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ABSTRACT

A deformable musical instrument can take numerous dis-
tinct shapes with its non-rigid features. Building audio syn-
thesis module for such an interface behaviour can be chal-
lenging. In this paper, we present the Al-terity, a non-rigid
musical instrument that comprises a deep learning model
with generative adversarial network architecture and use it
for generating audio samples for real-time audio synthesis.
The particular deep learning model we use for this instru-
ment was trained with existing data set as input for pur-
poses of further experimentation. The main benefits of the
model used are the ability to produce the realistic range of
timbre of the trained data set and the ability to generate
new audio samples in real-time, in the moment of playing,
with the characteristics of sounds that the performer ever
heard before. We argue that these advanced intelligence
features on the audio synthesis level could allow us to ex-
plore performing music with particular response features
that define the instrument’s digital idiomaticity and allow
us reinvent the instrument in the act of music performance.
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CCS Concepts

•Applied computing → Sound and music comput-

ing; Performing arts; •Computing methodologies →
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1. INTRODUCTION
Music is an outstanding example of cultural and mediated
practices that has often been at the forefront of research in
emerging technologies. Today, digital technologies and ad-
vanced computational features, e.g. deep learning and ar-
tificial intelligence (AI) tools are shaping our relationships
with music as well as enabling new possibilities of utilising
new musical instruments and interfaces. The complex na-
ture of these technologies, now commonplace in our daily
lives, intimately connected with machine learning models
that are commonly used in practices with new musical in-
struments. In a domain of research and practice of NIME,
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the set of machine learning models applied might be referred
to a general set of techniques that are used to deal with the
challenges of musical interactions with a new musical in-
strument, intended to help us play it better, to play faster,
or even to perform better in other respects. The current
developments of tools are advancing such existing models,
further lead to modeling new sounds, providing possibilities
to generate audio efficiently and faster but at the same time
interesting results from the trained data set of samples in
audio domain. Deep learning with audio shifts the focus to
next level of real-time synthesis of sound by creating com-
pletely new-sounding sounds.

Figure 1: AI-terity instrument

In this paper, we introduce Al-terity, a deformable, non-
rigid musical instrument that comprise computational fea-
tures of a particular AI model for generating relevant audio
samples for real-time audio synthesis. Stiffness and physi-
cal deformability becomes an opening of the instrument’s
folded shape (Figure 1), generating audio samples when
handheld physical action is applied. This physical manip-
ulation causes control parameter changes in sample-based
granular synthesis and new audio samples are distributed
around the surface when the performer starts a direct in-
teraction with the instrument. Being able to move through
timber-changes in sonic space allows performer to access one
way to idiomatic digital relationship [26] with sound making
and control actions with Al-terity instrument. Our main fo-
cus in this paper is the real-time sound synthesis features
built in with the generative AI model and the particular
idiomaticity of such generative-behaviour in music making
experience.

2. RELATED WORK
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Artificial Intelligence (AI) methods applied to music can be
traced back even centuries in relation to its automated al-
gorithmic features [5, 18]. Today, the growing use of AI in
music practices is well known by which the AI is employed
through more advanced computational features that deter-
mine the implications of its usage and it is not limited to
only automation. Since the beginning researchers have long
sought how musical activity, musical cognition and knowl-
edge can be modeled using AI applications and techniques.
Some aimed at understanding the nature of compositional
knowledge acquisition and listening [13], possibilities for cre-
ating melodies based on chosen emotive impact [17], replica-
tions of set of instructions to create new instances of music
[4] as well as computer accompaniment music performance
systems [5]. In a similar context, Roads [18] introduced ar-
tificial musical intelligence concept which implies looking at
music though increasing body of AI strategies and method-
ologies. This concept, to some degree, has been reflected in
NIME community through various aspects of machine learn-
ing methods used in triggering musical interactions with
NIMEs.

Fiebrink et.al [9] introduced Wekinator, an application
of supervised machine learning method, which could learn
a model in relation to a set of input/output parameters.
This method uses a trained dataset of the input/output
pairs and could modify control parameters or mapping func-
tions for sound synthesis. Wekinator has been widely used
for discrete classification events in live music performances
with NIMEs and in mixed-media installations [14, 21, 19].
There has also been a growing interest to provide machine
learning toolbox systems that could evaluate and recognise
static postures over time in different contexts - e.g. in real-
time gesture transitions in music performances, perform-
ing regression and classifying temporal gestures of the per-
formers [11]. Smith & Garnett [20] and Cont et.al [3] also
presented toolbox of unsupervised machine learning algo-
rithms, having the goal to make toolbox accessible to any-
one who has the computational skills in commonly known
real-time dataflow programming environments like Max and
Pure Data. Similarly, one particular approach receiving no-
table attention is the more advanced artificial intelligence
models that are able to provide automatic methods of learn-
ing for appropriate representations of inputs and outputs
using deep learning methods [10], and for simulated human-
robot imitation of particular music performance [25] as well
as for prediction of musical events to provide non-intrusive
counteractions as an accompaniment agent [23].

