for real collaboration (Whitehouse, 2019), researcher
freedom, diversity in previous knowledge, and the evolu-
tionary slow change of habits and practices make this un-
realistic. The majority of cases should be covered by fol-
lowing regular conventions, whereas special cases should
be support with configuration.
2. Nested containers We acknowledge existing stan-
dards for packaging a set of files and capturing computing
environments. To be able to reuse these formats, the ERC
has an outward facing packaging, where all components
of the ERC are put into, but also contains a composite
components which themselves package complex contents.
Figure 1 shows how we distinguish these containers into
the inner or “runtime” container, which holds the software
dependencies of a particular workflow, and the outer con-
tainer, which holds the inner container and all other text,
data, and code files. Using the four layers of software
stacks in scientific computing from Figure 1 in Hinsen
(2018), the outer container contains project-specific code
and the inner container contains domain-specific tools,
scientific infrastructure, and non-scientific infrastructure.
The outer container can be used for content-unaware val-
idation and more easily adheres to established preserva-
tion practices. The nesting gives a separation that, in the
long-term as computing environments are likely to evolve
and likely break, maintains access to the core files for a
specific workflow. This also means that data and control
code is not (only) within the inner container so that one
barrier to access, e.g., data in a PDF, is not replaced with
another, e.g., data in a binary container image6. The inner
container should also be created transparently based on
an actionable text file. The duality of executable runtime
container and recipe ensures transparency and a fallback
option (Nüst and Hinz, 2019). The nesting also supports
the idea of “layered reproducibility”7 to handle different
levels of dependencies in a used software stack. The outer
container can contain a language-specific code package,
e.g., for R or Python, enabling reusability and understand-
ability, whereas the inner container captures the system
dependencies. Users with different skill sets may inter-
act with the layers differently, and layer usefulness may
change over time.
3. Transparency, stability, and Openness All configu-
ration and, as much as possible, also the content should
be based on plain text files. Plain text files are usable
by both humans and computers, ensure ERCs are accept-
able by users with varying backgrounds and levels of ex-
pertise today, secure that ERCs remain understandable to-
morrow, and enable that ERCs are easy to extend. If pos-
sible, “old” technologies are also preferable, as they are
tested and stable, and are likely to outlive innovative for-
mats8. It is therefore possible to both create and examine
an ERC manually, i.e., without any supporting infrastruc-
ture or tools. All specifications and tools are published
under open permissive licenses.

6A problem pointed out by Greg Wilson on Twitter at https://twitter.com/gvwilson/status/
1164240321028534274.

7Concept introduced by Noam Ross in an online discussion thread on rOpenSci at https://
discuss.ropensci.org/t/creating-a-package-to-reproduce-an-academic-paper/1210.

8As argued by Wilson et al. (2017), in deference to the saying: “What’s oldest lasts longest.”

Nüst ERC Web service | July 8, 2021 | 3

http://reproducibility.sigmod.org/
http://reproducibility.sigmod.org/
http://gigasciencejournal.com/blog/gigantum-joins-giga-reproducibility-machine-learning-toolkit/
https://research-compendium.science/
https://twitter.com/gvwilson/status/1164240321028534274
https://twitter.com/gvwilson/status/1164240321028534274
https://discuss.ropensci.org/t/creating-a-package-to-reproduce-an-academic-paper/1210
https://discuss.ropensci.org/t/creating-a-package-to-reproduce-an-academic-paper/1210

Fig. 1. Executable research compendium. Detailed look at software components and
the inner container, with language libraries and system dependencies, and the outer
container, with UIăbindings, documentation, data, workflow code and project libraries.

4. Multiple entrypoints Both humans and machines
need to act on ERCs. Human users need a convenient
and efficient way to interact with the substance of the re-
search that is described in publications, which Marwick
and Pilaar Birch (2018) describe with the useful “bottle-
opener” metaphor. For machines, we need a “one-click”
(Pebesma, 2013) command that can be used to execute
and rudimentarily validate a full workflow. For users, we
need a file that can be opened manually, or be shown
to them as the default document by tools when opening
an ERC. The literate programming paradigm, or compu-
tational notebooks, can support both these needs giving
authors flexibility, readers accessibility, and machines a
well-definedness.

The specification is accompanied by guides for users,
namely for readers and preservationists, and developers,
which comprises background on goals, design decisions,
and the development process. The specification docu-
ment uses technical language to clearly identify require-
ments and optional features, but is also enriched with ex-
amples and introductory texts.

3.2. The specification. The specifications is published un-
der a Creative Commons CC0 1.0 Universal License
at https://o2r.info/erc-spec/spec/ in HTML and PDF for-
mat, is developed openly in an online repository9, and
archived in Nüst (2018). This section summarises the
ERC specification—see the online specification for details.

An ERC must include a main file and a display
file. The main file follows the literate programming
paradigm (Knuth, 1984) and can be executed to create
the display file. Both files should be named accordingly
main.extension and display.extension, using cor-
rect file extensions and media type to use convention over
configuration. The ERC specification encourages R Mark-

9https://github.com/o2r-project/erc-spec/

down (Allaire et al., 2021a; Xie et al., 2018) as the format
for R-based analyses, and includes details for modelling
metadata in the YAML front matter of R Markdown files,
and for ensuring reproducibility by not using any caching
features. These two files provide the entrypoints for hu-
man readers and executing tools.

Alternative names for main file and display file may be
configured in the ERC configuration file erc.yml, which
is the third required file in an ERC. The ERC configuration
must include a globally unique identifier for the ERC, and
the version of the used ERC specification. Authorship in-
formation is expected to be present in the main file and is
therefore not repeated in the ERC configuration file. How-
ever, due to the lack of alternatives, the licenses of the core
components or ERC can be explicitly modelled in the con-
figuration file.

The final content of an ERC is the runtime environ-
ment which is represented by two files: an executable
runtime image, which includes all base software and li-
braries to execute the packaged analysis, and a runtime
manifest, which documents the images and contents as
a self-contained complete recipe in an actionable format
to create the executable runtime image. This approach
uses containerisation and the runtime environment is the
inner container. Due to Docker’s standing as a de-facto
standard, the ERC specification further defines the run-
time environment, and how tools are expected to interact
with the manifest and image, based on Docker. For exam-
ple, the image file should be saved from a cache-less con-
tainer built and must be tagged matching to the ERC ID.
To enable controlling the workflow through tools, the de-
fault commands of the image must must render the main
document and the working directory must be fixed so that
files from the ERC can be connected into the runtime en-
vironment correctly, i.e., mounted into the container. The
specification describes how these mounts are to be used to
full executions of workflows, but also for substituting spe-
cific files between ERCs. Finally, the specification requires
images to have an image tag with the ERC identifier.

The following files are an example of the payload for a
minimal ERC using R Markdown and Docker:

main.Rmd
display.html
Dockerfile
image.tar
erc.yml

An example ERC configuration file is as follows:

id: b9b0099e-9f8d-4a33-8acf-cb0c062efaec
spec_version: 1
main: main.Rmd
display: display.html
licenses:

code: MIT
data: "data_licenses_info.pdf"
text: CC-BY-4.0
metadata: CC0-1.0

The ERC bundles multiple parts to make a computa-
tional workflow and its documentation accessible, but is
itself also a digital artefact that can be distributed, shared,
and archived. Therefore the specification ends with sec-
tions on interacting with ERCs, preservation of ERCs, and

4 | https://doi.org/10.5281/zenodo.4818120 Nüst

https://creativecommons.org/publicdomain/zero/1.0/
https://o2r.info/erc-spec/spec/
https://github.com/o2r-project/erc-spec/
https://doi.org/10.5281/zenodo.4818120

checking ERCs. For interactivity, the ERC configuration
file can include metadata about the ERC’s UI bindings
(see Konkol et al., 2019b). For preservation, the outer
container of an ERC is a “Bag” following the BagIt specifi-
cation (Kunze et al., 2018). BagIt which ensures reliable
storage and transfer through file checksums and ensures
compatibility with established preservation workflows in
form of bitstream preservation. The descriptive metadata
of the bag also labels an ERC as such. A draft for a pos-
sible BagIt profile is included in the specification. This
profile could make required metadata more explicit, and,
for example, disallow usage of the “fetch” feature to re-
quire self-contained bags for ERCs. To reduce the risk of
information loss, the specification deviates from the goal
to not duplicate information and instead suggests to store
metadata in all formats that specific use cases may need
within the ERC. This secondary metadata are copies of
the main metadata, e.g., the required fields and encoding
of the data repository used for ERC storage, and increase
the likelihood of at least some metadata being accessible
in the unforeseeable future. One example for such sec-
ondary metadata is Zenodo record metadata in a JSON
format. For checking ERCs, the specification defines a pro-
cedure, which ERC-supporting tools can implement. The
check of an ERC comprises the execution of the workflow,
and the comparison of the ERC’s files after the execution.
Most important file in the comparison set is, naturally, the
display file because differences can point to meaningful
deviations in a workflow’s results.

4. Opening reproducible research system archi-
tecture

4.1. Structure. The architecture for a publishing work-
flow enhanced by ERC describes a system for open-
ing reproducible research as part of a scholarly publi-
cation process— the o2r architecture. It is developed
in an online repository10, published online at https://
o2r.info/architecture/ in HTML and PDF format, follows the
arc42 Documentation template11, and is archived in Nüst
(2018). The arc42 template mandates a number of sec-
tions and contents, not all of which are described here—
see the online architecture for details.

4.2. Goals. The o2r architecture describes the relation-
ship of a reproducibility service (RS) with other services
from the context of scientific collaboration, publishing,
and preservation. Together these services can be com-
bined into a new system for transparent and reproducible
scholarly publications. As one part of such an system, the
ERS must not replicate already existing functions but in-
stead, inspired by the Unix philosophy (Wikipedia contrib-
utors, 2021g), do only one thing but do it well, namely
provide a reliable way to create and examine packages of
computational research, i.e. ERCs as reproducible publi-
cations. Existing functionalities, such as storage, authen-
tication, or persistent identifiers must be connected with
via APIs. Creation comprises uploading of a researcher’s

10https://github.com/o2r-project/architecture/
11https://docs.arc42.org/home/

workspace with code, data, and documentation to the
ERS, where a reproducible runtime environment is cap-
tured. This runtime environment forms the basis for ex-
amination, i.e. discovering, inspecting details, and manip-
ulating workflows on an online platform. For the users, it
is important that these features are provided in a guided
process with excellent user experience, without too much
expose of the underlying complex technology. Technol-
ogy is more successful when it is easy to get things done
(Bouffler, 2019). At the same time, the system must be
transparent, so itself can be scrutinised and does not put
the rigorousness of the actual ERCs into question.

The considered stakeholders in the architecture are
author (scientist), who publishes an ERC as part of a sci-
entific publication process to build a convincing argument,
reviewer or editor (scientist), who examines an ERC dur-
ing a review process to assess reproducibility and valid-
ity of results, reader (scientist), who views and interacts
with an ERC on a journal website to understand meth-
ods and build upon results, publisher, who offer ERC-
based publishing to increase quality of publications, cura-
tor or preservationist, who ensures research is complete
and archivable using ERC, operator, who provides infras-
tructure to researchers at own university or publisher to
communicate high-quality research using an ERC, and de-
veloper, who use and extend the tools around ERCs. For
the remainder of this section, a focus lies on the author,
reviewer, publisher, and preservationist.

4.3. Scope, context, and solution strategy. The system
scope and business context are summarised in Figure 2
and describe the relations between infrastructures and
services for communicating scientific computational work-
flows. The stakeholders interact with a number of plat-
forms (leftmost column), but no directly with the ERS
(second column). The publishing platforms, which au-
thors and reviewers use, connect with the ERS through
its API. Publishing platforms such as journal submission
and review systems offer users to upload or create ERCs,
track the submission status and access rights, e.g., for re-
viewers, and eventually expose published ERCs through
their search results and journal websites. The ERS may re-
trieve files from collaborations platforms, where authors
collaborate on data, code or text, if authors submit links
instead of directly uploading files, and it can use registries
to both harvest and publish metadata. These registries
power catalogues and search portals directly and medi-
ately via data repositories and archives, and thereby en-
able users to discover ERCs. The ERS offers ERC cre-
ation and examination services and uses different sup-
porting services (third column) to authenticate users, to
retrieve software artefacts, to store runtime environment
images, to execute workflows, and to store ERCs. Using
an existing ID provider frees the ERS from storing au-
thentication data securely and from ensuring that users
are real persons. The execution infrastructure is accessed
through containerisation tools based on the HTTP pro-
tocol and thus is scalable, e.g., when deployed in a dis-
tributed cloud-based infrastructure. Software reposito-
ries repository provide software artefacts during ERC cre-

Nüst ERC Web service | July 8, 2021 | 5

https://o2r.info/architecture/
https://o2r.info/architecture/
https://github.com/o2r-project/architecture/
https://docs.arc42.org/home/

ation, e.g., installing software libraries from a program-
ming language’s package distribution infrastructure, and
can also provide standardised APIs to store to containers
of the executable runtime environments. Data repository
service the reproducibility service with content for ERC
creation but can also store the completed ERCs. In turn
the data repositories may connect to archives and digital
preservation systems (rightmost column) for long-term
storage. These archives employ extended data and meta-
data management because a different kind of access and
re-use is of concern for these systems, e.g., to ensure long-
term access rights, and therefore these concerns are rele-
vant for the ERS even though it does not directly connect
to archives, as the ERS should ensure a smooth transfer
of created ERCs from storage to archives. The supporting
services also connect with each other, for example, the
execution infrastructure can access trusted data reposito-
ries to download data that for reasons of storage size are
not included within an ERC. All of these systems are con-
nected through Web protocols.

