
Introduction into bipartite networks
with Python

Networks Seminar at Karl Franzens University of Graz, Peter
Csermely

Stefan Kasberger (1011416)

Graz, on February 10, 2014

1 Introduction

This essay and the related computation delivers a comprehensive introduction into the
concept of bipartite networks, a class of networks whose nodes are divided into two
sets and only the connection between two nodes in different sets is allowed (Easley and
Kleinberg, 2010). The analysis and visualization is done in the programming language
Python and offers easy to understand first steps in both fields, network analyses and
python programming. As data a collaboration network of github users and projects and
an affiliation network of dbpedia entities with countries from KONECT are used. The
analysis compares key measures like average shortest path, density, degree centrality
and clustering. Also the topic of bipartite network projections to unipartite ones will
be addressed on a practical and theoretical level. A specialty is, that the whole docu-
mentation and computation is done the open way in use of the Open Source Softwares
LaTeX, Python and Git/GitHub to make it reproducible, freely accessible and useable
for everyone.

2 Theory

The theoretical basis for networks is the graph theory. By definition, a graph is a way
of specifying relationships among a collection of items. It consists of a set of objects,
called nodes, with certain pairs of these objects connected by links called edges (Easley
and Kleinberg, 2010). Because of this flexible formalism, it is easy to find networks in
many domains, like social sciences, micro-biology, psychology and engineering.

Different types of networks exist, depending on their structure and properties. Edges
can be directed, from one node to another with a certain direction, or undirected, which
means the relation is working in both directions and is symmetric. Typical undirected

1



2 Theory

networks are links on webpages. Friendships for example are mostly undireced. The
edges also can be weighted to give the relation a quantifiable dimension, like how often
you met each other before or how big the bandwidth of a transmission channel is.

This article focuses on bipartite networks: A particular class of networks, whose nodes
are divided into two sets, X and Y, and only the connection between two nodes in different
sets is allowed (Easley and Kleinberg, 2010). Nodes from set X are only connected with
nodes from set Y, not with other nodes from X, and vice versa. The connections can be
weighted/unweighted or directed/undirected.

Figure 1: Actor-movie bipartite network. Green nodes are movie nodes, yellow ones are
actor nodes.

In order to show the direct relations among a particular set of nodes (Zhou et al., 2007),
because of the lack of appropriate notions and tools to address bipartite networks and
to compare a particular network to others, one generally transforms a bipartite network
into its X- or Y-projection (Latapy, Magnien, and Vecchio, 2008), only consisting of one
type of nodes. This is shown best through an example. Let’s take a bipartite network of
actors (yellow) and movies (green) as shown in figure 1, which gets projected to an actor-
actor unipartite network (figure 2). Actor-actor means, that the projection looks on the
relations between actors through their connection to movies. When actor x1 played with
actor x2, the nodes x1 and x2 get connected in the projected unipartite graph. This
goes on as long as all actor-movie-actor paths were projected. The created unipartite
network only exists of actors connected together, and the edges carry the information
that the actors played together in a movie.

The projection, more precisely the information loss through it, leads to some seri-
ous problems. Some will be mentioned here: 1) It’s lost if the actors played in more
than one movie together, 2) the bipartite clustering coefficient differs from its unipartite
counterpart and varies widely for given unipartite values, demonstrating the distinction
between unipartite and bipartite embeddedness in the network (Piepenbrink and Gaur,
2013) and 3) in which movie(s) they played together and. The first problem is solved
by the use of a weighted projection, where the resulting network carries the number of
co-occurances as edge weight and the second can be tackled by looking at the clustering
coefficient of the bipartite network. The last one is an unsolveable part of projections.

2



3 Analysis and Visualization

Figure 2: Projected unipartite network from bipartite Actor-Movie network

Another blemish is, that the information contained by the edge whose adjacent X node
(Y node) is of degree one, will be lost in X-projection (Y-projection) (Zhou et al., 2007).
In sense of computation, the inflationary growth of edges through projection can cause
troubles. Notice that each top node of degree d induces links in the X-projection, and
conversely (Latapy, Magnien, and Vecchio, 2008). And empiricaly there are also issues:
When the number of connections grow, the amount of interactions between the nodes
normally decrease, but this information is lost through the projection. Generally this
means, that the projection to unipartite networks ignores the possibility that bipartite
networks have characteristics unique to their specific nature, which cannot be captured
from a unipartite network perspective (Piepenbrink and Gaur, 2013).

There are also specificities of the measurements. It is shown that the expected clus-
tering coefficient in the projections is large, and give an efficient estimation formula; this
means that a high clustering coefficient in a projection may be seen as a consequence of
the underlying bipartite structure rather than a specific property of the network. Con-
versely, if the clustering coefficient of the projection is different from the expected one,
it means that the underlying bipartite structure has nontrivial properties responsible for
it (Latapy, Magnien, and Vecchio, 2008; Newman, Strogatz, and Watts, 2001; Guillaume
and Latapy, 2004; Guillaume and Latapy, 2006).