It would not be too much to argue that the majority of
interests from developers across in applying machine learn-
ing methods to music are centered around musical gesture
analysis and gestural sound control in NIME community
[2]. At the same time, the recent research in artificial in-
telligence and developments of tools provide a new range of
opportunities and challenges for audio synthesis. These are
not only limited to gestures to trigger change on temporal
events, but allowing us to generate waveforms for building
audio synthesis modules. For instance, WaveNet is one of
the well known generative model for raw audio waveforms
[16]. This model has been mostly used for speech synthesis,
but because the model itself allows training on a dataset of
raw audio, it is possible to generate audio samples for mu-
sical outcome, rather than MIDI notes that indicate what
to play.

Similarly, WaveGAN is another model for generating raw
audio waveforms that has a particular generative architec-
ture based on previously developed model for image synthe-
sis [6]. Google Magenta team presents prominent research
approach to raw audio generation with deep learning mod-

Figure 2: Pressure pads attached on the inner sur-

face of the instrument

els specifically through their open source projects NSynth
[8] and GANSynth [7]. It has been our research interest to
explore and integrate generative AI models applied in au-
dio domain into development of new musical instruments.
This in turn has the potential to bring an alternative syn-
thesis of knowledge about musical instruments, as well as
enhancing the ability to focus on the sounding features of
the new instruments. In our current project, our work is
taking on the technical aspects of GANSynth model, which
places considerable emphasis on generating various audio
samples with different timbre characteristics in the moment
of performing music.

3. AI-TERITY
In our earlier work, we developed a shape-retaining, freely-
deformable interface with frequency modulation (FM) syn-
thesis units using complex circular waveforms and continu-
ous phase control [27, 24]. In the present work, we expanded
the stiffness and the shape of the interface to include ad-
ditional sample-based granular synthesis features such as
velocity, step size, play-head treads and duration for each
concurrent grains in real time. Al-terity is a non-rigid, flex-
ible musical instrument that enables parameter changes for
the sound producing events and the creation of multi-layer
synthesiser modules. While force / pressure input remained
the most effective control method for this instrument, we
were able to incorporate a touch sense arrays with capaci-
tive sensing for further control options to the audio synthesis
units. Figure 2 shows the inner sensor connections of the
instrument.

3.1 Control Interface
The control interface consists of two interlocking halves of
3D printed soft plastic, which fit together to form the final
shape seen in Figure 1. This allows sensors to be installed
inside the shape while still keeping them easily accessible for
maintenance. Inside the shape there are nine sensors, laid
out roughly in a grid. These custom built sensors are able
to sense both pressure (using Velostat, a pressure-sensitive
conductive material) and proximity (using capacitive sens-
ing). The sensors are read by a Teensy microprocessor,
which does some smoothing of the noisy signal before send-
ing it over USB to Pure Data program running on a Mac
Mini computer.

3.2 Digital Audio Synthesis Module
In this project, creating a particular type of digital idiomat-
icy to the Al-terity instrument has emerged as a critical

Proceedings of the International Conference on New Interfaces for Musical Expression (NIME-20), Birmingham, 2020

338



Figure 3: Spectrogram images of the samples inter-

polating in the latent space

factor as we define it here, however this isn’t a new pro-
cess [15, 22], but rather a re-defining of sound making and
control actions relation and thus re-envisioning the one of
the possible implementation. The ideas surrounding the
physicality of the instrument appeared to be analogous to
how the latent space in GANSynth model is organised as a
spatial distribution of timber features of audio samples in
trained data set. Figure 3 shows the interpolation of the
audio samples that are organised in random order in GAN-
Synth latent space. The shape of this instrument is based
on a 2D visualisation of such high-dimensional space, which
is extracted from our approach to represent the latent space
as unevenly and geometrically formed surfaces of a folded
paper. Unfolding that flexible shaped paper led us to create
3D drawings shown in Figure 4 and then 3D print the ob-
ject with a mix of white and black photopolymer material
which enabled us to set the level of stiffness. Partially folded
shape of the instrument allows the performer to access the
instrument in a number of different ways. We divided the
control surface into three different regions and each region
with three different nodes, which allowed us to distribute
nine audio samples in relation to the position of the pres-
sure pads on the instrument. These divided regions made it
possible to built multi-layer synthesiser modules. It might
be important to note here that the audio samples used in
these modules are not created or prepared before hand. In-
stead, GANSynth generates an audio sample for each nine
nodes positioned on the instrument each time the instru-
ment receives a direct handheld contact on one of the three
regions. Digital audio synthesis module in Al-terity instru-
ment is developed in Pure Data programming environment.