The solution strategy of the architecture describe the
architectural decisions. First, the developed solution is
set in an existing system of services, and first and fore-
most must integrate well with these systems, focusing on
the specific missing features of building and running ERCs.
These features are provided via a well-defined Web API in
the ERS. Second, internally a microservice architecture is
used to allow dynamic development, e.g., independent de-
velopment and deployment cycles, and support the large
variety of skills available in the academic development
team. This architecture comes at the cost of increased
application complexity when it comes to testing and de-
ployment. The application state is shared between mi-
croservices through a database. The database’s operation
log is used to power notifications and events across mi-
croservices and real-time updates of the user interface
based on WebSockets. Third, the ERS itself does not pro-
vide a reliable storage solution. The microservices simply
share a common pointer to a local file system path which
should be regarded as ephemeral. Forth, the client appli-
cation manages the control flow of all user interactions
and ensures the Web API operations are executed in the
required order. Finally, generic functions should be devel-
oped as standalone tools with a command-line interface
(CLI). The CLI allows integration into microservices and
independent usage at the same time. These generic func-
tions can be packaged in container images and executed
as containers by the microservices, which ensures easy dis-
tribution through a container registry and independent
updating from the microservices themselves, but also al-
lows to run tools either next to the microservices or in an
independent container cluster, thus providing scalability.

4.4. Building block view. The arc42 template defines ar-
chitectural components in alternating layers of black box,
where only the outside appearance and interaction op-
tions are described, and white box, where internal details
are given. A white box layer then includes components
described as black boxes, etc. In this work, we single out
the white box view on the reproducibility service (RS) as

shown in Figure 3. The ERS itself consists of a webserver
to distribute incoming API calls to the microservices as a
reverse proxy and to serve the static files of the user inter-
face. The webserver also manages secure communication
via HTTPS. The microservices run in containers. The use
containerised tools, namely containerit (Nüst and Hinz,
2019) and o2r-meta12, connect to a MongoDB document
database for ERC metadata, users, and session informa-
tion, connect to an Elasticsearch search index for full-text
search and advanced queries, and access a local shared
file storage which is mounted into every microservice con-
tainer. The webserver as well as the databases also run as
containers. The microservices are implemented in multi-
ple programming languages, namely JavaScript (Node.js),
R, and Python. Each microservice is generally responsible
for one endpoint in the API or for larger sets of features,
such as live notifications or exporting of ERCs.

4.5. Runtime view. The two main scenarios of ERC cre-
ation and ERC examination are described with sequence
diagrams in Figure 4 and Figure 5 respectively. In the
ERC creation sequence, the author creates an ERC from
their workspace of data, code, and documentation. The
author can provide these resources as a direct upload, but
a more comfortable process is loading the files from a
collaboration platform, e.g., from a public share created
at a cloud file storage provider. After the files are avail-
able, the o2r-meta tool tries to extract metadata from the
available files, so the user must not fill out all fields man-
ually. In the same step, the metadata is translated into
multiple file formats, broker metadata, and saved so that
exported ERCs are more likely to include metadata un-
derstood by other services, such as archives. The ERC
is now a non-public candidate compendium, until the the
users has checked and possible updated metadata, which
triggers a metadata validation, i.e., if all mandatory fields
are provided, and possible a further brokering. Then the
compendium is saved. If users want to provide access to
a candidate compendium, they can also create a public
link that gives read-only access and allows execution (op-
tion not included in diagram). Next, a user can start jobs
for a published compendium, i.e., execute the workflow.
Part of the job execution is to automatically create miss-
ing configuration files, i.e., the erc.yml, and the runtime
environment manifest and image. This relies on the con-
tainerit tool and the execution infrastructure. As the last
step of a successful job, the runtime environment image
is exported into the ERC. If configuration file and run-
time environment are already present, their generation
is skipped. Finally, the user starts a shipment, i.e., a depo-
sition of the ERC to a data repository. For this step, the
ERC is packaged as a Bag. To be able to check the correct
upload at the repository, the publishing of the shipment is
an extra action by the user.

In the ERC examination sequence, the user initiates
the opening of an existing ERC by providing a reference
such as DOI or URL. The ERS retrieves the ERC, saves
the files locally and loads the contained metadata. Then
the user can start a new job for the compendium. The

12https://github.com/o2r-project/o2r-meta

6 | https://doi.org/10.5281/zenodo.4818120 Nüst

https://github.com/o2r-project/o2r-meta
https://doi.org/10.5281/zenodo.4818120

Fig. 2. Business context; full scale image online at https://o2r.info/architecture/#31-business-context.

Fig. 3. White box Reproducibility Service; full scale image online at https://o2r.info/architecture/#527-whitebox-reproducibility-service.

Nüst ERC Web service | July 8, 2021 | 7

https://o2r.info/architecture/#31-business-context
https://o2r.info/architecture/#527-whitebox-reproducibility-service

Fig. 4. Runtime view ERC Creation; full scale image online at https://o2r.info/architecture/#61-erc-creation.

8 | https://doi.org/10.5281/zenodo.4818120 Nüst

https://o2r.info/architecture/#61-erc-creation
https://doi.org/10.5281/zenodo.4818120

user’s client can use the ID to connect to the live logs as
the job runs through all steps (see Section 5.1 for details
about the job steps). The job starts with creating a copy
of the compendium’s files for the job. The copy allows to
compare the original output, i.e., the display file, with the
newly created one. A copy-on-write file system is advan-
tageous for this step. Then the archived runtime image
is loaded from the file in the compendium into a runtime
repository. This repository may be remote and either pub-
lic or private, e.g. based on the Docker Registry or a GitLab
instance, or simply the local image storage. Then all files
except the runtime image archive are packed so they can
be send to a container runtime. The container runtime
can be local, e.g., the Docker daemon, or a container or-
chestration infrastructure such as Kubernetes. The con-
tainer run provides log updates as a stream to the mi-
croservices, which update the database, whose changes
trigger updates of the user interface. When the container
is finished, the microservice compares the created outputs
with the ones provided in the compendium using the erc-
checker13 tool. The result is a display file with highlighted
differences both in text and graphics, which is shown to
the user as can be seen in Figure 8. Based on these aids,
the reader, e.g., the reviewer, can quickly determine if de-
viations in the outputs are relevant or not, e.g., if they
are only graphical artefacts or acceptable numerical vari-
ation.

5. Reproducibility service

5.1. API. The ERS exposes its functionality via a REST-
ful HTTP API. The API is specified using the OpenAPI
model (Wikipedia contributors, 2021f). It uses WebSock-
ets (Wikipedia contributors, 2021i) for push-based noti-
fication from server to client and encodes requests and
responses in JSON. It is developed in a public reposi-
tory14, hosted online at https://o2r.info/api/, and archived in
Nüst (2018). The website provides access to the machine-
readable specification in YAML format15 and an HTML
rendering for reading.

The API provides several endpoints to manage compen-
dia and their metadata, compendium execution (jobs, and
links for authentication-free execution), compendium
substitution, compendium shipments, and users and their
authentication and access levels. For full examples of
resources, e.g., for ERC metadata, please see the demo
server and reference implementation (Section 5.2). The
management operations use matching HTTP verbs for cre-
ating (POST), listing or retrieving (GET), updating (PUT),
and deleting (DELETE) resources. Different user lev-
els allow or prevent certain operations only for specific
users, most importantly only “known” users after a man-
ual check following the registration are allowed to create
and examine ERCs. User authentication is based on the
OAuth 2.0 protocol (Hardt, 2012) and operation authen-
tication against the API uses a session cookie. The API
includes a version in the URL path and provides index

13https://o2r.info/erc-checker/
14https://github.com/o2r-project/api-spec/
15https://o2r.info/api/o2r-openapi.yml

responses to support client-side construction endpoints
and stability. The following JSON documents are the re-
sponses to the /api/ and /api/v1 endpoints. The latter
document lists all resources of the API that must be com-
bined in sequence, controlled by the client-side, to realise
the runtime interactions described in the Section 4.5.

{
"about": "https://o2r.info",
"versions": {

"current": "/api/v1",
"v1": "/api/v1"

}
}

{
"auth": "/api/v1/auth",
"compendia": "/api/v1/compendium",
"jobs": "/api/v1/job",
"users": "/api/v1/user",
"search": "/api/v1/search",
"shipments": "/api/v1/shipment",
"recipients": "/api/v1/recipient",
"substitutions": "/api/v1/substitution",
"links": "/api/v1/link"

}

Complex compound resources, such as
../compendium, also provide sub-resources to ac-
cess parts or related resources more conveniently, e.g.,
../compndium/abc12/jobs to access related jobs.
Query parameters on selected resources are provided to
filter the results. For example, the URL (spaces added for
readability) ../job? limit=10&compendium_id=abc12
&status=success&fields=user returns at most 10
jobs which succeeded, including the users who started
them, for the compendium with identifier abc12. The
../users resource facilitates user management and
../search the discovery of ERCs and jobs. As these are
common API features, they are not described in detail
here. Konkol et al. (2019b) describes the concepts of
user interface bindings and how to create new ERCs
through substitution, modelled in the ../bindings and
../substitution resources, in detail.

The execution of a compendium consists of a fixed se-
quence of job steps. The steps can have one of multi-
ple statuses: success, failure, and running. The over-
all job status is a combination of the steps’ statuses—if at
least on step is failure or running, so is the job. Some
steps can be skipped because the job for executing a com-
plete compendium and executing a workspace to create
a complete compendium share some steps that should
be readily reused in implementations of the API. The job
metadata captures logging messages and start/end time
separately for each step. Because jobs are computation-
ally intensive operations, users must be logged in to start
a job. The job steps are (cf. Section 4.5):

1. Validate the bag (skipped if workspace)
2. Generate compendium configuration (skipped if

present)
3. Validate compendium
4. Generate inner container manifest (skipped if

present)
5. Prepare image payload archive (to build and run the

image on remote hosts; possibly costly operation)

Nüst ERC Web service | July 8, 2021 | 9

https://o2r.info/api/
https://o2r.info/api/#section/User-levels
https://o2r.info/api/#section/User-levels
https://o2r.info/erc-checker/
https://github.com/o2r-project/api-spec/
https://o2r.info/api/o2r-openapi.yml

Fig. 5. Runtime view ERC examination; full scale image online at https://o2r.info/architecture/#62-erc-inspection.

Fig. 6. Screenshot of the ERS user interface showing the result of a failed job execution due to differences in a figure; left column: display file provided by the author, middle column:
display file generated by the ERS, right column: display file with highlighted difference generated by erc-checker.

10 | https://doi.org/10.5281/zenodo.4818120 Nüst

https://o2r.info/architecture/#62-erc-inspection
https://doi.org/10.5281/zenodo.4818120

6. Build image and add image tag erc:<erc
identifier>

7. Execute container
8. Check the display file of the job against the com-

pendium’s baseline
9. Save image to tarball (skipped if check failed)

10. Cleanup (implementation specific)

An editor or admin, but not users themselves, can cre-
ate a link with the resource ../link which provides a
second identifier for a specific compendium which allows
users to execute a compendium without logging in. Such
link identifiers may be short lived or dynamic.

The process of exporting a compendium to a storing
repository is called shipment (cf. Section 4.5) and is mod-
elled in the two endpoints ../recipient, which lists sup-
ported services, and ../shipment, which controls the
possibly costly and irreversible operation. To allow val-
idation in the receiving service, the export is a two step
process: first the new shipment is created, then the actual
publishment can be triggered.

5.2. Reference implementation. The microservice archi-
tecture results in numerous projects within the o2r code
organisation16. For easier evaluation and reproducibility,
all microservices are integrated in one single code repos-
itory reference-implementation17 using git submod-
ules, which is archived in Nüst (2018). The online demo
server is available at https://o2r.uni-muenster.de.

The following instructions require Docker (Wikipedia
contributors, 2021c) (tested with version 20.x) and GNU
Make (Wikipedia contributors, 2021e) (tested with ver-
sion 4.1). The commands must be executed in the base
directory of the reference-implementation. If Make is
not available (e.g., on Windows OS), then the instructions
of make targets in the Makefile may be executed manu-
ally on a command line. The target reproduce loads the
images saved to tarballs and executes them in a configura-
tion suitable for local testing and development based on
docker-compose (Docker Inc., 2019). The demonstra-
tion project includes a small OAuth provider so that users
can log in with different user levels with a single click.

clone https://github.com/o2r-project/reference-implementation
cd reference-implementation
make reproduce
to use git repo configuration and not Zenodo: make release

5.3. Examples. A number of example ERCs have been
published on the demonstration platform of the o2r
project—see Section 5.2 and on GitHub18. These exam-
ples include over a dozen scientific articles reproduced as
part of Konkol et al. (2019a). One ERC was part of a pilot
collaboration with the Copernicus Journal ESSD, which
conducts open reviews. The referee report (González Áva-
los, 2020) mentions the ERC positively.

A complete minimal example is given by the ERC
configuration file above (see Section 3.2) and the fol-

16https://github.com/o2r-project/
17https://github.com/o2r-project/reference-implementation
18https://github.com/o2r-project/erc-examples/

lowing four documents. The minimal example is pub-
lished at https://o2r.uni-muenster.de/erc/q7Eje. The data
file, data.csv, provides a simple statistics about cargo
ships19:

"year","capacity"
"1980",11
"1985",20
"1990",26
"1995",44
"2000",64
"2005",98
"2010",169
"2014",216
"2015",228
"2016",244

The Dockerfile defines the computational environ-
ment (extra line breaks for readability).

FROM rocker/geospatial:3.4.4
LABEL maintainer="o2r"
Packages skipped because in base image: [shortened]
WORKDIR /erc/
CMD ["R", "--vanilla", "-e",

"rmarkdown::render(input = \"/erc/main.Rmd\",
output_format = rmarkdown::html_document(),
output_dir = \"/erc\", output_file = \"display.html\")"]

Because of the small example, it installs no soft-
ware into the base image. The final line configures the
command to be run when the ERC is executed. The
Dockerfile and erc.yml are generated by the ERS, en-
suring that the rendering command matches the way that
the ERS mounts the ERC’s files into the container. The
other files are created by the author.