In particular, there is a high heterogenity between degrees of nodes of at least one
kind, and there are significant overlaps between neighbourhoods (Latapy, Magnien, and
Vecchio, 2008).

3 Analysis and Visualization

3.1 Data

The data used in this introduction is provided by the KONECT1 project from the Web
Science and Technology Institute (WeST)2 at the University of Koblenz-Landau.

1http://konect.uni-koblenz.de/
2http://west.uni-koblenz.de/

3

http://konect.uni-koblenz.de/
http://west.uni-koblenz.de/


3 Analysis and Visualization

• dbPedia (Countries network dataset – KONECT 2014): Relations between dbPe-
dia3 entities with countries, like Mozart lived in Austria.

• GitHub (Github network dataset – KONECT 2014): Collaboration-network of users
and the projects they contributed to.

All KONECT data are licensed under a Creative Commons Attribution-ShareAlike
2.0 Germany License. 4

3.2 Reproducible Setup and Workflow

To be able to make the analysis reproducible, the process will be done openly, what
is summarized under the term Open Science5. Only Open Source Software6 were used
together with Open Data Formats7. The whole computation and visualization is done
with Python’s8 iPython Notebook (Pérez and Granger, 2007), an interactive scientific
computing system in which source code and documentation can be written in one single
document. Inside it, for the network analysis the module networkX9 is used and for
plotting matplotlib (Hunter, 2007). The iPython notebook is stored in a JSON10 file
and can be exported easily in different formats like Markdown11, PDF, HTML or TeX12.
To make the results easily accessible on the internet, understandable and reproducible,
everything is written in LaTeX13 with use of the TU Graz template14, versioned with
Git15 and put online with the web service GitHub16. This work is availiable at https:

//github.com/skasberger/se-networks.

3.3 Preprocessing

The KONECT data is well structured and has not a lot of additional attributes, so there
isn’t much preprocessing of the data itself necessary. But, because of computational
reasons, both networks are way to big to get calculate (shortest path) or the projected
in a reasonable amount of time and some calculations need a connected component.

3http://dbpedia.org/About
4https://creativecommons.org/licenses/by-sa/2.0/de/deed.en
5https://en.wikipedia.org/wiki/Open_science
6https://en.wikipedia.org/wiki/Open-source_software
7https://en.wikipedia.org/wiki/Open_format
8http://www.python.org/
9http://networkx.github.io/

10http://www.json.org/
11https://en.wikipedia.org/wiki/Markdown
12https://en.wikipedia.org/wiki/TeX
13http://www.latex-project.org/
14http://latex.tugraz.at/vorlagen/allgemein
15http://git-scm.com/
16https://github.com/

4

https://github.com/skasberger/se-networks
https://github.com/skasberger/se-networks
http://dbpedia.org/About
https://creativecommons.org/licenses/by-sa/2.0/de/deed.en
https://en.wikipedia.org/wiki/Open_science
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Open_format
http://www.python.org/
http://networkx.github.io/
http://www.json.org/
https://en.wikipedia.org/wiki/Markdown
https://en.wikipedia.org/wiki/TeX
http://www.latex-project.org/
http://latex.tugraz.at/vorlagen/allgemein
http://git-scm.com/
https://github.com/


3 Analysis and Visualization

Figure 3: Browser Screenshot from iPython notebook environment

To solve these problems the giant component (largest connected component = lcc) was
used for expensive calculations. Sometimes even the second largest connected component
was used (2nd lcc), because the giant component still was too big (e. g. shortest
path, betwenness centrality, closeness centrality). As table 1 and 2 show, the subgraphs
(components) differ a lot in structure and key metrics from the parent graph. It is
important to distinguish in the analysis between which graph was used to make right
conclusion.

Graph Users Projects Nodes Edges Avg. Degree

Parent Graph 56.519 120.867 177.386 440.237 4,96
Giant Component 39.845 99.907 139.752 417.361 5,97

2nd lcc 3 42 544.947 580.231 2,12

Table 1: Properties of GitHub graphs

Graph Entitites Countries Nodes Edges Avg. Degree

Parent graph 548.077 2.445 550.522 584.947 2,12
Giant component 543.589 1.358 544.947 580.231 2,12

2nd lcc 337 1 338 337 1,99

Table 2: Properties of dbpedia graphs

5



3 Analysis and Visualization

The difference of key metrics continues and intensifies through the projection, as the
strong increase of edges and the average degree (see table 3) in the dbpedia graph show.
For the github graph it was a user-user projection, for the dbpedia an entitie-entitie
projection of the 2nd lcc graph. The high degree of dbpedia lies in the very dense and
easy structure of only one country connected to 338 entities in the bipartite graph.

