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ABSTRACT 
Brain-computer interfacing (BCI) offers novel methods to facilitate 
participation in audio engineering, providing access for individuals 
who might otherwise be unable to take part (either due to lack of 
training, or physical disability).  This paper describes the development 
of a BCI system for conscious, or ‘active’, control of parameters on an 
audio mixer by generation of synchronous MIDI Machine Control 
messages. The mapping between neurophysiological cues and audio 
parameter must be intuitive for a neophyte audience (i.e., one without 
prior training or the physical skills developed by professional audio 
engineers when working with tactile interfaces). The prototype is 
dubbed MINDMIX (a portmanteau of ‘mind’ and ‘mixer’), 
combining discrete and many-to-many mappings of audio mixer 
parameters and BCI control signals measured via 
Electronecephalograph (EEG). In future, specific evaluation of 
discrete mappings would be useful for iterative system design. 
Author Keywords 
BCI, sound engineering, EEG, audio mixing, accessible computing 
 
CCS Concepts 
• Applied computing → Sound and music computing; Performing 
arts; • Information systems → Music retrieval;  

1. INTRODUCTION 
Brain-computer interfacing (BCI) can be used to adapt various 
neurophysiological measurement techniques to the control of a wide 
range of applications, for example gaming [1]. Music can have a huge 
impact on our day-to-day lives, and is increasingly being correlated 
with mental health and wellbeing [2]. In such contexts, music has been 
shown to reduce stress, improve athletic performance, aid 
mindfullness, and increase concentration. There is a large potential 
user base for music amongst people who might otherwise be unable to 
engage in music making activities via traditional means (either due to 
lack of training, or physical disability), who might benefit from 
biophysiologically-informed computer aided interaction with music.  
 BCI hardware is becoming increasingly affordable and accessible, 
giving rise to music specific applications in the emerging field of brain-
computer music interfacing, (BCMI) [3], [4]. There are many reasons 
why audio engineers prefer tactile control of mixing processes [5], 
which partially explains the significant interest, and progress being 
made in the field of haptic augmentation in audio and musical 
instrument design [6], [7]. There is a distinction to be made between 

 
1 The Electroencephalogram (EEG) is a device for measuring electrical activity across the brain 

via electrodes placed across the scalp [10]. In the case of the instrument described here, the 
standard 10/20 arrangement was used to determine electrode placement [11].  

active and passive BCI control. Active control means that the user 
must be able to take a clear agency over the resulting actions, for 
example, by imagining a movement and seeing a direct correlation in 
the resulting system behaviour. Passive control would include 
detection of control signals which are not directly controllable by the 
end user (for example, heart rate, or galvanic skin response for 
emotional state estimation). Beyond encouraging inclusivity and 
participation through facilitating access to audio engineering processes 
via linear mapping strategies, the potential to harness unconscious 
processes (passive control) suggests that augmented audio 
engineering, for example, individually adaptive, responsive, or 
context-dependent remixing, may be a possibility. Such technology 
could be married together with the significant advances in music 
information retrieval (MIR), non-linear music creation [8], and 
context-adaptive music selection in the future.  