The source of the HTML display file, display.html,
shown in the left hand side of Figure 7, is not included
here. The display file can serve as the baseline for assess-
ing whether the reproduction was successful. The R Mark-
down document includes metadata and a simple plot func-
tion to show the input data:

title: "Capacity of container ships in seaborne trade from 1980

to 2016 (in million dwt)*"
author:

- name: "Daniel Nüst"
affiliation: o2r team

date: "2017"
output: html_document
abstract: |

Capacity of container ships in seaborne trade of [shortened]
doi: http://dx.doi.org/10.5555/666655554444

```{r plot, echo=FALSE}
library(knitr)
opts_chunk$set(dev="png", dev.args=list(type="cairo"), dpi=96)

data <- read.csv(file = "data.csv")
data <- data[sample(nrow(data)),]
barplot(height = data$capacity, names.arg = data$year,

ylab = "capacity", sub = "(c) Statista 2017")
```

[shortened for inclusion in paper]

Note the use of the sample(..) function, which ran-
domises the order of the data to demonstrate the display
of the check, shown in Figure 8. The R Markdown front-
matter could include additional information, such as a
licenses element or keywords, which are used by the

19 l’ Statista 2017, Source: https://www.statista.com/statistics/267603/capacity-of-container-ships-in-the-
global-seaborne-trade/.

Nüst ERC Web service | July 8, 2021 | 11

https://o2r.uni-muenster.de
https://github.com/o2r-project/
https://github.com/o2r-project/reference-implementation
https://github.com/o2r-project/erc-examples/
https://o2r.uni-muenster.de/erc/q7Eje
https://www.statista.com/statistics/267603/capacity-of-container-ships-in-the-global-seaborne-trade/
https://www.statista.com/statistics/267603/capacity-of-container-ships-in-the-global-seaborne-trade/

Fig. 7. Screenshot of ERC examination view in the ERS. The left hand side shows
the display file rendering in HTML, the right hand side allows to inspect the source
RăMarkdown document and the input data.

ERS to pre-fill the ERC creation form. The doi can link
to a related publication in case the ERC is created as a
supplement.

This example also demonstrates that creation of an
ERC is possible by hand. None of the generated files
(Dockerfile, erc.yml) are more complex than the main
file authored by a researcher, even if researchers need to
educate themselves to create the former file (cf. Nüst et al.,
2020). To create the outer package, command line tools
such as bagit20 can be employed. Finally, the ERC also
demonstrates that manual examination is feasible. First,
the outer package can be unzipped. Then, the ERC con-
figuration file defines the main document to inspect for
control code, trivial in this example but in complex work-
flows possibly not quite so easy, and the display file to
open for reading. The commands in the Dockerfile can
be used to recreate the computational environment man-
ually, with the complication that the base image must be
available to dig out the commands used to create it from
the image layer metadata.

6. Discussion

This work presents one specific implementation of how
computational reproducibility can be connected with
scholarly review and publishing. Naturally, a single im-
plementation of an API used only by one project team has
severe limitations and experiences are not generalisable,
not the least because of the confining context of a research
project. Nevertheless, the implementation nevertheless
points out many important aspects and taught valuable
lessons, which can help to adopt concepts, specifications,
or even software for a productive infrastructure.

20https://libraryofcongress.github.io/bagit-python/

Fig. 8. Partial screenshot of ERC check result in the ERS. Three columns compare
the display file provided by the author (left hand side) with the display file generated by
the ERS (middle). The right hand side column adds a visual highlight to show the differ-
ences between the two plots, in this case quite exaggerated in the columns, but small
differences, e.g., in the figure margins, could be easily judged by a human examiner as
irrelevant.

6.1. Project set-up, maintainability, and security. On the
project set-up and maintainability, the presented web ser-
vice does fulfil the need for an extensible trustworthy soft-
ware by being an open, FOSS project itself, prohibiting
vendor lock-in and standards lock-in, and ensuring the
crucial option to examine the platform itself. The ERS
focuses on one specific problem: creating and examin-
ing ERCs for aiding scholarly peer review so that code
central to claims made in a submission can be evaluated
(cf. Hawkins, 2019). It does not solve data curation21 or
storage, nor has it measures to evaluate quality of data,
software, or the scientific merit. This reduction, albeit
the internal complexity of the tools, improves the usabil-
ity and extensibility.

The complexity introduced through the many microser-
vices was good at the start as it provided flexibility, but
the need for consolidation for sustainability lead to re-
integration of some services since their inception. The
ERS itself uses containers and is therefore readily in-
stalled in various infrastructures. Furthermore, the ERS
as such is not limited to geospatial sciences at all, but
the communication within the community and the test-
ing and demonstrations with examples need to be tai-
lored towards a specific audience to increase chances for
adoption. This is partly an explanation for the numer-
ous, seemingly redundant, tools presented in Section 2.
On the long-term maintainability of the project, the indi-
vidual software components have a bus factor (Wikipedia
contributors, 2021b) of 1, at most 2, which is of course
bad. A mitigation that works at least until the ERS it-
self breaks, could be the integration of the ERS with
repo2docker [cf. project_jupyter_binder_2018], so that
an ERC saved to a repository can be loaded into Binder-
Hub, where the erc.yml triggers the Binder to be opened
with the ERS and o2r user interface. Regarding security,
containerisation offers good mechanisms for controlling
unknown code with respect to used resources, and the
container sandbox should be further hardened for produc-
tive systems, e.g., using AppArmor (Wikipedia contribu-
tors, 2021a). The ERS could also be extended to only ex-

21To get a glimpse of the curators’ perspective, take a look at the first draft for a GeoJSON curation
primer, a file format probably deemed “simple” be geospatial data researchers[ˆ14].

12 | https://doi.org/10.5281/zenodo.4818120 Nüst

https://libraryofcongress.github.io/bagit-python/
https://doi.org/10.5281/zenodo.4818120

amine ERCs created by itself through signing ERCs. This
gives the ERS control over the image build process, es-
pecially the base image and the allowed software repos-
itories. The main security feature are the real user pro-
files through the user login based on ORCID. The ORCID
project has measures to identify fake accounts, and users
are given the rights to create ERCs manually by ERS ad-
ministrators.

Finally, the ERS is fully dependent on the Docker con-
tainer runtime at this point—a technology that while sta-
ble at its core and subject to standardisation itself22, could
be reduced considerably in its features to provide a sta-
bler footing tailored to research and preservation require-
ments. More modern and less vendor-specific alterna-
tives, including rootless Docker or plain OCI-based tools
for building and running images, should also be explored.
Beyond the sandboxing of Docker and the controlled user
access, no further security measures have been explored.
The more containers are used in research, the more likely
it becomes that a special container and image specifica-
tion, which can be maintained long term and is tested
with preservation strategies (cf. Emsley and De Roure,
2018; Rechert et al., 2017), will be developed, e.g., based
on Singularity Image Format23 or on OCI Image Format24.
Besides preservation, specialised container runtimes can
also provide provenance metadata, improve performance,
and enable composition into pipelines (Youngdahl et al.,
2019; Molenaar et al., 2018). These adoptions are needed
to resolve the conflict between reproducibility and tools
that are largely driven by requirements for scalable cloud
computing, which where not designed with preservation
in mind 25. An alternative mitigation could be multiple
(cf. Glatard et al., 2018) container engines, which could
not be realised for the ERS yet. Furthermore, the lessons
learned from alternative approaches, such as ActivePa-
pers (Hinsen, 2015), should be critically evaluated and
translated into improvements for the next generation of
the ERC and ERS. Finally, the many diverse approaches
for sharing reproducible workflows (cf. related work) are
important to explore alternatives and serve specific needs,
but there certainly is also potential for standardisation
and consolidation that would be beneficial for long-term
maintenance of the ERS or other platforms (cf. Mecum
et al., 2018).

6.2. Understandability and usability. The ERC is not an
abstraction that hides uncertainty. Instead it is sim-
ple enough that is should be understandable by all re-
searchers using computational methods. The core con-
cepts of computational notebooks and containerisation
are becoming more widespread across researchers im-
proving reproducibility of their works, and therefore the
combination of both into the ERC is likely to be under-
standable and usable, too. One can examine ERCs with-
out the reproducibility service26, and the ideas of mul-

22https://opencontainers.org/
23https://github.com/hpcng/sif
24https://github.com/opencontainers/image-spec
25See for example the challenges around the tar format used in container images: https://

www.cyphar.com/blog/post/20190121-ociv2-images-i- tar
26https://o2r.info/erc-spec/user-guide/examination/#manual

tiple entrypoints and nested containers are quickly ex-
plained. However, it is more realistic to require from re-
searchers to use R Markdown than to ask them to learn
metadata standards and become proficient in container-
isation. The price for a stable capturing of the compu-
tational environment—executing the workflow once— is
therefore acceptable. The tedious task of capturing rele-
vant metadata is also automated as much as possible and
ensures high user-friendliness for authors. The organisa-
tion of the ERC contents beyond the entrypoints are lie
with the authoring researchers. The ERS makes sure the
ERC is not a black box, but the author makes sure the
contents are understandable. More expressive modelling
of the workflow could be beneficial and related specifica-
tions do it, but the flexibility does have advantages when
it comes to adoption and adaptability for different com-
munities. Authors may choose to use, e.g., digital scien-
tific notations [cf.] that are suitable for their work, as
long the the full workflow is executed from the main doc-
ument. The used template or structure can be exposed
transparently in the ERC metadata via a resolvable iden-
tifier. Notably, the ERC is not a collaboration format. We
expect collaborating researchers to work on the level of
notebooks and workflow pipelines, which they can then
wrap in an R Markdown document when submitting their
study. Finally, the ERC and Web service need to be evalu-
ated from a user perspective with a larger pilot (cf. prod-
uct based approach and focus on user needs as argued
in (Whitehouse, 2019)) to complement the internal re-
flections presented here. Some specific challenges could
already be identified, such as the lack of an explicit con-
figuration of the time zone that leads to check failures
because times are off by one hour between original and
reproduced display file. In that case, the environment
variable TZ=CET in the original workflow could resolve
the issue. However, only and exposure to various types
of users and workflows can harden the processes enough
against edge cases.

One core challenge is the proper modelling and docu-
mentation of licenses. This is quite complex for an aggre-
gated artefact like the ERC, though it naturally works best
with open data/methods/source software/text licenses,
if it can made to work with non-open licenses or pro-
prietary software at all, which was not considered for
this work. The current specification and implementation
merely scratch the surface with individual licenses for the
main components, but also go further in explicitly mod-
elling them as other reproducibility formats. This is a
compromise to at least provide compatible licenses for im-
portant parts, but does not do the importance of software
citation (Katz et al., 2021) and giving contributors credit
enough justice. The redistribution of full software stacks,
however, should be less of a licensing issue as free and
open source software licenses explicitly allow this, espe-
cially for unchanged software. Software and data cita-
tion remain a challenge for all aggregating reproducibility
packages, yet the ERC could have the potential to derive
machine-readable metadata for automating parts of work-
flow citation networks.

For developers and operators we see the usability of

Nüst ERC Web service | July 8, 2021 | 13

https://opencontainers.org/
https://github.com/hpcng/sif
https://github.com/opencontainers/image-spec
https://www.cyphar.com/blog/post/20190121-ociv2-images-i-tar
https://www.cyphar.com/blog/post/20190121-ociv2-images-i-tar
https://o2r.info/erc-spec/user-guide/examination/#manual

the API as quite good, though a better distinction between
loading of workspace and opening of an ERC, which cur-
rently is realised with complex payloads to the same API
endpoint, could be helpful. The integration into publish-
ing systems has not been realised, e.g., regarding user au-
thentication. only implemented authentication provider
is ORCID27, which may not work for interested publish-
ers. Furthermore, the procedural integration with pub-
lishing platforms is still under development with a focus
on the Open Journal Systems (OJS). The performance of
the ERS was investigated with a bespoke load test script
which simulated parallel ERC creation and examination
sessions. The sessions included a small randomness and
relatively long pauses where use interaction, e.g., reading
a paper or filling out a form, can be expected, and a fixed
execution time of the actual process. Using the existing
demo server, the wait times during tests were found to be
generally acceptable, given that the user is aware of rather
complex operations happening. A detailed report on the
load tests is part of the ERS API documentation28. The
custom load testing code is very well suited for evaluating
ERS deployments and their scalability in different infras-
tructures. Finally, the sustainability of the implementa-
tion is, naturally for a research prototype, unclear. While
several developers have worked on the platform, which
increases trust in documentation and maintainability, the
microservice-based approach also led to some fragmenta-
tion with multiple used programming languages (Node.js,
Python).

6.3. Capabilities and features. Regarding the capabilities
and features, the ERS can serve an important purpose for
integrating workflow reproductions into peer review. The
ERS allows to take snapshots at the point of submission
and make these snapshots available to peer reviewers can
assist examination of manuscripts. First, a visual com-
parison of the display files created by the authors and
the ERS itself. Second, the UI bindings to interact with
specific parts of the workflow. Third, the substitution of
individual files in an ERC with files from a second ERC,
or, in the future, with locally available files, enables cre-
ation new workflows and even deeper examination. The
ERS can thereby assist the human, who needs to be in the
loop to make the judgement call about how close some-
thing has to be to the original result to be deemed a repro-
duction, i.e., a margin of acceptable discordance or “zone
of reproducibility” that helps to separate reproducibility
from validity (ter Riet et al., 2019). Hinsen (2018) distin-
guishes reproducibility as a software challenge, whereas
a Human-Computer Interaction (HCI) perspective focuses
on usage and reasoning, which is more important for ver-
ifiability In the same sense, UI bindings aide verification
on the basis of a reproducible computation.