Graph Nodes Edges Avg. Degree

Projected GitHub 3 3 2,00
Projected dbpedia 337 56.616 336,00

Table 3: Properties of projected graphs

As last step, the graphs are tested if the components are connected and if isolated
nodes exist.

3.4 Degree

Degree distribution is one of the most important centrality measurements. The whole
graphs of both data sets were used for the calculation. As result, the degree distribution
was more dense in the low area of the dbpedia network as in Github (see figure 4). This
shows, that the average contribution on github is higher than the average number of
connections from dbpedia entities to countries, what sounds fair right.

Figure 4: Degree distribution on a log-lin scale. The left shows the github network, on
the right is dbpedia

3.5 Shortest Path

Shortest Path describes the shortest possible way between two nodes. To get the average
shortest path of a graph, every possible connection between all nodes have to be com-
puted and divided by the number of paths. Because of the high computational costs for

6



4 Conclusion

this, the second largest connected components are used. As a result, the github network
has slightly higher average shortest path (2,11) than dbpedia (1,99).

3.6 Clustering

Clustering tells about the density of the graph. This is a very imporant measure for
bipartite networks and their projections (Latapy, Magnien, and Vecchio, 2008). For the
analysis the 2nd lcc network was used, because of computational costs. The average
clustering coefficient of the simple dbpedia graph with only one country shows the ex-
pected high clustering of the related entities. In general, the clustering coefficients of a
projected graph should be much higher than of the original bipartite one. In this case,
due to of the very untypical structure of the bipartite networks, this effect can not be
seen.

Graph Avg. clustering coefficient

Github all 0,90
Github users 0,18

Github projects 0,95
Github projected 1

dbpedia all 1,0
dbpedia entities 1.00

dbpedia countries 0.00
dbpedia projected 1

Table 4: Clustering coefficients

3.7 Diameter

Diameter is the longest of all shortest paths in a network. Because of the underlying
cost expensive shortest path algorithm, again, the 2nd lcc network was used. The github
network has a diameter of 4, the dbpedia one of 2.

4 Conclusion

The study of networks is still in it’s beginning, and so is the research on bipartite net-
works. A lot of ideas come up for research on 1) weighting algorithms of projections,
2) specialization in the needs of visualization (Schulz et al., 2008) and 3) new measure-
ments specifically for bipartite networks and further research on the existing ones. To
make knowledge easier transferable, comparability of studies across disciplines and fields
should be strived for (Piepenbrink and Gaur, 2013).

7



5 Openness

The impression of the first work with iPython was very good. Together with matplotlib
it makes a documented, sequencial, integrated and open workflow easily possible. The
computation itself proved to be challenging. Networkx is easy to use but the drawing
functions are very scarse and need more specific layouts. iGraph looks like a good
alternative for this. Also some issues with algorithms occured, maybe failure on my
side, maybe bugs. Another problem was typical for large-scale real world networks: the
computational costs were huge and not manageable by normal IT-infrastructure, like a
standard laptop. For this parallel computing would be necessary.

In the analysis, much more in detail could be done: Comparing the measurements of
the two node sets with one another, or comparing it with random graphs for example.

All in all, many questions arose for further investigations on bipartite networks, which
would be very helpful to understand network theory in general and the specifics of
bipartite networks in particular.

5 Openness

5.1 Copyright

This work is licensed under the Creative Commons Attribution 3.0 AT license17.

All generated code, content and figures are online freely available on the se-networks
GitHub repository18 and compatible with the OpenDefinition19. The sourcecode is li-
censed under the MIT license20, figures and text under the Creative Commons Attribu-
tion 3.0 AT license.

5.2 openscienceASAP

An own webpage21 was created for the Networks Seminar at openscienceASAP22 to
collect all informations and works on one central page.

17https://creativecommons.org/licenses/by/3.0/at/
18https://github.com/skasberger/se-networks
19http://opendefinition.org/
20http://opensource.org/licenses/MIT
21http://openscienceasap.org/education/courses/se-networks/
22http://openscienceasap.org

8

https://creativecommons.org/licenses/by/3.0/at/
https://github.com/skasberger/se-networks
http://opendefinition.org/
http://opensource.org/licenses/MIT
http://openscienceasap.org/education/courses/se-networks/
http://openscienceasap.org


5 Openness

5.3 Other Sources

• bipartite network dbPedia from KONECT (CC BY-SA) http://konect.uni-koblenz.
de/networks/dbpedia-country (Countries network dataset – KONECT 2014)

• bipartite network GitHub from KONECT (CC BY-SA) http://konect.uni-koblenz.
de/networks/github (Github network dataset – KONECT 2014)

9

http://konect.uni-koblenz.de/networks/dbpedia-country
http://konect.uni-koblenz.de/networks/dbpedia-country
http://konect.uni-koblenz.de/networks/github
http://konect.uni-koblenz.de/networks/github


6 Bibliography

6 Bibliography

References

Countries network dataset – KONECT (Jan. 2014). url: http://konect.uni-koblenz.
de/networks/dbpedia-country.

