
Supporting Interactive Machine Learning Approaches to
Building Musical Instruments in the Browser

Louis McCallum
Goldsmiths, University of London

New Cross, London
l.mccallum@gold.ac.uk

Mick Grierson
Creative Computing Institute, UAL

London
m.grierson@arts.ac.uk

ABSTRACT

Interactive machine learning (IML) is an approach to build-
ing interactive systems, including DMIs, focusing on itera-
tive end-user data provision and direct evaluation. This
paper describes the implementation of a Javascript library,
Learner.js, encapsulating many of the boilerplate needs of
building IML systems for creative tasks with minimal code
inclusion and low barrier to entry. Further, we present
MaxiInstruments, a set of complimentary Audio Worklet-
backed instruments to allow for in-browser creation of new
musical systems able to run concurrently with various com-
putationally expensive feature extractor and lightweight ma-
chine learning models without the interference often seen in
interactive Web Audio applications.

Author Keywords

Interactive machine learning, browser-based tools

CCS Concepts

•Applied computing → Sound and music comput-

ing; Performing arts; •Information systems → Music
retrieval;

1. INTRODUCTION
Interactive Machine Learning (IML) is a great approach for
building interactive systems, including new music instru-
ments and their mappings from input to sound [4]. Build-
ing browser based tools is useful because Javascript is a fast
growing language with low barriers to entry. Additionally,
browser based tools require little of the installation and de-
pendencies that plague other data science endeavours. In
the context of conducting limited time demos and work-
shops, fast proliferation and remixing of work, and uptake
by non-technically savvy musicians, this is a massive advan-
tage.

Building on an existing library for incorporating IML de-
sign into Javascript projects, we have sought to provide a
scaffolding framework of additional libraries and example
code which makes the production of web based musical in-
struments with mappings designed using IML as simple as
possible for musicians. In doing so we address the non triv-
ial challenges of connecting inputs from a variety of sources,

Licensed under a Creative Commons Attribution

4.0 International License (CC BY 4.0). Copyright

remains with the author(s).

NIME’20, July 21-25, 2020, Royal Birmingham Conservatoire,
Birmingham City University, Birmingham, United Kingdom.

running potentially computationally expensive feature ex-
tractors alongside lightweight machine learning models and
generating audio output in real time.

2. RELATED WORK
Using IML as a design tool for the development of map-
pings between inputs and outputs in interactive systems is
supported by a number of softwares and libraries, includ-
ing Wekinator [4], Teachable Machine [1], and Exemplar [6],
with the first specifically oriented towards building musical
and artistic systems. Such systems enable new controllers
to be built quickly and by people without programming ex-
pertise by iteratively providing examples of behaviours and
mappings, training and trying out models.
Browser based programming environments for teaching

computer science concepts, including creative computing [9]
are becoming increasingly prevalent and their advantages
are clear [5]. As such, a number of libraries and frameworks
have been developed to aid both music production and ma-
chine learning in the browser. For example, the Codecircle
and MIMIC Project platforms have been used to teach a
number of large scale MOOCs with a curriculum of inter-
active art and music [10] and the associated RAPID-MIX
IML project ensured it cross-compiled a Javascript version
of its library [2]. Further, the availability of much of Google
Magenta’s work as Javascript demos in Tensorflow.js can be
seen as a key driver of interest from those outside of the data
science community. Libraries adding extra functionality to
the existing Web Audio API include Gibber[8], Tone.js [7]
and maximilian.js [5].

3. THE TOOLKIT
With the aim of supporting musicians using machine learn-
ing to build new musical instruments in the browser, we
present a toolkit consisting of minimal demonstration code
for connecting inputs and extracting features, a library for
easily incorporating the main functionality and graphical in-
terfaces needed for including IML in a web project (Learner.js),
with a simple synthesiser and sampler to provide musical
output (MaxiInstruments). We develop with the constraint
for all to run in realtime without audible interference. A
typical user’s workflow would be as follows

1. User picks an input (e.g. BodyPix skeleton track-
ing) and some instruments (e.g. 2 synthesisers) for
a project.

2. User picks some parameters to be mapped (e.g. LFO
rate, attack and pitch)

3. They record examples of inputs (e.g. poses), paired
with examples of sounds they wish associate with the
inputs

4. Train, then run the model, where new inputs (e.g.
poses) make new sounds

5. Iterate

Proceedings of the International Conference on New Interfaces for Musical Expression (NIME-20), Birmingham, 2020

271



3.1 Machine Learning
A musical system using IML as a design tool will require
the practitioner to use some form of sensor to get informa-
tion from the world (e.g microphone, camera, IMU), and
then extract some features from this signal. On the MIMIC
Project online creative coding platform1, we provide min-
imal example projects of how to incorporate a number of
popular feature extractors with the library described below.
These include musical audio extractors using the MMLL.js
library [3], video feature extractors and sensors.