A part of the potential for assisting researchers that is
largely untapped is the area of research discovery based
on ERC. While the search endpoint of the API had been im-
plemented using a powerful search index, Elasticsearch,
the support was dropped because (a) it made the repro-

27https://www.orcid.org/
28https://o2r.info/api/evaluation/load_test.html

ducibility service development and installation more com-
plex, and (b) discovery through the reproducibility ser-
vice is not a long-term solution as it only has short term
storage of ERCs. Leveraging the connections between the
ERC’s parts and the exposure of main document and soft-
ware stack for search and discovery should be placed at
the repositories storing ERCs.

The snapshot is naturally a compromise between
reliability—something works now for a specific purpose—
and reusability—something can be extended, build upon.
An “active maintenance” (Peer et al., 2021), where work-
flows are constantly tested with new software releases
and fixes are applied, would be more sustainable and
more powerful to enable extensibility and reuse. How-
ever, the ERC as a snapshots but one that is in line with
the common rhythm of term-based funding and paper
publications as scientists’ main means of communication
(cf. Peng and Hicks, 2021).

The “closed” self-contained approach of an ERC has ad-
vantages for many workflows and can fit anything that
works on a researcher’s regular machine, but needs to be
revisited with an increasing number of big datasets, sen-
sitive data, and complex computations, e.g., in Remote
Sensing or tracking data. Authors may already choose
the most suitable level of detail and preprocessing needed
to communicate their work effectively, and widely known
and standardised steps may be skipped. Also, higher-level
integrated data of more manageable size, e.g., analysis
ready data [ARD; Frantz (2019)], may help to reduce ERC
sizes. Going beyond steps that individual authors can
take to support big data science, the idea to support an
allowlist of trusted data repositories and computing ser-
vices (cf. Nüst and Schutzeichel, 2017), which may be
contacted by ERCs during creation and execution through
a controlled network channel, is currently under develop-
ment. For example, a journal may allow a collaborating
repository or a reliable open computing infrastructure to
be used by an ERC’s workflow. The long-term feasibility
could be improved if a journal critically picks these ser-
vices and prefers open APIs, such as openEO for integrat-
ing external computing resources (Schramm et al., 2021).
These allowed connections must be made transparent in
the ERC configuration to enable reproducibility services
to be able to decide if they can create or examine a par-
ticular compendium. Recording outside communication
during the initial execution and replaying for future exam-
inations could also be a way to create a backup of external
resources, similar to a performance enhancing cache. The
nature of secured communication leads to these backups
being black boxes, though, and they are therefore chal-
lenging for open research and preservation. Moreover,
external connections may also be a solution to the fol-
lowing problem: The ERC and ERS do not have a build-
in option to handle privacy or sensitive data, though the
file-based substitution mechanism could be extended to
replace synthetic public data with protected real datasets.
Furthermore, the ERS could be extended with existing ap-
proaches for controlled access both for during and after
peer review (cf. Nüst and Pebesma, 2020).

At first glance, the ERS seems to be severely limited by

14 | https://doi.org/10.5281/zenodo.4818120 Nüst

https://www.orcid.org/
https://o2r.info/api/evaluation/load_test.html
https://doi.org/10.5281/zenodo.4818120

the focus on R Markdown for the main file and HTML for
the display file. Yet, R is the lingua franca of statistics and
more and more used, but more importantly, R Markdown
as common ground format for reproducible research is
second to none when it comes to creating publication
ready display documents, including citation management,
templates, and both Web and print output formats (i.e.,
PDF), and transparency due to its plain text nature29.
Templates for R Markdown could be provided by pub-
lishers though today are mostly community maintained
(Allaire et al., 2021b). However, adopting R Markdown
as the core internal format may be too high of a hur-
dle for publishers, despite the problems that copy-editing
poses for detailed reproducibility. Publisher-led approach
such as ERA (Guizzardi et al., 2021) that connect compu-
tational notebooks with standardised publishing formats
could be easier to adopt, but lack some of the ERS’s fea-
tures. R Markdown also supports more programming lan-
guages than just R and, if nothing else works, a quite
short and simple R Markdown notebook could be used as
a wrapper for starting the actual process. Such wrapping
may even be automated (cf. Glatard et al., 2018) and
templates can lower entry barriers. Even authors used
to common word processors can participate in collabora-
tions thanks to round-trip conversion tools with support
for tracking changes using the prototypical redoc pack-
age (Ross, 2021).

6.4. Extent of capturing and ERCs’ lifespan. The ERC cap-
tures all building blocks of a given piece of research. It
clearly distinguishes between workflow specific files and
the required runtime environment through its concept
of nested containers. The ERC specifically attempts to
capture relevant metadata for reproducibility, such as au-
thors, the used libraries, or the UI bindings, and provides
these metadata in multiple encodings. Also, not only the
extent but also where parts are captured are crucial for
reassuring accessibility. In the ERC, the actual workflow
scripts and data are captured in the outer container be-
cause data is more long-lived than software30 and it will
be accessible even when the ERS and the inner container
break. The ERS procedures allow to capture these de-
tailed metadata with very limited user interaction, e.g.,
the metadata extraction capabilities for geospatial extent.
Nevertheless, the interaction with the actual code session,
which is used to capture the computing environment, is
yet to be tapped for even better metadata. The inner con-
tainer does explicitly not capture the operating system
kernel. This limitation is acceptable—the kernel almost
never introduces breaking changes. Furthermore, the
ERC does not capture hardware, which makes sense, but it
should better document the required hardware. Contain-
ers can very well be connected to accelerated computing
infrastructures, such as GPUs (Haydel et al., 2015), and
the ERC configuration file should document this.

The limitations of the ERC’s self-containedness were

29The second broadly used notebook format, Jupyter Notebook, is actively developing similar capabilities,
e.g., using Jupytext (https://jupytext.readthedocs.io/), nbconvert (https://nbconvert.readthedocs.io/),
and Jupyter Book (Executable Books Community, 2020). With these tools, the ERC concept of trans-
parent main document and display file could be implemented.

30cf. http://www.activepapers.org/

discussed above. With respect to the extent of capturing,
the ERS could be enhanced to support the often service-
based GIScience and geospatial data science by not only
containing a single runtime environment for the workflow,
but by including multiple containers for running the re-
quired APIs. These containers would have to be orches-
trated, e.g., using docker-compose (Docker Inc., 2019),
for ERC examination. Examples are scientific data storage
and processing capabilities using services such as SciDB
(Appel et al., 2018) or OGC WPS implementations (Díaz
et al., 2008). While many of these services use geospatial
libraries that could also be directly used in a workflow,
capturing them as-is and keeping the client-side workflow
code could reduce overheads for authors. How much this
could be automated would depend on the openness of the
used third party services, but manual ERC creation seems
likely to be required. Furthermore, limitations concerning
scalability might arise though data subsets for demonstra-
tion could mitigate this problem.

Regarding the ERC’s lifespan, making research re-
producible forever is not a wise goal. The lifespan is
discussed here disregarding general ignorance of how
quickly digital resources and free services may decay or
disappear31. First, we cannot imagine today how com-
puters will look like in 50 or 60 years. Science histori-
ans might still find a lot of valuable information in ERC,
though. Second, even though some software (e.g., FOR-
TRAN, GNU Make) has been around a long time, for the
majority of research workflows it is reasonable to assume
that after not being actively maintained (Peer et al., 2021)
for a while, a re-implementation based on the logic, which
still readable within the source code, is more feasible than
making a workflow executable again. At the same time,
we do not expect pieces of software that are relevant and
useful to simply disappear within a few years and only be
preserved in ERCs. Therefore, the benchmark should be
whether a snapshot of an often fragile software stack is
executable for around the same time that is currently re-
quired for data to be kept available—around 10 years. We
think the ERC and the ERS, both using current container-
isation technology, can achieve that and an organisation
(e.g., a publisher) which bases their workflow on ERCs
could reasonably support a software system for at least
that time frame. The longevity of ERS and ERC could be
increased with a specialised container runtime that may
reduce the feature set but focuses on long-term execution
of containers. At this point, however, this assumption
cannot be tested but should be checked in a few years.
Then, “old” ERCs could be revisited to learn more about
the preservation of computational workflows, e.g., how
to ensure the “deep integrity” of fully containerised work-
flows. ERCs could be recreated regularly with current ver-
sions of the computing environment (re-capturing of the
inner container) in a fully automatic way to identify both
when dependencies and when the infrastructure breaks.
We acknowledge a half life of computations and “exact
repeatability”, but the medium term executability of ERC
is already a huge improvement over the current state of

31This XKCD comic illustrates the fragility of what we just assume will still work next year: https:
//xkcd.com/1909/.

Nüst ERC Web service | July 8, 2021 | 15

https://jupytext.readthedocs.io/
https://nbconvert.readthedocs.io/
http://www.activepapers.org/
http://ivory.idyll.org/blog/2017-pof-software-archivability.html
https://xkcd.com/1909/
https://xkcd.com/1909/

declining availability already for data (Vines et al., 2014).
Peng (2017) suggests to introduce limiting principles

so that practical implications do not break the idea re-
producibility. He discusses the audience (Reproducible for
Whom?) and time span (For How Long?) and comes up
with the idea of an endowment for reproducible publica-
tions with an author pays model, which would fit grant-
based research because of a single payment. Peng’s back
of the napkin calculation for data storage of just 10GB
alone easily reaches costs higher than many of today’s
APCs. The same considerations need to be explored for
ERCs, and reasonable limits may very well be required
for a widespread adoption.

6.5. ERCs in the spotlight. In this section, we critically dis-
cuss the ERC concept and the ERS implementation against
a number of scales and terms for reproducibility. The clas-
sifications are ordered by year of publication and stem
from all scientific disciplines.

Vandewalle et al. (2009) distinguish six degrees of repro-
ducibility, of which an ERC could reach the highest level,
5, because an independent researcher can use the ERS as
a free tool and with minimal effort. The requirement to
spend “at most 15 min”, however, depends on the pack-
aged data and method, and the author’s decision whether
to package a reduced example or not.

Peng (2011) defines the spectrum of reproducibility as
ranging from the irreproducible “publication only” to a
gold standard of fully linked executable code and data.
The ERC reaches the gold standard. When code and data
are linked and executable, one may zoom into the spec-
trum and define a spectrum of executability within the
highly reproducible workflows. This position on this sub-
spectrum is determined through time since ERC creation,
workflow complexity, and reviewers expertise—all at the
same time. In practice, the executability may at a min-
imum start with a README file, which puts the high-
est burden on the reviewer. Increasingly more accessible
practices would be a computational notebook, a research
compendium, and finally an ERC, which puts increasing
burden on the author while easing executability for the
reviewer.

Gavish and Donoho (2012) describe three “Dream Ap-
plications” that would be possible if verifiable computa-
tional research (VCR) would be adopted. The ERC en-
ables all three applications. It indirectly supports Search
for research that uses a specific dataset or code and Amal-
gate for fusioning data and results, as data, code, and re-
sults are contained and could be indexed. The UI bindings
and the substitution mechanism are a realisation of the
Tweak application to interact and experiment with com-
putational results.

Zhao et al. (2012) investigate decay of computational
workflows over time regarding their re-execution and re-
production. They classify causes for workflow decay into
four categories, all of which can be mitigated effectively
by the ERC (as well as by their own tool). The ERC
prohibits volatile third-party resources, missing example
data, missing execution environment, and insufficient de-
scriptions about workflows, because of the captured build-

ing blocks and self-containedness.
Stodden et al. (2013) devised a five-level taxonomy for

computational research, classifying it as reviewable, repli-
cable, confirmable, auditable, and open/reproducible.
They also define the terms verification and validation. Re-
search published as an ERC reaches the highest level of
open and reproducible research, because it demands full
openness for a fully available auditable workflow, and pro-
vides verification, because it allows to check if there are no
errors in the code, and is thereby a support for validation
by other researchers.

Thain et al. (2015) describe techniques for keeping
software and computing environments executable and list
a number of objectives for digital preservation. These
techniques are presented between the two extremes of
“preserving the mess” and “encouraging cleanliness”. We
place the ERC between those extremes. The outside pack-
aging is quite clean for the execution of the full workflow,
and UI bindings document some configurable parameters,
however, the ERC is far from the details captured by work-
flow engines such as Umbrella (Meng and Thain, 2015) or
Taverna (Wolstencroft et al., 2013). The automated cre-
ation of containers for the runtime environment mitigates
some of the shortcomings Thain et al. describe for virtual
machines and container technology as “messy”, but the
ERC cannot capture distributed systems (machines, file
systems). Regarding the preservation objectives, the ERC
focuses on the Identical Verification verifying the same soft-
ware and data lead to the same results. The execution
within the ERS also realises a New Environment Verifica-
tion, especially if the author does not provide a recipe for
the inner container. The ERS does not allow to update the
computing environment for New Software Verification, but
the substitution can, within limits, be used for Extension
to New Data respectively .. New Software.

Benureau and Rougier (2018) define five ordered char-
acteristics for useful code in a scientific publication: it
should be re-runnable, repeatable, reproducible, reusable,
and replicable. The ERC can fulfil all these require-
ments through its self-contained yet transparent proper-
ties, though the author must still carefully set-up a work-
flow to not fall into any traps, e.g., with randomness, and
enable reuse, e.g., with documentation, modularisation,
or ease of configuration. The characteristics are achieved
in part because different parties execute the code, the au-
thor and the ERS, and the ERS is designed for peer re-
view processes, providing more eyes on the code and data.
The ERC surely provides the details that are often missing
from the manuscript itself and can thereby support repli-
cation.

Chen et al. (2019) define Guiding principles towards
reproducibility for individual researchers or research
groups, but the principles are transferable to a repro-
ducibility infrastructure. The ERC clearly defines a repro-
ducibility goal: package a workflow so that it can enable
evaluation during peer review. However, it does not re-
quired incorporate best practices early, as it only requires
a reproducible workflow at the time of submission, and
admittedly creates a new platform instead of extending
existing ones to be able to innovate. One would hope

16 | https://doi.org/10.5281/zenodo.4818120 Nüst

https://doi.org/10.5281/zenodo.4818120

though that the expectation to submit an ERC should lead
to adopting reproducibility practices early in projects. The
ERC and ERS do require structure to make knowledge
both human and machine readable and capture content
and workflows well. The last three principles are rather
cultural goals that could be pursued with the help of ERC
and ERS.