Easley, David and Jon Kleinberg (2010). Networks, Crowds, and Markets: Reasoning
About a Highly Connected World. New York, NY, USA: Cambridge University Press.
isbn: 0521195330, 9780521195331.

Github network dataset – KONECT (Jan. 2014). url: http://konect.uni-koblenz.
de/networks/github.

Guillaume, Jean-Loup and Matthieu Latapy (June 15, 2004). “Bipartite structure of all
complex networks”. In: Information Processing Letters 90.5. 00150, pp. 215–221. issn:
0020-0190. doi: 10.1016/j.ipl.2004.03.007.

– (Nov. 15, 2006). “Bipartite graphs as models of complex networks”. In: Physica A:
Statistical Mechanics and its Applications 371.2. 00099, pp. 795–813. issn: 0378-4371.
doi: 10.1016/j.physa.2006.04.047.

Hunter, J. D. (2007).“Matplotlib: A 2D graphics environment”. In: Computing In Science
& Engineering 9.3, pp. 90–95.

Latapy, Matthieu, Clémence Magnien, and Nathalie Vecchio (2008). “Basic notions for
the analysis of large two-mode networks”. In: Social Networks 30.1, pp. 31–48. issn:
03788733. doi: 10.1016/j.socnet.2007.04.006.

Newman, M. E. J., S. H. Strogatz, and D. J. Watts (July 2001).“Random graphs with ar-
bitrary degree distributions and their applications”. In: Physical Review E 64.2. 02317
arXiv:cond-mat/0007235. issn: 1063-651X, 1095-3787. doi: 10.1103/PhysRevE.64.
026118. url: http://arxiv.org/abs/cond-mat/0007235 (visited on 02/09/2014).

Pérez, Fernando and Brian E. Granger (May 2007). “IPython: a System for Interactive
Scientific Computing”. In: Computing in Science and Engineering 9.3, pp. 21–29. issn:
1521-9615. doi: 10.1109/MCSE.2007.53. url: http://ipython.org.

Piepenbrink, Anke and Ajai Gaur (2013). Methodological Advances in the Analysis of
Bipartite Networks: An Illustration Using Board Interlocks in Indian Firms. SSRN
Scholarly Paper ID 2199111. Rochester, NY: Social Science Research Network. url:
http://papers.ssrn.com/abstract=2199111.

Schulz, Hans-Jörg et al. (2008). “Visual Analysis of Bipartite Biological Networks”. In:
Proceedings of the First Eurographics Conference on Visual Computing for Biomedicine.
EG VCBM’08. Aire-la-Ville, Switzerland: Eurographics Association, 135–142. isbn:
978-3-905674-13-2. doi: 10.2312/VCBM/VCBM08/135-142.

Zhou, Tao et al. (2007). “How to project a bipartite network?” In: Physical Review E
76.4. arXiv:0707.0540 [physics]. issn: 1539-3755, 1550-2376. doi: 10.1103/PhysRevE.
76.046115. url: http://arxiv.org/abs/0707.0540.

10

http://konect.uni-koblenz.de/networks/dbpedia-country
http://konect.uni-koblenz.de/networks/dbpedia-country
http://konect.uni-koblenz.de/networks/github
http://konect.uni-koblenz.de/networks/github
http://dx.doi.org/10.1016/j.ipl.2004.03.007
http://dx.doi.org/10.1016/j.physa.2006.04.047
http://dx.doi.org/10.1016/j.socnet.2007.04.006
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://arxiv.org/abs/cond-mat/0007235
http://dx.doi.org/10.1109/MCSE.2007.53
http://ipython.org
http://papers.ssrn.com/abstract=2199111
http://dx.doi.org/10.2312/VCBM/VCBM08/135-142
http://dx.doi.org/10.1103/PhysRevE.76.046115
http://dx.doi.org/10.1103/PhysRevE.76.046115
http://arxiv.org/abs/0707.0540

	Introduction
	Theory
	Analysis and Visualization
	Data
	Reproducible Setup and Workflow
	Preprocessing
	Degree
	Shortest Path
	Clustering
	Diameter

	Conclusion
	Openness
	Copyright
	openscienceASAP
	Other Sources

	Bibliography