2.  BACKGROUND & PREVIOUS WORK 
BCI is gradually becoming more established, but harnessing this 
technology for music making, or controlling more general interactions 
with music (for example, using brainwaves to select music playlists 
autonomously) is less common and something of an emerging field.  
 Significant progress towards functional Brain-Computer Music 
Interfacing, or BCMI, was made in the 1990’s, for example Biomuse 
[9] which mapped low-level neuroelectric and myoelectric signals to 
the generation of MIDI data in real-time. Beyond music composition 
tasks, some specific work has attempted to harness the 
electroencephalogram, (EEG)1 and related signals in an audio 
engineering context. For example, Miranda et al. attempted to create a 
control signal for volume automation in a basic audio mixer using a 
simple metric from EEG, the amplitude of alpha and beta waves [12]. 
This work attempted to use BCI to control the amplitude of two 
separate audio faders in a virtual (digital audio workstation) mixer. 
Beta frequencies are more often associated with active states of mind, 
but the process of actively mixing audio requires both attention and 
precise control. Therefore, this choice of parameters is somewhat 
incongruous for the end-use application: Becoming ‘calmer’ is not 
analogous to any mixer property, nor generally adaptable to the task of 
mixing a range of musical material, though specific musical examples 
might be more relevant - for example, in a case where a calmer state 
of mind would cause the level of active or energetic music to lower, 
and raise the level of calmer sounding music. Other work harnessing 
existing BCI metrics and adapting them for musical control includes 
use of the P300, ERP, or ‘oddball’ paradigm [13], measurement of 
specific frequency bands (activity in alpha, beta, gamma, or mu) [14], 
[15], steady-state visually evoked potential (SSVEP) [16], [17], and 
measures of asymmetry [11], [18], all via EEG.  
 Related research challenges include increased speed of 
classification, for example by machine learning techniques [19] or 
accuracy of the interface [20]. Generally these are challenges related 
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to the type of data processing employed, either statistical data 
reduction or noise reduction and artefact removal techniques in other 
measurement paradigms, such as functional magnetic resonance 
imaging (fMRI) [21].   
 In the case of music mixing, there are many application-specific 
goals that need to be considered in order for the BCMI system to best 
serve its intended use. In, for example, a music therapy context, one 
advantage of a BCMI system is that it might be used by a person with 
no a priori experience or musical training, in order to engage in music 
production in context. However, in order to do this the BCMI must be 
capable of performing music which is well correlated with the signal 
being analysed as a control signal (e.g., BCI parameters mapped 
according to constraints of melody, harmony, rhythm, or genre) yet 
also allows the user enough degrees of freedom to feel that they are 
truly the agent of their performance. Therefore criteria for the 
specification of a suitable BCMI system must include consideration of 
both agency and conformity to production rules.  
 There is a marked difference between systems for controlling music 
directly by means of BCI, and systems for sonification or musification 
of brainwave data (typically EEG), [22], [23]. Sonification is a 
process whereby data is directly presented by auditory means (for 
example, an alarm, telephone ring, etc.) [24]. In terms of brain-
computer music applications, sonification of EEG has become 
common [22], [23], [25] with many existing mappings being used. 
Mapping is particularly important in the design of such systems, as the 
range of controls available (even in hybrid systems) is still minimal in 
comparison to the spread of possible actions involved in music 
making. An overview of different types of music mapping from 
complex biomedical data and subsequent evaluation strategies, is 
given in [26]. An overview of specific mapping techniques for digital 
instrument design is given in [27]. Various combinations of mapping 
strategies exist, including one-to-one, one-to-many, and many-to-
many combinations [28]. It is in the mapping stage that a system for 
controlling audio mixing functionality derives success through utility 
(or lack thereof in the case of ineffective mapping). Work to establish 
correlation between such parameters and plausible brain signals is 
beyond the scope of this paper, but would likely be well received by 
the applied BCI community as part of a research road map. 
  As mentioned above, previous attempts to use BCI to control 
audio mixing parameters have been designed solely to use alpha and 
beta activity to control the amplitude of two separate faders. Our 
approach is radically different in design and implementation. For the 
prototype under evaluation here, control metrics and mappings were 
selected with the intention that they would be congruent between 
operator and operation. 

2.1 EEG Metrics 
Several metrics for extracting meaningful control data from EEG are 
common in BCI systems. The P300 ERP (Event Related Potential, or 
‘oddball’ paradigm ) has been used to allow active control over note 
selection for real-time sound synthesis [29], [30]. Such methods are 
not dissimilar to ERP spelling systems, e.g., [31], [32], which are now 
increasingly common in the BCI world, though adapted to musical 
notes rather than text input.  Stimulus-responsive input measures, for 
example, the SSVEP2 [16], have been adapted to real-time score 
selection [34]. Active control by means of Mu frequency rhythm and 
motor imagery are also becoming popular as control signals for 
various applications, including avatar movement in virtual reality, 
operation of spelling devices, and neuroprostheses [15], [32]. The 
challenge, then, is in devising and evaluating mappings which are most 
suited to task-specific control – in this case, audio engineering 
processes, more specifically, mixing processes. MINDMIX control 
mappings were selected according to this philosophy. For example, 
once a particular channel has been selected, left or right motor imagery 