Oliveira et al. (2020) describe an approach to evalu-
ate software systems for reproducible software artefacts.
Their reproducibility pyramid has 7 levels in three main
categories: accessibility, executability, and interactive.
The ERC and ERS enable all these levels, though only only
binaries of the runtime environment are preserved in the
inner container, which Oliveira et al. see as a risk, and the
interactivity is focused on UI bindings and substitution,
but does not provide a full development environment.

7. Conclusion & future work

The functionality of ERCs and the connection with cru-
cial parts for scientific infrastructure has been demon-
strated based on the reproducibility service and selected
workflows. The user interface and service implementa-
tion can lower the barriers to share snapshots of research
workflows for review and reading, and they can be inte-
grated in a scholarly publication process. At least the arte-
facts of a reproducibility package can be preserved, for
a time frame suitable to improve understanding and col-
laboration of relatively recently published results. ERCs
and the designed infrastructure could also be connected
to more radical changes in publishing practices. For ex-
ample, piecemeal publication, review and publishing ap-
proaches like Octopus (Octopus team, 2020) and other
evolutions in academic publishing (Tennant et al., 2019),
disruptive ways to distribute and review research such as
Academic Torrents (Cohen and Lo, 2014) or overlay jour-
nals (Brown, 2010), and also novel ways of presenting,
collaborating, and interacting with research outputs (Kray
et al., 2019). It remains to be seen if the technical and or-
ganisational innovations can benefit from each other or
are better introduced successively.

However, a broad uptake was not achieved yet and
the open research challenges summarised a few years ago
by Freire et al. (2016) and Thain et al. (2015) are far
from being answered today, though the ERS and ERC can
contribute to addressing them. The slow pace of change
can attributed to the many moving parts for adopting to
more reproducible and transparent, such as author guide-
lines, researcher skills, editorial and review procedures,
and publishing systems. This makes it really challeng-
ing for publishers to innovate, though their options to
promote reproducibility are widely discussed (e.g., Hry-
naszkiewicz, 2020; Eglen et al., 2018). However, existing
pilots yield promising results with a strong institutional
support (Guizzardi et al., 2021; Hawkins, 2019). The
complexity of cultural change also slows down seemingly
small but possibly impactful changes, such as establishing
“reproducibility package” a first level citizen or type of re-
search output in databases such as CrossRef or reposito-
ries such as Zenodo. This would give recognition and aide
discovery of both data and software. Nevertheless, the

presented software does provide a basis for further testing
with stakeholders, as to improve the understanding of the
remaining barriers for individuals (e.g., authors, review-
ers, editors) and organisations (e.g, publishers, scholarly
societies, scientific communities). The technical solutions
for reproducible publications and transparent reviews can
thereby help to support change in community practices
and norms. These tests can go hand in hand with other
solutions to supersede PDF papers, such as peer-reviewed
Jupyter Notebooks32, and with support offerings for repro-
ducible research, e.g., by academic libraries (Sayre and
Riegelman, 2019).

With respect to the further development of the tech-
nologies, the o2r project aims to realise a tight integration
of the ERC with Open Journal Systems33 (OJS). Usage in
other publishing software platforms would strengthen the
validation of the concepts and implementation, however,
a more realistic step-by-step approach could be to use
ERCs in specialised workflow review and execution pro-
cesses as part of “regular” peer review (Nüst and Eglen,
2021). For a scalable infrastructure, existing tools for
orchestration of ERC creation and examination sessions,
such as Kubernetes (Wikipedia contributors, 2021d) or
BinderHub (Project Jupyter et al., 2018), could be used
thanks to the fully containerised approach of both the re-
producibility service implementation and the runtime en-
vironment of the ERC. While all specifications and imple-
mentations of the ERC Web service are open, the creation
of reusable tools in different languages to more directly
work with ERCs, e.g., validation and inspection functions
in R or Python, and finding external collaborators to im-
prove the specifications, e.g., by creating a formal schema
file for the ERC configuration file format, would benefit
uptake and usability for developers.

The biggest barrier remains the question of who
takes responsibility to enable and finance computa-
tional reproducibility for scientific papers by providing
infrastructure—a problem that is not even solved for fi-
nancing possibly less dynamic and demanding infrastruc-
tures for data (Tennant et al., 2019; Nature Editorial,
2017). There is a need to better integrate different re-
search outputs and to convince funders and journals that
they should request and better support openness and re-
producibility as defaults (EOSC Executive Board Work-
ing Group (WG) Architecture Task Force (TF) SIRS, 2020;
Porubsky et al., 2021)—ERC and ERS can facilitate such
goals. Is infrastructure for computational reproducibil-
ity a service offered by publishers as part of their busi-
ness model, or will readers pay with every execution? If
readily usable computing resources are given, it will be-
come relevant to understand working practices on code
execution during peer review (Nüst et al., 2021). The
increased openness and a growing number of individual
practitioners as well as local to international initiatives
around open science and reproducibility are promising
drivers so that an open community-owned research in-

32https://www.earthcube.org/notebooks
33See blog post at https://o2r.info/2020/02/26/OJS-workshop-HD/.

Nüst ERC Web service | July 8, 2021 | 17

https://www.earthcube.org/notebooks
https://o2r.info/2020/02/26/OJS-workshop-HD/

frastructures will eventually strive34. “Transparency can
improve our practices even if no one actually looks, simply
because we know that someone could look.” (Nosek et al.,
2012) Packaging research workflows and outputs as Exe-
cutable Research Compendia can enhance existing scien-
tific practices by eventually enabling infrastructures pro-
viding transparency, reproducibility, and reusability.

Acknowledgments. This work is supported by the project
Opening Reproducible Research (o2r, o2r.info) funded by the
German Research Foundation (DFG) under project numbers
PE 1632/10-1, KR 3930/3-1 and TR 864/6-1 for phase 1 and
PE 1632/17-1, KR 3930/8-1, and TR 864/12-1 for phase 2. We
thank Edzer Pebesma for repeated feedback on this manuscript.
The ideas and implementations presented in this article are
based on the work of the whole o2r team: Markus Konkol, Marc
Schutzeichel, Edzer Pebesma, Christian Kray, Holger Przibytzin,
Jörg Lorenz, Rehan Chaudhary, Fabian Fermazin, Philipp Glahe,
Juan Sebastian Garzón Alvarado, Laura Goulier, Matthias Hinz,
Nick Jakuschona, Jan Koppe, Timm Kühnel, Torben Kraft, Lukas
Lohoff, Tom Niers, Jan Suleiman, Yousef Qamaz. On top of that,
the great online communities of Open Science and Reproducible
Research have inspired and directly shaped many of the ideas in
this work; we have tried to diligently record origins of earlier
ideas and parallel developments.

References
Akhlaghi M, Infante-Sainz R, Roukema BF, Khellat M, Valls-Gabaud D,

Baena-Gallé R (2021). “Toward Long-Term and Archivable Reproducibil-
ity.” Computing in Science Engineering, 23(3), 82–91. ISSN 1558-366X.
doi:10.1109/MCSE.2021.3072860. Conference Name: Computing
in Science Engineering.

Allaire J, Xie Y, McPherson J, Luraschi J, Ushey K, Atkins A, Wickham H,
Cheng J, Chang W, Iannone R (2021a). rmarkdown: Dynamic Documents
for R. R package version 2.8, URL https://github.com/rstudio/rmarkdown.

Allaire J, Xie Y, R Foundation, Wickham H, Journal of Statistical Software,
Vaidyanathan R, Association for Computing Machinery, Boettiger C, El-
sevier, Broman K, Mueller K, Quast B, Pruim R, Marwick B, Wickham C,
Keyes O, Yu M, Emaasit D, Onkelinx T, Gasparini A, Desautels MA, Leut-
nant D, MDPI, Taylor and Francis, Öreden O, Hance D, Nüst D, Uvesten
P, Campitelli E, Muschelli J, Hayes A, Kamvar ZN, Ross N, Cannoodt R,
Luguern D, Kaplan DM, Kreutzer S, Wang S, Hesselberth J, Dervieux C
(2021b). rticles: Article Formats for R Markdown. R package version 0.20,
URL https://CRAN.R-project.org/package=rticles.

Appel M, Lahn F, Buytaert W, Pebesma E (2018). “Open and scal-
able analytics of large Earth observation datasets: From scenes to
multidimensional arrays using SciDB and GDAL.” ISPRS Journal
of Photogrammetry and Remote Sensing, 138, 47–56. ISSN 0924-
2716. doi:10.1016/j.isprsjprs.2018.01.014. URL https://
www.sciencedirect.com/science/article/pii/S0924271617300898.

Auer S, Haelterman N, Weissgerber T, Erlich JC, Susilaradeya D, Julkowska
M, Gazda MA, Abitua A, Niraulu A, Shah A, Clyburne-Sherin A, Guiquel
B, Alicea B, LaManna C, Ganguly D, Perkins EJ, Jambor H, Li IMH,
Tsang J, Kamens J, Teytelman L, Paul M, Phuyal S, Schmelling N,
Crisp P, Sarabipour S, Roy S, Bachle S, Tran MTK, Ford T, Steeves
V, Ilangovan V, Schwessinger B, Jadavji N (2020). “Reproducibility
for Everyone: A Community-Led Initiative with Global Reach in Repro-
ducible Research Training.” Technical report, OSF Preprints. doi:
10.31219/osf.io/dxw67.

Benureau FCY, Rougier NP (2018). “Re-run, Repeat, Reproduce,
Reuse, Replicate: Transforming Code into Scientific Contributions.”

34For example, Repro4Everyone (https://repro4everyone.org/, Auer et al., 2020), ReproHacks (https://
reprohack.github.io/reprohack-hq/), and The Turing Way (https://www.turing.ac.uk/research/research-
projects/turing-way-handbook-reproducible-data-science) on educating researchers, Invest in Open
Infrastructure (IOI, https://investinopen.org/) for funding community-owned open technologies and sys-
tems for research and scholarship, or novel priorities and processes in funding schemes (Cruz and
de Jonge, 2020).

Frontiers in Neuroinformatics, 11. ISSN 1662-5196. doi:
10.3389/fninf.2017.00069.

Boettiger C (2015). “An Introduction to Docker for Reproducible Research.”
SIGOPS Oper. Syst. Rev., 49(1), 71–79. ISSN 0163-5980. doi:
10.1145/2723872.2723882.

Bouffler B (2019). “Keynote: Delivering on the promise of Research Comput-
ing.” Gesellschaft für Informatik e.V. in TIB AV-PORTAL. https://doi.org/
10.5446/42484#t=15:31,16:20 (time stamp 15:31; last accessed: 31 May
2021).

Brammer GR, Crosby RW, Matthews SJ, Williams TL (2011). “Paper Mâché:
Creating Dynamic Reproducible Science.” Procedia Computer Science, 4,
658–667. ISSN 1877-0509. doi:10.1016/j.procs.2011.04.069.

Brown J (2010). “An introduction to overlay journals.” Report, Repositories
Support Project, UK. URL https://discovery.ucl.ac.uk/id/eprint/19081/.

Buckheit JB, Donoho DL (1995). “WaveLab and Reproducible Re-
search.” In A Antoniadis, G Oppenheim (eds.), Wavelets and Statis-
tics, number 103 in Lecture Notes in Statistics, pp. 55–81. Springer
New York. ISBN 978-0-387-94564-4 978-1-4612-2544-7. doi:
10.1007/978-1-4612-2544-7_5.

Castleberry DG, Brandt SR, Löffler F (2013). “Inkling: An Executable
Paper System for Reviewing Scientific Applications.” In 2013 In-
ternational Conference on Social Computing, pp. 917–922. doi:
10.1109/SocialCom.2013.142.

Chard K, Gaffney N, Jones MB, Kowalik K, Ludäscher B, McPhillips T,
Nabrzyski J, Stodden V, Taylor I, Thelen T, Turk MJ, Willis C (2019).
“Application of BagIt-Serialized Research Object Bundles for Packag-
ing and Re-Execution of Computational Analyses.” In 2019 15th In-
ternational Conference on eScience (eScience), pp. 514–521. doi:
10.1109/eScience.2019.00068.

Chen X, Dallmeier-Tiessen S, Dasler R, Feger S, Fokianos P, Gonzalez JB,
Hirvonsalo H, Kousidis D, Lavasa A, Mele S, Rodriguez DR, imko T, Smith
T, Trisovic A, Trzcinska A, Tsanaktsidis I, Zimmermann M, Cranmer K,
Heinrich L, Watts G, Hildreth M, Iglesias LL, Lassila-Perini K, Neubert S
(2019). “Open is not enough.” Nature Physics, 15(2), 113. ISSN 1745-
2481. doi:10.1038/s41567-018-0342-2.

Chirigati F, Rampin R, Shasha D, Freire J (2016). “ReproZip: Compu-
tational Reproducibility With Ease.” In Proceedings of the 2016 Inter-
national Conference on Management of Data, SIGMOD ’16, pp. 2085–
2088. ACM, New York, NY, USA. ISBN 978-1-4503-3531-7. doi:
10.1145/2882903.2899401.

Chuah J, Deeds M, Malik T, Choi Y, Goodall JL (2020). “Documenting Com-
puting Environments for Reproducible Experiments.” Parallel Computing:
Technology Trends, pp. 756–765. doi:10.3233/APC200106. Publisher:
IOS Press.

Cohen JP, Lo HZ (2014). “Academic Torrents: A Community-Maintained Dis-
tributed Repository.” In Proceedings of the 2014 Annual Conference on
Extreme Science and Engineering Discovery Environment - XSEDE ’14,
pp. 1–2. ACM Press, Atlanta, GA, USA. ISBN 978-1-4503-2893-7. doi:
10.1145/2616498.2616528.