3.2.1 Layered granular synthesis modules

The bottom-layer synthesis module consists of three gran-
ular synthesisers, each processing a separate audio sample,
manipulating the granular control parameters to generate a
mix of sampled signals with different timbers. The duration
and the play-head position bring in a more sustained sounds
controlled by the amount of the pressure input received on
each pressure node in this region. The deformation of the
control surface determines the characteristics of the grains
to be synthesised and the pressure variation leads to very
smooth and lively polyphonic sounds. The temporal fea-
tures in this synthesis module can be described as a wavy
drone effect. This is the result of the duration of the grains
between the nodes in this region as they run at a different

Figure 4: 3D drawings of the AI-terity instrument

rate than they would do in some other types of polyphonic
sampling.

The middle-layer synthesis module is another granular
synthesiser with a significant difference on the output du-
ration and with percussive sound characteristics. Control
parameters define the duration of each grain, play-head po-
sition and the speed range, transposing the original pitch.
The manipulation happens on single grain that is taken on
various index points on the audio sample. Three pressure
nodes in this mid-region sends the parameters to set the
number of the grains. A new grain is defined by extending
or receding the current grain index position on the audio
sample. While outputting the resulted sounds, the total
duration is controlled by a single pressure input variable.
This brings up an opportunity to pull and manipulate the
generated samples in a relatively short step and have a part
of the grains sound slightly longer than the rest, but at the
same time ensure that the manipulated grains stay in sync
throughout.

The output of the top-layer synthesis module generates
a different pulse waveform through its granular synthesiser.
The folded shape of the control interface is coupled with
smaller sized grains with shorter durations. When the per-
former opens up the folded parts, audio module responses
with subtle but sharp sounds more percussive than the mid-
dle region responses. The pressure input also changes the
reading index points of the audio sample. Once the per-
former releases the top layer, after opening up the folded
part, the duration of the grains get longer and discrete
sounds transforms into more continues sounds until the ma-
nipulated folded part gets back to its initial shape.

Figure 5 shows the Pure Data patch in which we in-
tegrated GANSynth module into Pure Data environment.
The [pyext] external allowed us to run GANSynth python
scripts through this patch and read the generated audio
samples in Pure Data arrays easily. Once we load the GAN-
Synth model from a trained checkpoint, then for each audio
sample generation, we generate random latent vector for
timber. Following that an audio sample is generated from
each vector with a given pitch variable on a CPU computer
within a five-second buffer. In this current model we could
be able to condition the pitch for each generated audio sam-
ple. Audio samples are in wav format with 16kHz sample
rate, mono, 4 seconds long and include 32 bits per sample.

3.2.2 GANSynth: adversarial neural audio synthe-
sis
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Figure 5: GANSynth integrated in Pure Data

GANSynth is an audio synthesis algorithm based on gener-
ative adversarial networks (GANs), introduced by Google
Magenta team in January 2019 [7]. Like the earlier NSynth
algorithm, GANSynth is designed for generating musical
notes at specified pitches, but GANSynth achieves better
audio quality and also synthesises thousands of times faster.
The vastly improved speed makes the algorithm suitable
for interactive purposes, potentially even near-real-time ap-
plications for us. Previously, autoregressive models like
WaveNet (used in NSynth) represented the state of the
art in neural audio synthesis. These models are good at
learning the characteristics of sounds over very short time
periods (local latent structure) but struggle with longer-
term features (global latent structure). They are also very
slow, since they have to generate waveforms one sample at a
time. In contrast, GANs are capable of modeling global la-
tent structure, as well as synthesising more efficiently [12].
However, adapting GANs to audio generation has proven
challenging due to their weakness at capturing local la-
tent structure, producing sounds that lack phase coherence.
GANSynth tackles this problem by making several improve-
ments to the network architecture and audio representation.

However, Adapting GANs to audio generation has proven
challenging due to their weakness at capturing local la-
tent structure, producing sounds that lack phase coherence.
GANSynth tackles this problem by making several improve-
ments to the network architecture and audio representation.