 
2 SSVEP is a response to visual stimulation at a given frequency and integer multiples thereof, 

measurable in the visual cortex. For a detailed explanation of the signal characteristics under 

can be actively engaged to adjust the panorama of an audio source to 
move a sound image between left and right loudspeakers in a 2-
channel stereo configuration. This is a many-many mapping wherein 
the channel is first selected by means of SSVEP, then the pan control 
selected by ERP, before the pan value is adjusted according to Mu L/R 
balance.  
 The range of tactile functions the MINDMIX prototype aims to 
augment are as follows: Transport control (play, stop, fwd, rev), fader 
select and level (individual channels, buss, and FX return), 
potentiometer select and adjust (pan, parametric EQ), and channel 
switching (solo, mute, insert, EQ in/out). Each of these parameters has 
been mapped to a sequence of actively controllable metrics, 
combining motor imagery (left and right), SSVEP, and ERP.  
 The MINDMIX prototype focusses solely on mixing (including 
remixing, and post-production tasks), rather than on source capture or 
recording. Therefore, there was no need to include functionality such 
the various categories of record which a transport bar might exhibit in 
a fully featured console or digital audio workstation.  

3.  SYSTEM OVERVIEW 
Tables 1 and 2 show EEG metrics and mappings to parameters as 
implemented in the prototype system. To demonstrate the application 
of passive BCI measures (e.g., alpha, beta, and asymmetry), a master 
FX send and return was also implemented under control of the relative 
level between beta and alpha (greater level of alpha resulting in a 
“wetter balance”, one with a higher ratio of effect to unaffected signal). 

Table 1 Mapping between EEG metric and generic mixer 
control types 

Mixer parameter EEG metric 

Channel select SSVEP (specific frequency) 

Switch select (e.g., select a 
rotary potentiometer, switch 
on/off) 

ERP 

Adjust rotary potentiometer Motor imagery (left, right) 

Adjust fader amplitude SSVEP duration 

Transport control (play/stop) SSVEP and ERP 

 
Combinations are accessed according to context (i.e., a channel is 
selected before a specific parameter is chosen and then varied 
according to motor imagery in the case of potentiometer, SSVEP 
duration in the case of faders, and ERP in the case of switches). Two 
common mixer parameters were not implemented in the pilot 
mapping: EQ width (i.e., semi-parametric EQ only), and channel FX 
send controls. Real-time input is analyzed and filtered, including 
artefact removal to produce simple control signals. Control signals are 
then mapped to mixer parameters; sent by Open Sound Control to 
generate MIDI Machine Control. The signal flow is a feedback loop 
comprising 16 channels EEG->data smoothing->semantic content 
analysis -> classify ->route to mixer parameter->EEG, shown in 
Figure 1. 
  Combinations of mappings (i.e., many-many mapping) allows for 
a channel to be selected using SSVEP, followed by a potentiometer 
(e.g., pan, or semi-parametric EQ frequency/gain) to be selected 
according to ERP, before the value of the potentiometer itself is set 
according to imagined motor imagery (i.e., left, or right). SSVEP 
allows users to make a selection by focusing their gaze on a visual 

analysis, the reader is referred to [16], [17], and to [33] for a review of use in various BCMI 
platforms 
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stimulus oscillating at a given rate. As well as initial parameter 
selection, SSVEP also allows for second level of control by mapping 
the duration of the gaze with non-linear features, for example 
amplitude, allowing for a degree of continuous control i.e., after 
selecting a specific channel the duration of a user’s gaze can be used 
to adjust the fader for the selected channel accordingly. A similar effect 
could be achieved using eye-tracking in a hybrid system, using 
duration of gaze as a secondary mapping for amplitude. The 
parameters which are most useful for broad user participation in terms 
of transport across the digital audio workstation are play, stop, select, 
and various level parameters. It is important to consider the most 
meaningful signal type for each parameter in the mapping; some of 
these control signals have analogous actions in a mixer, for example, 
motor cortex with transport controls (stop, go, fast forward, rewind), 
and some have analogous parameters in music (SSVEP to non-linear 
adjustment of amplitude via faders). However, partly due to the 
infancy of the use of BCI for music making, the selection of these 
combinations is necessarily somewhat arbitrary, and therefore 
methods for evaluating the success of these mappings is necessary.  

Table 2 many-many mappings for mixer parameters.  