Cruz M, de Jonge H (2020). “Beyond mandates: For open science to become
a norm, it must be recognised and rewarded.” URL https://blogs.lse.ac.uk/
impactofsocialsciences/2020/12/01/beyond-mandates-for-open-science-
to-become-a-norm-it-must-be-recognised-and-rewarded/.

Davenport JH, Grant J, Jones CM (2020). “Data Without Software Are Just
Numbers.” Data Science Journal, 19(1), 3. ISSN 1683-1470. doi:
10.5334/dsj-2020-003. URL http://datascience.codata.org/articles/
10.5334/dsj-2020-003/.

David CH, Gil Y, Duffy CJ, Peckham SD, Venayagamoorthy SK (2016). “An
introduction to the special issue on Geoscience Papers of the Future.”
Earth and Space Science, 3(10), 2016EA000201. ISSN 2333-5084. doi:
10.1002/2016EA000201.

Davison A (2012). “Automated Capture of Experiment Context for Easier Re-
producibility in Computational Research.” Computing in Science Engineer-
ing, 14(4), 48–56. ISSN 1521-9615. doi:10.1109/MCSE.2012.41.

Davison AP, Mattioni M, Samarkanov D, Telenczuk B (2014). “Sumatra: A
Toolkit for Reproducible Research.” In V Stodden, F Leisch, RD Peng
(eds.), Implementing Reproducible Research, Chapman & Hall/CRC The
R Series, p. 448. Taylor & Francis. ISBN 978-1-4665-6159-5.

Docker Inc (2019). “Overview of Docker Compose.” URL https://
docs.docker.com/compose/.

Díaz L, Granell C, Gould M, Olaya V (2008). “An open service network for
geospatial data processing.” In Proceedings of the academic track of the

18 | https://doi.org/10.5281/zenodo.4818120 Nüst

https://www.uni-muenster.de/forschungaz/project/12343
https://o2r.info
https://gepris.dfg.de/gepris/projekt/274927273
https://gepris.dfg.de/gepris/projekt/415851837
http://dx.doi.org/10.1109/MCSE.2021.3072860
https://github.com/rstudio/rmarkdown
https://CRAN.R-project.org/package=rticles
http://dx.doi.org/10.1016/j.isprsjprs.2018.01.014
https://www.sciencedirect.com/science/article/pii/S0924271617300898
https://www.sciencedirect.com/science/article/pii/S0924271617300898
http://dx.doi.org/10.31219/osf.io/dxw67
http://dx.doi.org/10.31219/osf.io/dxw67
https://repro4everyone.org/
https://reprohack.github.io/reprohack-hq/
https://reprohack.github.io/reprohack-hq/
https://www.turing.ac.uk/research/research-projects/turing-way-handbook-reproducible-data-science
https://www.turing.ac.uk/research/research-projects/turing-way-handbook-reproducible-data-science
https://investinopen.org/
http://dx.doi.org/10.3389/fninf.2017.00069
http://dx.doi.org/10.3389/fninf.2017.00069
http://dx.doi.org/10.1145/2723872.2723882
http://dx.doi.org/10.1145/2723872.2723882
https://doi.org/10.5446/42484#t=15:31,16:20
https://doi.org/10.5446/42484#t=15:31,16:20
http://dx.doi.org/10.1016/j.procs.2011.04.069
https://discovery.ucl.ac.uk/id/eprint/19081/
http://dx.doi.org/10.1007/978-1-4612-2544-7_5
http://dx.doi.org/10.1007/978-1-4612-2544-7_5
http://dx.doi.org/10.1109/SocialCom.2013.142
http://dx.doi.org/10.1109/SocialCom.2013.142
http://dx.doi.org/10.1109/eScience.2019.00068
http://dx.doi.org/10.1109/eScience.2019.00068
http://dx.doi.org/10.1038/s41567-018-0342-2
http://dx.doi.org/10.1145/2882903.2899401
http://dx.doi.org/10.1145/2882903.2899401
http://dx.doi.org/10.3233/APC200106
http://dx.doi.org/10.1145/2616498.2616528
http://dx.doi.org/10.1145/2616498.2616528
https://blogs.lse.ac.uk/impactofsocialsciences/2020/12/01/beyond-mandates-for-open-science-to-become-a-norm-it-must-be-recognised-and-rewarded/
https://blogs.lse.ac.uk/impactofsocialsciences/2020/12/01/beyond-mandates-for-open-science-to-become-a-norm-it-must-be-recognised-and-rewarded/
https://blogs.lse.ac.uk/impactofsocialsciences/2020/12/01/beyond-mandates-for-open-science-to-become-a-norm-it-must-be-recognised-and-rewarded/
http://dx.doi.org/10.5334/dsj-2020-003
http://dx.doi.org/10.5334/dsj-2020-003
http://datascience.codata.org/articles/10.5334/dsj-2020-003/
http://datascience.codata.org/articles/10.5334/dsj-2020-003/
http://dx.doi.org/10.1002/2016EA000201
http://dx.doi.org/10.1002/2016EA000201
http://dx.doi.org/10.1109/MCSE.2012.41
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://doi.org/10.5281/zenodo.4818120

2008 Free and Open Source Software for Geospatial (FOSS4G) Confer-
ence, pp. 410–420. Cape Town, South Africa. ISBN 978-0-620-42117-1.
URL https://www.researchgate.net/profile/Laura-Diaz-75/publication/
228655946_An_open_service_network_for_geospatial_data_processing/
links/0deec5195f4bdb0f86000000/An-open-service-network-for-
geospatial-data-processing.pdf.

Eglen SJ, Mounce R, Gatto L, Currie AM, Nobis Y (2018). “Recent devel-
opments in scholarly publishing to improve research practices in the life
sciences.” Emerging Topics in Life Sciences, 2(6), 775–778. ISSN 2397-
8554, 2397-8562. doi:10.1042/ETLS20180172.

Emsley I, De Roure D (2018). “A Framework for the Preservation of a Docker
Container | International Journal of Digital Curation.” International Journal
of Digital Curation, 12(2). doi:10.2218/ijdc.v12i2.509.

EOSC Executive Board Working Group (WG) Architecture Task Force (TF)
SIRS (2020). “Scholarly infrastructures for research software: report from
the EOSC Executive Board Working Group (WG) Architecture Task Force
(TF) SIRS.” Technical report, Edited by the EOSC Executive Board. doi:
10.2777/28598.

Executable Books Community (2020). “Jupyter Book.” doi:
10.5281/zenodo.4539666.

Frantz D (2019). “FORCELandsat + Sentinel-2 Analysis Ready Data and
Beyond.” Remote Sensing, 11(9), 1124. doi:10.3390/rs11091124.

Freire J, Fuhr N, Rauber A (2016). “Reproducibility of Data-Oriented Exper-
iments in e-Science (Dagstuhl Seminar 16041).” Dagstuhl Reports, 6(1),
108–159. ISSN 2192-5283. doi:10.4230/DagRep.6.1.108.

Gavish M, Donoho D (2012). “Three Dream Applications of Verifiable Compu-
tational Results.” Computing in Science Engineering, 14(4), 26–31. ISSN
1558-366X. doi:10.1109/MCSE.2012.65. Conference Name: Com-
puting in Science Engineering.

Gentleman R, Lang DT (2007). “Statistical Analyses and Reproducible Re-
search.” Journal of Computational and Graphical Statistics, 16(1), 1–23.
ISSN 1061-8600. doi:10.1198/106186007X178663.

Ghoshal D, Bianchi L, Essiari A, Beach M, Paine D, Ramakrishnan L
(2021). “Science Capsule - Capturing the Data Life Cycle.” Jour-
nal of Open Source Software, 6(62), 2484. ISSN 2475-9066. doi:
10.21105/joss.02484. URL https://joss.theoj.org/papers/10.21105/
joss.02484.

Gil Y, David C, Demir I, Essawy B, Fulweiler R, Goodall J, Karlstrom L, Lee
H, Mills H, Oh J, Pierce S, Pope A, Tzeng M, Villamizar S, Yu X (2016).
“Toward the Geoscience Paper of the Future: Best practices for document-
ing and sharing research from data to software to provenance.” Earth and
Space Science, 3(10), 2015EA000136. doi:10.1002/2015EA000136.

Glatard T, Kiar G, Aumentado-Armstrong T, Beck N, Bellec P, Bernard R,
Bonnet A, Brown ST, Camarasu-Pop S, Cervenansky F, Das S, Ferreira
da Silva R, Flandin G, Girard P, Gorgolewski KJ, Guttmann CRG, Hayot-
Sasson V, Quirion PO, Rioux P, Rousseau MÉ, Evans AC (2018). “Bou-
tiques: A Flexible Framework to Integrate Command-Line Applications in
Computing Platforms.” GigaScience, 7(giy016). ISSN 2047-217X. doi:
10.1093/gigascience/giy016.

González Ávalos E (2020). “Good overall quality, additional discussion on cer-
tain points would be desirable.” other, Geosciences Marine Geology/essd-
2020-22. doi:10.5194/essd-2020-22-RC1.

Gronenschild E, Habets P, Jacobs H, Mengelers R, Rozendaal N, van Os
J, Marcelis M (2012). “The effects of FreeSurfer version, workstation
type, and Macintosh operating system version on anatomical volume
and cortical thickness measurements.” PLoS One, 7(6), e38234. doi:
10.1371/journal.pone.0038234.

Guizzardi G, Bentley N, Maciocci G (2021). “Announcing the next phase
of Executable Research Articles.” Publisher: eLife Sciences Publica-
tions Limited, URL https://elifesciences.org/labs/a04d2b80/announcing-
the-next-phase-of-executable-research-articles.

Hardt D (2012). “The OAuth 2.0 Authorization Framework.” RFC 6749. doi:
10.17487/RFC6749. URL https://rfc-editor.org/rfc/rfc6749.txt.

Hardwicke TE, Mathur MB, MacDonald K, Nilsonne G, Banks GC, Kidwell MC,
Mohr AH, Clayton E, Yoon EJ, Tessler MH, Lenne RL, Altman S, Long B,
Frank MC (2018). “Data Availability, Reusability, and Analytic Reproducibil-
ity: Evaluating the Impact of a Mandatory Open Data Policy at the Journal
Cognition.” Royal Society Open Science, 5(8), 180448. ISSN 2054-5703.
doi:10.1098/rsos.180448.

Hawkins E (2019). “What we have learnt testing container-platforms for
peer review and publication of code : Of Schemes and Memes Blog.”
URL http://blogs.nature.com/ofschemesandmemes/2019/10/09/what-we-

have-learnt-testing-container-platforms-for-peer-review-and-publication-
of-code.

Haydel N, Madey G, Gesing S, Dakkak A, de Gonzalo SG, Taylor I, Hwu
WmW (2015). “Enhancing the usability and utilization of accelerated ar-
chitectures via docker.” In Proceedings of the 8th International Conference
on Utility and Cloud Computing, UCC ’15, pp. 361–367. IEEE Press, Li-
massol, Cyprus. ISBN 978-0-7695-5697-0.

Heroux MA (2015). “Editorial: ACM TOMS Replicated Computational Results
Initiative.” ACM Transactions on Mathematical Software, 41(3), 13:1–13:5.
ISSN 0098-3500. doi:10.1145/2743015.

Hinsen K (2015). “ActivePapers: a platform for publishing and archiving
computer-aided research.” F1000Research, 3, 289. ISSN 2046-1402.
doi:10.12688/f1000research.5773.3.

Hinsen K (2018). “Verifiability in computer-aided research: the role of digital
scientific notations at the human-computer interface.” PeerJ Computer
Science, 4, e158. ISSN 2376-5992. doi:10.7717/peerj-cs.158.

Hrynaszkiewicz I (2020). “Publishers Responsibilities in Promoting Data
Quality and Reproducibility.” In A Bespalov, MC Michel, T Steck-
ler (eds.), Good Research Practice in Non-Clinical Pharmacology and
Biomedicine, Handbook of Experimental Pharmacology, pp. 319–348.
Springer International Publishing, Cham. ISBN 978-3-030-33656-1. doi:
10.1007/164_2019_290.

Jimenez I, Sevilla M, Watkins N, Maltzahn C, Lofstead J, Mohror K, Arpaci-
Dusseau A, Arpaci-Dusseau R (2017). “The Popper Convention: Making
Reproducible Systems Evaluation Practical.” In 2017 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pp. 1561–1570. doi:10.1109/IPDPSW.2017.157.

Katz DS, Chue Hong NP, Clark T, Muench A, Stall S, Bouquin D, Cannon
M, Edmunds S, Faez T, Feeney P, Fenner M, Friedman M, Grenier G,
Harrison M, Heber J, Leary A, MacCallum C, Murray H, Pastrana E, Perry
K, Schuster D, Stockhause M, Yeston J (2021). “Recognizing the value
of software: a software citation guide.” F1000Research, 9, 1257. ISSN
2046-1402. doi:10.12688/f1000research.26932.2.

Knuth DE (1984). “Literate Programming.” Comput. J., 27(2), 97–111. ISSN
0010-4620. doi:10.1093/comjnl/27.2.97.

Konkol M, Kray C, Pfeiffer M (2019a). “Computational reproducibility in
geoscientific papers: Insights from a series of studies with geoscien-
tists and a reproduction study.” International Journal of Geographi-
cal Information Science, 33(2), 408–429. ISSN 1365-8816. doi:
10.1080/13658816.2018.1508687.

Konkol M, Kray C, Suleiman J (2019b). “Creating Interactive Scientific Pub-
lications Using Bindings.” Proceedings of the ACM on Human-Computer
Interaction, 3(EICS), 16:1–16:18. doi:10.1145/3331158.

Konkol M, Nüst D, Goulier L (2020). “Publishing computational research - a
review of infrastructures for reproducible and transparent scholarly com-
munication.” Research Integrity and Peer Review, 5(1), 10. ISSN 2058-
8615. doi:10.1186/s41073-020-00095-y.