We have developed Learner.js, a lightweight Javascript
library to encapsulate functionality for common tasks.

• Recording and persisting a dataset of labelled exam-
ples: A training set in supervised machine learning
requires inputs paired with outputs. With one line
of code, users can add in a hook that twins the in-
puts coming in with the current values of the mapped
parameters of the instruments (described below). In
recording mode, these are collected and persisted in
the browser’s IndexedDB so the data is not lost when
the project is rerun. In running mode, the input is
passed to the trained model to get new output values,
which can be used to update the instruments param-
eters with the inclusion of another small API call.

• Running machine learning models in a separate worker
threads: Users can choose either a classification or re-
gression task. When new input is passed to a trained
model, inference is executed on a separate worker thread,
meaning any audio production or sequencer timing is
not interrupted.

• Adding in GUI for recording, training and running
models: With another one line code inclusion, users
can add in a GUI for these common tasks (See Fig ??.
The methods are exposed so the library can also be
run headlessly, or with the user’s own GUI.

3.2 Audio
Sample level processing has been available in Web Audio
since its inception, but this has been executed via the Script-
ProcessorNode which runs on the main thread. This means
it is easily interrupted by GUI interactions or other pro-
cesses which limits its utility to run new musical instru-
ments in real time. Audio Worklet’s are a solution to this
that allow for DSP and synthesis on a dedicated thread. We
use the most recent version of maximilian.js and provide a
polyphonic, additive synthesiser and a sampler running us-
ing Audio Worklets. Seen in Fig 1, each has a set of param-
eters that can be specified to be controlled using a given
input, with a mapping designed by a user through iterative
data provision, training and direct evaluation.

Running off a central clock on the Audio Worklet thread,
each can be sequenced via MIDI interfaces, hand programmed
scores, loaded MIDI files or directly with patterns gener-
ated by the Magenta library. Load testing has allowed for
four separate polyphonic synthesisers and one sampler all
running concurrently with the BodyPix multi-person body
segmenter and a Learner.js regression model without au-
dio or scheduling interference. Whilst making music in the
browser has its limitations, the above configuration has a
broad scope for creating expressive musical performances.
Acknowledging that musicians may wish to generate audio
outside of the browser whilst using Learner.js mappings,
we also provide example code to send outputs via MIDI or
OSC to external software.

1https://mimicproject.com

Figure 1: GUIs for Synth, Sampler and IML

4. CONCLUSION
We have presented a toolkit, including two novel Javascript
libraries, that allows for high quality, realtime music sys-
tems to be built rapidly in the browser using an interac-
tive machine learning approach to mapping inputs to au-
dio outputs. Encapsulating common tasks and addressing
technical challenges involved with running realtime machine
learning-powered musical systems in the browser, this frees
musicians, students and educators to spend time focusing
on creative challenges.

5. REFERENCES
[1] Teachable Machine.

https://teachablemachine.withgoogle.com/.

[2] F. Bernardo, M. Grierson, and R. Fiebrink.
User-Centred Design Actions for Lightweight
Evaluation of an Interactive Machine Learning
Toolkit. Journal of Science and Technology of the
Arts, 10(2):2–25–38, July 2018.

[3] N. Collins and S. Knotts. A Javascript Musical
Machine Listening Library. In ICMC’19, page 5.

[4] R. Fiebrink, P. R. Cook, and D. Trueman. Human
model evaluation in interactive supervised learning. In
CHI’11, pages 147–156, 2011.

[5] M. Grierson, M. Yee-King, L. McCallum, C. Kiefer,
and M. Zbyszynski. Contemporary Machine Learning
for Audio and Music Generation on the Web: Current
Challenges and Potential Solutions. In ICMC, 2019.

[6] B. Hartmann, L. Abdulla, M. Mittal, and S. R.
Klemmer. Authoring sensor-based interactions by
demonstration with direct manipulation and pattern
recognition. In CHI’10, pages 145–154, 2007.

[7] Y. Mann. Interactive Music with Tone.js. In WAC’15.

[8] C. Roberts and J. Kuchera-Morin. Gibber: Live
Coding Audio in the Browser. In ICMC’11, page 6.

[9] M. J. Yee-King, M. Grierson, and M. D’Inverno.
Evidencing the Value of Inquiry Based,
Constructionist Learning for Student Coders.
International Journal of Engineering Pedagogy
(iJEP), 7(3):109, Sept. 2017.

[10] M. Zbyszynski, M. Grierson, and M. Yee-King. Rapid
Prototyping of New Instruments with CodeCircle.
NIME, May 2017.

Proceedings of the International Conference on New Interfaces for Musical Expression (NIME-20), Birmingham, 2020

272