3.2.3 Generative adversarial networks

GANSynth deep learning model is based on generative ad-
versarial networks, a type of generative model where two
neural networks – called generator and discriminator – com-
pete against each other [12]. The discriminator network
tries to distinguish between real and generated data (e.g.
images or audio samples), and is initially trained with a
known data set. The generator network aims to produce
data that the discriminator cannot tell apart from real data.
During training, both networks become better at their re-
spective tasks through backpropagation, resulting in a net-

work that generates very realistic data. A popular analogy
given for the generator-discriminator relationship is that of
an art forger and investigator. The generator acts as a
forger, trying to create convincing counterfeit pieces, while
the discriminator acts as an investigator, trying to spot
these counterfeits. Often, the generator and discriminator
network structures mirror each other. It is common to use
a deconvolutional neural network (DNN) as generator and
a convolutional neural network (CNN or ConvNet) as the
discriminator.

3.2.4 Architecture of GANSynth

The GANSynth network learns to represent timbre as vec-
tors in a 512-dimensional latent space. It is also conditioned
on a one-hot representation of pitch, to allow independent
control of pitch and timbre in the synthesis process. The
generator synthesises audio by sampling a random vector
from the latent space according to a spherical Gaussian dis-
tribution, and running it through several layers of upsam-
pling convolutions. The discriminator applies correspond-
ing downsampling convolutions and produces an estimate
of the divergence between the real and generated data. To
encourage the network to make use of the pitch label, the
discriminator also attempts to classify the pitch of the gen-
erated audio. The divergence estimate and pitch predic-
tion error are combined to form the network’s loss function,
which is used for backpropagation during training. The net-
work operates on a spectral representation of audio rather
than directly synthesising waveforms. The full details can
be found in the GANSynth paper [7], but the key elements of
the representation are as follows: Magnitude and phase are
computed using the short-time Fourier transform (STFT).
The logarithm of the magnitude is taken to constrain its
range, and the phase is unwrapped and differentiated to
give a measure of “instantaneous frequency”. Instantaneous
frequency expresses the constant relationship between audio
frequency and STFT frame frequency, addressing the phase
coherence problem. The magnitude and instantaneous fre-
quency are transformed to a mel frequency scale to achieve
better separation of low frequencies.

4. REMAIN IN UNCERTAINTY
The ability to generate new audio samples using GANSynth
model in real-time, with the characteristics of sounds that
the performer ever heard before, and as a result changing
digital audio synthesis module’s behaviour continuously in
the moment of playing is unusual. However, a possible close
similarity could be found in the composition S’offrir by Em-
ilie Girard-Charest 1. Tuning discrepancies is considered an
important act in the performance of this composition, as the
tuning of the cello is continuously modified, manipluated by
another musician. The sudden changes of the tuning struc-
ture put the performer in an intermittent and unconfident
state of performing. At the same time, it creates an in-
tense engagement with the instrument because it allows for
the expression of the sound-producing physical structures
which are layered in the fine tuners in the tailpiece. This
gives performer the possibility to develop and transform a
particular relationship that is idiomatic to the instrument’s
unusual behaviour, which allows massive flexibility and in-
stantaneous exploration of instrument’s playability.
Idiomaticity appears in many context in our relationship

with musical instruments. We have argued earlier that id-
iomaticity is not only bounded with composition practice
as a way of generating a repertoire for new digital instru-
ments, but also emerges as a chain of influence and rather

1https://vimeo.com/145068700
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a complex interplay between many actors involved in build-
ing and performing a digital musical instrument [15]. In the
development phase of the Al-terity instrument, our partic-
ular assumptions on digital idiomaticity was the possibility
to engage in an unusual state of playing in which the per-
former remains in a state of a continuous uncertainty.

Ursula Bertram [1] points out that unpredictable and con-
tradictory thought processes could open up new perspec-
tives of thoughts in art thinking. She discusses whether the
uncertainty, even though it is rarely taken beyond the theo-
retical realm, incorporate an openness to any creative pro-
cess or not. Her ideas on how norm-based systems or prac-
tices more reluctantly react to creative innovation, brings up
further discussions on the necessity to develop actual uncer-
tainty in artistic process, abandoning commonly expected
notions. For instance, musicians would rather choose the
instrument and perform it on the basis of its sounds, its per-
sona, its role in some musical compositions, and their own
personal aesthetic taste. In doing so they would get in touch
with a physical and psychological aspect that transcends
the musician’s musicianship. If this could be taken any fur-
ther, if musicians would take it as a self personalised artis-
tic thinking process, remaining in uncertainty will create a
particular form of idiomatic relationship between unfamil-
iar/unusual musical instrument and the musician. The pro-
cess would open up musician to receive a challenge. There is
no doubt that this could result in a collapse of possible op-
tions, in the absence of a pre-established practices. Further
questions rise here on the contrary whether the musician
would prefer to “fail” in the process of seeking to recreate a
new set of relationships with an instrument. Perhaps this
could be a subject of a follow up future work in our project.