Kray C, Pebesma E, Konkol M, Nüst D (2019). “Reproducible Research
in Geoinformatics: Concepts, Challenges and Benefits (Vision Pa-
per).” volume 142 of Leibniz International Proceedings in Informatics
(LIPIcs), p. 8:1–8:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany. doi:10.4230/LIPIcs.COSIT.2019.8. URL
http://drops.dagstuhl.de/opus/volltexte/2019/11100.

Kunze JA, Littman J, Madden L, Scancella J, Adams C (2018). “The BagIt
File Packaging Format (V1.0).” RFC 8493. doi:10.17487/RFC8493.
URL https://rfc-editor.org/rfc/rfc8493.txt.

Liu DM, Salganik MJ (2019). “Successes and Struggles with Com-
putational Reproducibility: Lessons from the Fragile Families Chal-
lenge.” Socius, 5, 2378023119849803. ISSN 2378-0231. doi:
10.1177/2378023119849803.

Marwick B (2015). “How Computers Broke Science – and What We Can Do
to Fix It.” http://theconversation.com/how-computers-broke-science-and-
what-we-can-do-to-fix-it-49938.

Marwick B, Pilaar Birch SE (2018). “How researchers can solve
the bottle-opener problem with compute capsules.” URL https:
//www.cambridge.org/core/blog/2018/07/30/how-researchers-can-solve-
the-bottle-opener-problem-with-compute-capsules/.

Mecum B, Jones MB, Vieglais D, Willis C (2018). “Preserving Reproducibility:
Provenance and Executable Containers in DataONE Data Packages.” In
2018 IEEE 14th International Conference on E-Science (e-Science), pp.
45–49. ISSN null. doi:10.1109/eScience.2018.00019.

Meng H, Thain D (2015). “Umbrella: A Portable Environment Creator for

Nüst ERC Web service | July 8, 2021 | 19

https://www.researchgate.net/profile/Laura-Diaz-75/publication/228655946_An_open_service_network_for_geospatial_data_processing/links/0deec5195f4bdb0f86000000/An-open-service-network-for-geospatial-data-processing.pdf
https://www.researchgate.net/profile/Laura-Diaz-75/publication/228655946_An_open_service_network_for_geospatial_data_processing/links/0deec5195f4bdb0f86000000/An-open-service-network-for-geospatial-data-processing.pdf
https://www.researchgate.net/profile/Laura-Diaz-75/publication/228655946_An_open_service_network_for_geospatial_data_processing/links/0deec5195f4bdb0f86000000/An-open-service-network-for-geospatial-data-processing.pdf
https://www.researchgate.net/profile/Laura-Diaz-75/publication/228655946_An_open_service_network_for_geospatial_data_processing/links/0deec5195f4bdb0f86000000/An-open-service-network-for-geospatial-data-processing.pdf
http://dx.doi.org/10.1042/ETLS20180172
http://dx.doi.org/10.2218/ijdc.v12i2.509
http://dx.doi.org/10.2777/28598
http://dx.doi.org/10.2777/28598
http://dx.doi.org/10.5281/zenodo.4539666
http://dx.doi.org/10.5281/zenodo.4539666
http://dx.doi.org/10.3390/rs11091124
http://dx.doi.org/10.4230/DagRep.6.1.108
http://dx.doi.org/10.1109/MCSE.2012.65
http://dx.doi.org/10.1198/106186007X178663
http://dx.doi.org/10.21105/joss.02484
http://dx.doi.org/10.21105/joss.02484
https://joss.theoj.org/papers/10.21105/joss.02484
https://joss.theoj.org/papers/10.21105/joss.02484
http://dx.doi.org/10.1002/2015EA000136
http://dx.doi.org/10.1093/gigascience/giy016
http://dx.doi.org/10.1093/gigascience/giy016
http://dx.doi.org/10.5194/essd-2020-22-RC1
http://dx.doi.org/10.1371/journal.pone.0038234
http://dx.doi.org/10.1371/journal.pone.0038234
https://elifesciences.org/labs/a04d2b80/announcing-the-next-phase-of-executable-research-articles
https://elifesciences.org/labs/a04d2b80/announcing-the-next-phase-of-executable-research-articles
http://dx.doi.org/10.17487/RFC6749
http://dx.doi.org/10.17487/RFC6749
https://rfc-editor.org/rfc/rfc6749.txt
http://dx.doi.org/10.1098/rsos.180448
http://blogs.nature.com/ofschemesandmemes/2019/10/09/what-we-have-learnt-testing-container-platforms-for-peer-review-and-publication-of-code
http://blogs.nature.com/ofschemesandmemes/2019/10/09/what-we-have-learnt-testing-container-platforms-for-peer-review-and-publication-of-code
http://blogs.nature.com/ofschemesandmemes/2019/10/09/what-we-have-learnt-testing-container-platforms-for-peer-review-and-publication-of-code
http://dx.doi.org/10.1145/2743015
http://dx.doi.org/10.12688/f1000research.5773.3
http://dx.doi.org/10.7717/peerj-cs.158
http://dx.doi.org/10.1007/164_2019_290
http://dx.doi.org/10.1007/164_2019_290
http://dx.doi.org/10.1109/IPDPSW.2017.157
http://dx.doi.org/10.12688/f1000research.26932.2
http://dx.doi.org/10.1093/comjnl/27.2.97
http://dx.doi.org/10.1080/13658816.2018.1508687
http://dx.doi.org/10.1080/13658816.2018.1508687
http://dx.doi.org/10.1145/3331158
http://dx.doi.org/10.1186/s41073-020-00095-y
http://dx.doi.org/10.4230/LIPIcs.COSIT.2019.8
http://drops.dagstuhl.de/opus/volltexte/2019/11100
http://dx.doi.org/10.17487/RFC8493
https://rfc-editor.org/rfc/rfc8493.txt
http://dx.doi.org/10.1177/2378023119849803
http://dx.doi.org/10.1177/2378023119849803
https://www.cambridge.org/core/blog/2018/07/30/how-researchers-can-solve-the-bottle-opener-problem-with-compute-capsules/
https://www.cambridge.org/core/blog/2018/07/30/how-researchers-can-solve-the-bottle-opener-problem-with-compute-capsules/
https://www.cambridge.org/core/blog/2018/07/30/how-researchers-can-solve-the-bottle-opener-problem-with-compute-capsules/
http://dx.doi.org/10.1109/eScience.2018.00019

Reproducible Computing on Clusters, Clouds, and Grids.” In Proceed-
ings of the 8th International Workshop on Virtualization Technologies in
Distributed Computing, VTDC ’15, pp. 23–30. ACM, New York, NY, USA.
ISBN 978-1-4503-3573-7. doi:10.1145/2755979.2755982.

Miller G (2006). “A Scientist’s Nightmare: Software Problem Leads to Five
Retractions.” Science, 314(5807), 1856–1857. ISSN 0036-8075, 1095-
9203. doi:10.1126/science.314.5807.1856.

Minghini M, Mobasheri A, Rautenbach V, Brovelli MA (2020). “Geospa-
tial openness: from software to standards & data.” Open Geospa-
tial Data, Software and Standards, 5(1), 1. ISSN 2363-7501. doi:
10.1186/s40965-020-0074-y.

Molenaar G, Makhathini S, Girard JN, Smirnov O (2018). “KlikoThe scientific
compute container format.” Astronomy and Computing, 25, 1–9. ISSN
2213-1337. doi:10.1016/j.ascom.2018.08.003.

Nature Editorial (2017). “Empty rhetoric over data sharing slows science.”
Nature News, 546(7658), 327. doi:10.1038/546327a.

Nosek BA, Spies JR, Motyl M (2012). “Scientific Utopia II. Restructuring In-
centives and Practices to Promote Truth Over Publishability.” Perspectives
on Psychological Science, 7(6), 615–631. ISSN 1745-6916, 1745-6924.
doi:10.1177/1745691612459058.

Nüst D, Granell C, Hofer B, Konkol M, Ostermann FO, Sileryte R, Cerutti
V (2018). “Reproducible Research and GIScience: An Evaluation Using
AGILE Conference Papers.” PeerJ, 6, e5072. ISSN 2167-8359. doi:
10.7717/peerj.5072.

Nüst D, Pebesma E (2020). “Practical Reproducibility in Geography and Geo-
sciences.” Annals of the American Association of Geographers, 111(5),
1–11. doi:10.1080/24694452.2020.1806028.

Nüst D (2018). “Reproducibility Service for Executable Research Compendia:
Technical Specifications and Reference Implementation.” Technical report.
doi:10.5281/zenodo.2203843.

Nüst D, Eglen S (2021). “CODECHECK: an Open Science initiative for the in-
dependent execution of computations underlying research articles during
peer review to improve reproducibility.” F1000Research, 10, 253. doi:
10.12688/f1000research.51738.1.

Nüst D, Hinz M (2019). “containerit: Generating Dockerfiles for reproducible
research with R.” Journal of Open Source Software, 4(40), 1603. doi:
10.21105/joss.01603.

Nüst D, Konkol M, Pebesma E, Kray C, Schutzeichel M, Przibytzin H,
Lorenz J (2017). “Opening the Publication Process with Executable Re-
search Compendia.” D-Lib Magazine, 23(1/2). ISSN 1082-9873. doi:
10.1045/january2017-nuest.

Nüst D, Schutzeichel M (2017). “An Architecture for Reproducible Compu-
tational Geosciences.” In Poster abstracts of AGILE 2017. Wageningen,
The Netherlands. doi:10.5281/zenodo.1478542.

Nüst D, Seibold H, Eglen S, Schulz-Vanheyden L (2021). “Code Execution in
Peer Review.” doi:10.17605/osf.io/x32nc.

Nüst D, Sochat V, Marwick B, Eglen SJ, Head T, Hirst T, Evans BD (2020).
“Ten simple rules for writing Dockerfiles for reproducible data science.”
PLOS Computational Biology, 16(11), e1008316. ISSN 1553-7358. doi:
10.1371/journal.pcbi.1008316.

Octopus team (2020). “More about Octopus.” URL https://science-
octopus.org/about.

Oliveira L, Wilkinson D, Mossé D, Childers B (2018). “Supporting Long-
term Reproducible Software Execution.” In Proceedings of the First
International Workshop on Practical Reproducible Evaluation of Com-
puter Systems, P-RECS’18, pp. 1–6. Association for Computing Ma-
chinery, New York, NY, USA. ISBN 978-1-4503-5861-3. doi:
10.1145/3214239.3214245.

Oliveira L, Wilkinson D, Mossé D, Childers BR (2020). “Stimulating Re-
producible Software Artifacts.” In Proceedings of the 3rd International
Workshop on Practical Reproducible Evaluation of Computer Systems, P-
RECS ’20, pp. 3–7. Association for Computing Machinery, New York, NY,
USA. ISBN 978-1-4503-7977-9. doi:10.1145/3391800.3398177.

Pasquier T, Lau MK, Han X, Fong E, Lerner BS, Boose ER, Crosas M, Ellison
AM, Seltzer M (2018). “Sharing and Preserving Computational Analyses
for Posterity with encapsulator.” Computing in Science Engineering, 20(4),
111–124. ISSN 1558-366X. doi:10.1109/MCSE.2018.042781334.

Pebesma E (2013). “Earth and Planetary Innovation Challenge (EPIC)
submission "One-Click-Reproduce".” URL http://pebesma.staff.ifgi.de/
epic.pdf.

Peer L, Orr LV, Coppock A (2021). “Active Maintenance: A Proposal
for the Long-Term Computational Reproducibility of Scientific Results.”

PS: Political Science & Politics, pp. 1–5. ISSN 1049-0965, 1537-5935.
doi:10.1017/S1049096521000366. Publisher: Cambridge University
Press.

Peng R (2017). “Reproducible Research Needs Some Limiting Principles.”
URL https://simplystatistics.org/2017/02/01/reproducible-research-limits/.

Peng RD (2011). “Reproducible Research in Computational Science.” Sci-
ence, 334(6060), 1226–1227. ISSN 0036-8075, 1095-9203. doi:
10.1126/science.1213847.

Peng RD, Hicks SC (2021). “Reproducible Research: A Retrospective.” An-
nual Review of Public Health, 42(1), 79–93. ISSN 0163-7525. doi:
10.1146/annurev-publhealth-012420-105110.

Piwowar H (2013). “Value all research products.” Nature, 493, 159. doi:
10.1038/493159a.

Porubsky V, Smith L, Sauro HM (2021). “Publishing reproducible dynamic
kinetic models.” Briefings in Bioinformatics, 22(3). ISSN 1477-4054. doi:
10.1093/bib/bbaa152.

Project Jupyter, Bussonnier M, Forde J, Freeman J, Granger B, Head
T, Holdgraf C, Kelley K, Nalvarte G, Osheroff A, Pacer M, Panda Y,
Perez F, Ragan-Kelley B, Willing C (2018). “Binder 2.0 - Reproducible,
Interactive, Sharable Environments for Science at Scale.” Proceed-
ings of the 17th Python in Science Conference, pp. 113–120. doi:
10.25080/Majora-4af1f417-011.

Rechert K, Liebetraut T, Kombrink S, Wehrle D, Mocken S, Rohland M (2017).
“Preserving Containers.” In J Kratzke, V Heuveline (eds.), Forschungs-
daten managen, pp. 143–151. Heidelberg. ISBN 978-3-946531-75-3.
doi:10.11588/heibooks.285.377.

Ross N (2021). redoc: Reversible Reproducible Documents. R package
version 0.1.0.9000, URL https://github.com/noamross/redoc.

Sayre F, Riegelman A (2019). “Replicable Services for Reproducible Re-
search: A Model for Academic Libraries.” College & Research Libraries,
80(2), 260. doi:10.5860/crl.80.2.260.

Schramm M, Pebesma E, Milenkovi M, Foresta L, Dries J, Jacob A, Wagner
W, Mohr M, Neteler M, Kadunc M, Miksa T, Kempeneers P, Verbesselt
J, GöSSwein B, Navacchi C, Lippens S, Reiche J (2021). “The ope-
nEO APIHarmonising the Use of Earth Observation Cloud Services Using
Virtual Data Cube Functionalities.” Remote Sensing, 13(6), 1125. doi:
10.3390/rs13061125.