Mixer parameter Many-many mapping 

Channel volume SSVEP (select) and SSVEP 
duration (gain) 

Buss volume ERP (select) and SSVEP 
duration (gain) 

Master FX return volume Alpha/Beta balance 

Channel pan SSVEP (channel select), ERP 
(select pan), Motor imagery 
(adjust left-right balance) 

Channel EQ freq SSVEP (parameter select), 
Motor imagery (adjust 
frequency range low-high) 

Channel EQ gain SSVEP (parameter select), 
SSVEP duration (gain) 

Channel insert in/out, EQ 
in/out, Solo 

ERP 

 
 The system is implemented in OpenVibe with Max/MSP and 
Reaper digital audio workstations. As described in the introduction, 
our focus is on using relatively well-known metrics in a music control 
context. Any number of statistical data reduction techniques might be 
used in the signal analysis block - For details of previous studies using 
principal component analysis for music measurement when analyzing 
EEG, the interested reader is referred to previous work in [4], [35]–
[37].  

4. DISCUSSION AND FURTHER WORK 
A number of paradigms for the evaluation of BCI systems exist, 
however they often focus on technical or methodological details. 
There is a tendency in BCI work to prioritise technical implementation 
in research reporting, for example considering increased speed or 
accuracy of a system, rather than the application itself. For the 
purposes of this work, which combines existing techniques that have 
already been well-documented in the BCI community, such 
evaluations are less relevant. Instead we suggest that readers interested 
in in-depth consideration of particular BCI techniques (typically 
regarding issues of speed, accuracy, new technological 
implementation etc.,) consider reviews offered in [38], [39] and most 

recently, [40]. Of most concern to the system presented here is the 
appropriateness of the mapping and the relevance and usefulness of 
the user interaction with the application. In the traditional audio 
engineering domain, this would be comparable to evaluating decisions 
such as whether, for example, a rotary potentiometer or a fader was 
most appropriate for control of a discrete audio parameter.  
 

 

Fig. 1. Overview of signal flow and iterative evaluation process.  
 
BCI offers (i) augmentation to listeners who might benefit from 
context specific or adaptive audio - such as non-linear immersive audio 
in the next generation of gaming and virtual reality – and (ii) 
participation opportunities to those who might otherwise be unable to 
take part in the possibilities for expression afforded by creative audio 
engineering, including emotional contagion, communication, and 
perhaps most importantly, interaction with others. 
 There is a serious argument to be made for the use of brain-computer 
devices to assist access in terms of inclusion: users who might 
otherwise be unable to enjoy audio engineering can potentially take 
part using this technology. Significant advances have already been 
made in the field of brain-computer music interfacing – might bio-
assisted audio engineering be able to take these advances to the next 
level in terms of inclusive system design? Previous systems have 
generally not successfully been able to integrate congruent design with 
the sensing algorithms being used. One application adapting 
neurophysiological cues to the control of audio mixer parameters has 
been described here. As with any such application, the utility is 
somewhat dependent on the complexity of the mappings, and the 
number of meaningful, controllable features that might be extracted 
from the EEG. These include overall signal amplitude, frequency 
domain analysis derived amplitudes, and spatial distribution of both 
properties at specific electrode placements on the scalp (for example, 
denoting motor cortex activity, asymmetry and other spatial 
distribution metrics) [18]. 
 Evaluation strategies for BCI-to-audio mappings, in general, are not 
universally agreed upon and remain a significant area for further work.  
An exploration of rankings across different musical genres might be a 
useful avenue for further work in evaluating this type of assistive 
technology in a real-world context.  
 The use of musical stimuli to mediate or entrain the listeners’ brain 
activity (i.e., neurofeedback) also remains a fertile area for research 
activity [23], [36]. Neurofeedback is becoming increasingly common 
in the design of brain-computer music interfacing for specific purposes 
such as therapeutic applications. Similarly, a significant amount of 
further work remains in quantifying listener responses to affectively-
charged music, and in measuring the impact on a given affective state 
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that music might have on an individual already in a given state. 
Nevertheless, the possibility of developing affectively-responsive 
audio applications, using cues from BCI technology suggests that 
individual variability might in the future be mediated in ways that had 
previously been thought impossible; for example, a mapping to 
particular mix features which respond adaptively to the individual 
whilst listening to a mix.  
 We may then, in the future, see systems adapted to more 
generalizable portable mappings which that might be controlled by 
EEG, using adaptive mappings derived by machine learning rather 
than prescribed by the designers of such systems, for audio 
engineering applications regardless of physical ability or previous 
training, or even individually responsive mixes based on a listeners’ 
biosignals. Further work establishing plausible parameters for control 
via brain signals, with consideration for congruence between the two, 
would likely provide a welcome research road map for the applied BCI 
community (including domains beyond sound and music computing) 
in future.  
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