We composed the piece Uncertainty2, idiomatically re-
flecting the unusual behaviour of the Al-terity instrument,
keeping the performer remain in unconfident state of per-
forming (Figure 6). The composition provides a non-rigid
but identifiable musical events followed by ever shifting new
sounds with new timber. In this state of transformation,
our relationship with the instrument, which previously had
been intimately connected to ourselves, our musical experi-
ence and music practices we only had imagined was possible,
could be severely shaken, disrupted and changed. Appear-
ance of new sounds on the synthesis level and being able
to move through timber-changes in sonic space could allow
performer to explore a whole new range of musical possibil-
ities. Moreover, this could turn into a continuous state of
playing, reformulating our relationship and opening up new
variety of musical demands. We argue that these advanced
intelligence features on the audio synthesis level could allow
us to explore performing music with particular response fea-
tures that define the instrument’s digital idiomaticity and
allow us reinvent the instrument in the act of music per-
formance. Reinventing the instrument might sound like an
overwhelming demand, but surely we can be challenged to
consider this. Here what we mean by reinventing is ex-
ploring the instrument’s potential to re-shape its idiomatic
features, discovering new ways of playing that could emerge
from the instrument itself. Most likely this re-shaping could
happen in audio synthesis modules. For instance, granular
synthesis is about modifying the underlying patterns of au-
dio samples. Particular timber of sound in this synthesis
could be very fundamental to the characteristic of such dig-
ital musical instrument. Changing the characteristics of the
audio samples could result in distinctive flavour for output
sounds.

2https://vimeo.com/388365942

Figure 6: Al-terity in performance of the composi-

tion Uncertainty

5. CONCLUSIONS
In this paper we presented our AI-terity, a deformable mu-
sical instrument with an audio synthesis module that uses
GANSynth deep learning model for generating audio sam-
ples. We described in detail the design, control interface
and audio synthesis module of the instrument. We also dis-
cussed current architecture and the implementation of the
deep learning model that we used in developing Al-terity
instrument. Motivated by the results of the implementa-
tion of our current project we acknowledge the potential
of generative adversarial networks for further developments
of NIMEs as they are capable of generating realistic and
at the same time with new characteristics of sounds for a
given dataset. It is also important to mention here that
more advanced research and implementation of AI models
are appearing in audio domain and these tools could open
up new opportunities for the practices in NIME community.

One possible direction that this project could take in
the near future is dealing with the preparation of our own
dataset with samples from various alternative musical in-
struments and train the checkpoint with that dataset to
further explore the benefits of these advanced AI models.
In this current version of the AI-terity instrument, we used
the existing trained checkpoint provided by the Magenta
team. This checkpoint sets the timber characteristics for
the generated audio samples in GANSynth.

It is also in our research interest to develop further fea-
tures for conditional generation of audio samples in GAN
model. The current GANSynth model is conditioned to
a pitch function, and this allows us to only set the pitch
variable for audio samples. Even though the relationship
between points in the latent space to the generated audio
samples is complex, but having an opportunity to organ-
ise these points in the latent space, rather than in random
order, could allow us to set further timber features to the
generated audio samples. At the moment it seems more
realistic to develop a conditional model in which both the
generator and discriminator are conditioned on further in-
formation than pitch, such as noise information, etc..

Applying these advanced technologies in building and per-
forming a new musical instrument, brings in further ques-
tions and arguments for music practices. We argue that ex-
plicit consideration of using advanced intelligence features
on the audio synthesis level allow us to exploit diverse id-
iomatic features that are more embodied in performative
practice of the instrument. Al-terity provides evidence on
this argument by re-shaping its idiomatic features in the
moment of playing.

The open source code of the project is available at https:
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//github.com/SopiMlab/DeepLearningWithAudio. It is also
important to mention that generation of audio samples with
GAN models highly depends on the hardware configuration
of the computers. Five-seconds buffer in our work could
be reduced significantly even with only onboard or external
GPUs to better fulfil real-time response expectations. This
is in our near future investment plans.
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