Stodden V, Bailey DH, Borwein J, LeVeque RJ, Rider B, Stein W
(2013). “Setting the Default to Reproducible: Reproducibility in
Computational and Experimental Mathematics.” Technical report,
The Institute for Computational and Experimental Research in Math-
ematics. Workshop website with full list of workshop participants:
https://icerm.brown.edu/topical_workshops/tw12-5-rcem/ This report was
developed collaboratively by the ICERM workshop participants, and
compiled and edited by the organizers., URL https://icerm.brown.edu/
topical_workshops/tw12-5-rcem/icerm_report.pdf.

Stodden V, Miguez S, Seiler J (2015). “ResearchCompendia.org: Cyberin-
frastructure for Reproducibility and Collaboration in Computational Sci-
ence.” Computing in Science & Engineering, 17(1), 12–19. ISSN 1521-
9615. doi:10.1109/MCSE.2015.18.

Stodden V, Seiler J, Ma Z (2018). “An empirical analysis of journal policy ef-
fectiveness for computational reproducibility.” Proceedings of the National
Academy of Sciences, 115(11), 2584–2589. ISSN 0027-8424, 1091-6490.
doi:10.1073/pnas.1708290115.

Tennant JP, Crane H, Crick T, Davila J, Enkhbayar A, Havemann J, Kramer
B, Martin R, Masuzzo P, Nobes A, Rice C, Rivera-López B, Ross-
Hellauer T, Sattler S, Thacker PD, Vanholsbeeck M (2019). “Ten Hot
Topics around Scholarly Publishing.” Publications, 7(2), 34. doi:
10.3390/publications7020034.

ter Riet G, Storosum BW, Zwinderman AH (2019). “What is repro-
ducibility?” F1000Research, 8, 36. ISSN 2046-1402. doi:
10.12688/f1000research.17615.1.

Thain D, Ivie P, Meng H (2015). “Techniques for Preserving Scientific Soft-
ware Executions: Preserve the Mess or Encourage Cleanliness?” In
Proceedings of the 12th International Conference on Digital Preservation
(iPres). doi:10.7274/R0CZ353M.

That DHT, Fils G, Yuan Z, Malik T (2017). “Sciunits: Reusable Research
Objects.” In 2017 IEEE 13th International Conference on e-Science (e-
Science), pp. 374–383. doi:10.1109/eScience.2017.51.

Vandewalle P, Kovacevic J, Vetterli M (2009). “Reproducible research in sig-
nal processing.” IEEE Signal Processing Magazine, 26(3), 37–47. ISSN
1053-5888, 1558-0792. doi:10.1109/MSP.2009.932122.

20 | https://doi.org/10.5281/zenodo.4818120 Nüst

http://dx.doi.org/10.1145/2755979.2755982
http://dx.doi.org/10.1126/science.314.5807.1856
http://dx.doi.org/10.1186/s40965-020-0074-y
http://dx.doi.org/10.1186/s40965-020-0074-y
http://dx.doi.org/10.1016/j.ascom.2018.08.003
http://dx.doi.org/10.1038/546327a
http://dx.doi.org/10.1177/1745691612459058
http://dx.doi.org/10.7717/peerj.5072
http://dx.doi.org/10.7717/peerj.5072
http://dx.doi.org/10.1080/24694452.2020.1806028
http://dx.doi.org/10.5281/zenodo.2203843
http://dx.doi.org/10.12688/f1000research.51738.1
http://dx.doi.org/10.12688/f1000research.51738.1
http://dx.doi.org/10.21105/joss.01603
http://dx.doi.org/10.21105/joss.01603
http://dx.doi.org/10.1045/january2017-nuest
http://dx.doi.org/10.1045/january2017-nuest
http://dx.doi.org/10.5281/zenodo.1478542
http://dx.doi.org/10.17605/osf.io/x32nc
http://dx.doi.org/10.1371/journal.pcbi.1008316
http://dx.doi.org/10.1371/journal.pcbi.1008316
https://science-octopus.org/about
https://science-octopus.org/about
http://dx.doi.org/10.1145/3214239.3214245
http://dx.doi.org/10.1145/3214239.3214245
http://dx.doi.org/10.1145/3391800.3398177
http://dx.doi.org/10.1109/MCSE.2018.042781334
http://pebesma.staff.ifgi.de/epic.pdf
http://pebesma.staff.ifgi.de/epic.pdf
http://dx.doi.org/10.1017/S1049096521000366
https://simplystatistics.org/2017/02/01/reproducible-research-limits/
http://dx.doi.org/10.1126/science.1213847
http://dx.doi.org/10.1126/science.1213847
http://dx.doi.org/10.1146/annurev-publhealth-012420-105110
http://dx.doi.org/10.1146/annurev-publhealth-012420-105110
http://dx.doi.org/10.1038/493159a
http://dx.doi.org/10.1038/493159a
http://dx.doi.org/10.1093/bib/bbaa152
http://dx.doi.org/10.1093/bib/bbaa152
http://dx.doi.org/10.25080/Majora-4af1f417-011
http://dx.doi.org/10.25080/Majora-4af1f417-011
http://dx.doi.org/10.11588/heibooks.285.377
https://github.com/noamross/redoc
http://dx.doi.org/10.5860/crl.80.2.260
http://dx.doi.org/10.3390/rs13061125
http://dx.doi.org/10.3390/rs13061125
https://icerm.brown.edu/topical_workshops/tw12-5-rcem/icerm_report.pdf
https://icerm.brown.edu/topical_workshops/tw12-5-rcem/icerm_report.pdf
http://dx.doi.org/10.1109/MCSE.2015.18
http://dx.doi.org/10.1073/pnas.1708290115
http://dx.doi.org/10.3390/publications7020034
http://dx.doi.org/10.3390/publications7020034
http://dx.doi.org/10.12688/f1000research.17615.1
http://dx.doi.org/10.12688/f1000research.17615.1
http://dx.doi.org/10.7274/R0CZ353M
http://dx.doi.org/10.1109/eScience.2017.51
http://dx.doi.org/10.1109/MSP.2009.932122
https://doi.org/10.5281/zenodo.4818120

Vines T, Albert AK, Andrew R, Débarre F, Bock D, Franklin M, Gilbert K,
Moore JS, Renaut S, Rennison D (2014). “The Availability of Research
Data Declines Rapidly with Article Age.” Current Biology, 24(1), 94–97.
ISSN 0960-9822. doi:10.1016/j.cub.2013.11.014.

Whitehouse T (2019). “Making Reproducibility Reproducible.” URL
https://medium.com/gigantum/making-reproducibility-reproducible-
7457d656680c.

Wikipedia contributors (2021a). “AppArmor.” Page Version ID: 1027531383,
URL https://en.wikipedia.org/w/index.php?title=AppArmor&oldid=
1027531383.

Wikipedia contributors (2021b). “Bus factor.” Page Version ID: 1024613010,
URL https://en.wikipedia.org/w/index.php?title=Bus_factor&oldid=
1024613010.

Wikipedia contributors (2021c). “Docker (software).” Page Ver-
sion ID: 1019840030, URL https://en.wikipedia.org/w/index.php?title=
Docker_(software)&oldid=1019840030.

Wikipedia contributors (2021d). “Kubernetes.” Page Version ID: 1024839217,
URL https://en.wikipedia.org/w/index.php?title=Kubernetes&oldid=
1024839217.

Wikipedia contributors (2021e). “Make (software).” Page Ver-
sion ID: 1016565702, URL https://en.wikipedia.org/w/index.php?title=
Make_(software)&oldid=1016565702.

Wikipedia contributors (2021f). “OpenAPI Specification.” Page Ver-
sion ID: 1023136282, URL https://en.wikipedia.org/w/index.php?title=
OpenAPI_Specification&oldid=1023136282.

Wikipedia contributors (2021g). “Unix philosophy.” Page Ver-
sion ID: 1022001416, URL https://en.wikipedia.org/w/index.php?title=
Unix_philosophy&oldid=1022001416.

Wikipedia contributors (2021h). “Vagrant (software).” Page Ver-
sion ID: 1014463164, URL https://en.wikipedia.org/w/index.php?title=
Vagrant_(software)&oldid=1014463164.

Wikipedia contributors (2021i). “WebSocket.” Page Version ID: 1028455012,
URL https://en.wikipedia.org/w/index.php?title=WebSocket&oldid=
1028455012.

Wilson G, Bryan J, Cranston K, Kitzes J, Nederbragt L, Teal TK
(2017). “Good enough practices in scientific computing.” PLOS
Computational Biology, 13(6), e1005510. ISSN 1553-7358. doi:
10.1371/journal.pcbi.1005510.

Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S,
Soiland-Reyes S, Dunlop I, Nenadic A, Fisher P, Bhagat J, Belhajjame
K, Bacall F, Hardisty A, Hidalga ANdl, Vargas MPB, Sufi S, Goble C
(2013). “The Taverna workflow suite: designing and executing workflows
of Web Services on the desktop, web or in the cloud.” Nucleic Acids
Research, 41(W1), W557–W561. ISSN 0305-1048, 1362-4962. doi:
10.1093/nar/gkt328.

Xie Y, Allaire J, Grolemund G (2018). R Markdown: The Definitive Guide.
Chapman and Hall/CRC, Boca Raton, Florida. ISBN 9781138359338,
URL https://bookdown.org/yihui/rmarkdown.

Yan A, Huang C, Lee JS, Palmer CL (2020). “Cross-disciplinary data
practices in earth system science: Aligning services with reuse and
reproducibility priorities.” Proceedings of the Association for Informa-
tion Science and Technology, 57(1), e218. ISSN 2373-9231. doi:
https://doi.org/10.1002/pra2.218.

Youngdahl A, Ton-That DH, Malik T (2019). “SciInc: A Container Runtime
for Incremental Recomputation.” In 2019 15th International Conference
on eScience (eScience), pp. 291–300. IEEE, San Diego, CA, USA. ISBN
978-1-72812-451-3. doi:10.1109/eScience.2019.00040.

Zhao J, Gomez-Perez JM, Belhajjame K, Klyne G, Garcia-Cuesta E, Gar-
rido A, Hettne K, Roos M, De Roure D, Goble C (2012). “Why workflows
break Understanding and combating decay in Taverna workflows.” In
2012 IEEE 8th International Conference on E-Science, pp. 1–9. doi:
10.1109/eScience.2012.6404482.

imko T, Heinrich L, Hirvonsalo H, Kousidis D, Rodríguez D (2019).
“REANA: A System for Reusable Research Data Analyses.” EPJ
Web of Conferences, 214, 06034. ISSN 2100-014X. doi:
10.1051/epjconf/201921406034.

Nüst ERC Web service | July 8, 2021 | 21

http://dx.doi.org/10.1016/j.cub.2013.11.014
https://medium.com/gigantum/making-reproducibility-reproducible-7457d656680c
https://medium.com/gigantum/making-reproducibility-reproducible-7457d656680c
https://en.wikipedia.org/w/index.php?title=AppArmor&oldid=1027531383
https://en.wikipedia.org/w/index.php?title=AppArmor&oldid=1027531383
https://en.wikipedia.org/w/index.php?title=Bus_factor&oldid=1024613010
https://en.wikipedia.org/w/index.php?title=Bus_factor&oldid=1024613010
https://en.wikipedia.org/w/index.php?title=Docker_(software)&oldid=1019840030
https://en.wikipedia.org/w/index.php?title=Docker_(software)&oldid=1019840030
https://en.wikipedia.org/w/index.php?title=Kubernetes&oldid=1024839217
https://en.wikipedia.org/w/index.php?title=Kubernetes&oldid=1024839217
https://en.wikipedia.org/w/index.php?title=Make_(software)&oldid=1016565702
https://en.wikipedia.org/w/index.php?title=Make_(software)&oldid=1016565702
https://en.wikipedia.org/w/index.php?title=OpenAPI_Specification&oldid=1023136282
https://en.wikipedia.org/w/index.php?title=OpenAPI_Specification&oldid=1023136282
https://en.wikipedia.org/w/index.php?title=Unix_philosophy&oldid=1022001416
https://en.wikipedia.org/w/index.php?title=Unix_philosophy&oldid=1022001416
https://en.wikipedia.org/w/index.php?title=Vagrant_(software)&oldid=1014463164
https://en.wikipedia.org/w/index.php?title=Vagrant_(software)&oldid=1014463164
https://en.wikipedia.org/w/index.php?title=WebSocket&oldid=1028455012
https://en.wikipedia.org/w/index.php?title=WebSocket&oldid=1028455012
http://dx.doi.org/10.1371/journal.pcbi.1005510
http://dx.doi.org/10.1371/journal.pcbi.1005510
http://dx.doi.org/10.1093/nar/gkt328
http://dx.doi.org/10.1093/nar/gkt328
https://bookdown.org/yihui/rmarkdown
http://dx.doi.org/https://doi.org/10.1002/pra2.218
http://dx.doi.org/https://doi.org/10.1002/pra2.218
http://dx.doi.org/10.1109/eScience.2019.00040
http://dx.doi.org/10.1109/eScience.2012.6404482
http://dx.doi.org/10.1109/eScience.2012.6404482
http://dx.doi.org/10.1051/epjconf/201921406034
http://dx.doi.org/10.1051/epjconf/201921406034

	Introduction
	Related work
	Executable research compendium: technical specification
	Design
	The specification

	Opening reproducible research system architecture
	Structure
	Goals
	Scope, context, and solution strategy
	Building block view
	Runtime view

	Reproducibility service
	API
	Reference implementation
	Examples

	Discussion
	Project set-up, maintainability, and security
	Understandability and usability
	Capabilities and features
	Extent of capturing and ERCs' lifespan
	ERCs in the spotlight

	Conclusion & future work

