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ABSTRACT

The expressive control of sound and music through body
movements is well-studied. For some people, body movement
is demanding, and although they would prefer to express
themselves freely using gestural control, they are unable
to use such interfaces without difficulty. In this paper, we
present the P(l)aying Attention framework for manipulating
recorded music to support these people, and to help the
therapists that work with them. The aim is to facilitate
body awareness, exploration, and expressivity by allowing
the manipulation of a pre-recorded ‘ensemble’ through an
interpretation of body movement, provided by a machine-
learning system trained on physiotherapist assessments and
movement data from people with chronic pain. The system
considers the nature of a person’s movement (e.g. protective)
and offers an interpretation in terms of the joint-groups that
are playing a major role in the determination at that point
in the movement, and to which attention should perhaps be
given (or the opposite at the user’s discretion). Using music
to convey the interpretation offers informational (through
movement sonification) and creative (through manipulating
the ensemble by movement) possibilities. The approach
offers the opportunity to explore movement and music at
multiple timescales and under varying musical aesthetics.
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1. INTRODUCTION

Attention is important. It can be beneficial (in terms of
concentration), can be lost (e.g. through distraction caused
by pain [23]), or even unrealised (attending to something
without conscious thought). Interpreting movement and
drawing attention to important areas of the body is part of
a physiotherapist’s role in helping their patient, supporting
collaborative exploration and the management and improve-
ment of the patient’s physical capability [18]. Patient and
therapist thus form a small “ensemble” (or in group ther-
apy, a larger “ensemble” led or facilitated by the therapist).
Andersson and Cappelen discuss this in terms of moving
from a hierarchical power relationship between therapist
and client towards a more active role for the client that in a
music-making context, empowers the therapist also [3].

In ensemble music performance, the interpretative role is
played to some extent by a conductor through their gestures.
They “are often described as embodying the music” [12] and
act (as Wigglesworth characterises it [26, p. 3]) as the con-
nector between the composer, musicians, music and audience.
Kumar and Morrison found that conductors’ gestures affect
the perception of a conducted performance [12] and Durrant
and Varvarigou [8] discuss the need for conductors to have
an appropriate gestural vocabulary that does not mislead
performers or distract audiences. Conducting gestures are a
means to cause an orchestra to behave in a certain way [16]
and thus conducting is a potentially useful metaphor for
linking movement, attention, interpretation, and music.

Although movement and music take place in time, time
is challenging to those who find movement difficult. For
example, fear may slow the start of a movement, interrupt
it, or cause it to cease earlier than desired [9]. Wigglesworth
comments that time “waits for no-one, cares for nothing” [26,
p. ix] but also claims that we can control our perception of
time through music.

On occasion the strictures of musical time may be a help-
ful challenge, but in many cases they may not be. Those
with difficulty in moving may find great benefit from par-
ticipation in musical activity yet be unable to coordinate
their movements sufficiently accurately to participate in an
ensemble. To use music-making as a support in this kind of
situation we must therefore find dimensions of musical ma-
nipulation that can free us from the constraints of absolute
time, without losing the benefit of feeling agency over the
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music. In this context we explore the case of chronic pain
and attention-driven sonification of body exploration.

Chronic pain is a prevalent, disabling condition in which
pain persists in the absence of tissue damage and is consistent
with dysfunction in the nervous system [10, 21]. People with
chronic pain find harmless everyday movement (e.g. in
driving, laundry) challenging [21].

In chronic pain treatment through physical therapy, there
are various temporal perception needs: those of the patients
themselves, a therapist, others in a group setting and so forth.
These audiences, although aligned in their overall purpose,
need to experience a patient’s movements in different ways
and at different temporal scales. Patient and physio may
both have analytical needs, but the patient’s experience of
movement (as an embodied process) will be vastly different
to the physio’s (who may wish to slow the movement in order
to better understand the detail of its progress, or speed it
up to enhance perceptions of capability and self-efficacy). In
discussion, both may wish to modify the movement speed
retrospectively to explore specific aspects or overall trends.

Music can be helpful in reducing procedural pain (e.g.
dental surgery) and anxiety associated with procedures or
medical conditions (e.g. [5]), and while there are anecdotal
accounts of the usefulness of music in chronic pain, as an aid
to distraction and relaxation, its possible use in supporting
everyday activity has been largely overlooked (but see [13]).

To use music in the scenario we address here, what is
required is a sonic representation of movement that (1) min-
imises or eliminates the need for music-synchronous action
on the part of the patient (but permits it if desired), (2)
reveals an interpretation of that movement (provided here by
a machine-learning system), (3) permits its exploration by
the patient or others, and (4) maintains musical coherence
throughout. The sonification needs to be simultaneously
informational and experiential: informational [19] so that
aspects of movement are revealed, and experiential to ensure
it increases self-efficacy or a sense of being capable, and
possibly induces changes in behaviour [17, 20]. For musi-
cally expressive applications, the retention of music in the
sonification is clearly essential.

The remainder of this paper presents the design of a frame-
work (and implementation thereof) of a sonification designed
to support all these aspects and allow the multi-temporal,
multi-modal exploration of interpreted body movement in a
musical setting with potential for both analytical and cre-
ative uses. The patient is, in essence, a conductor: guiding
the ensemble toward and away from features of their (the
patient’s) movement (and by extension their body and per-
ception of their body) through their gestures as interpreted
by an observer, in this case a machine learning system.

2. FRAMEWORK DESIGN

To support the desired range of information and experien-
tial needs of patients and therapists, we have developed a
simple model-based musical sonification framework (entitled
“P(l)aying Attention”) in which data streams are mapped to
part volumes in an ensemble of thirteen instruments (thir-
teen is an arbitary choice resulting from our current data:
more or fewer streams could be used).

There are three key (and linked) design considerations:
how to manipulate the sonification/music, when to manipu-
late the sonification/music, and how to obtain the interpre-
tation of movement that determines what changes should
be made. The relative weight of these considerations may
vary depending on the relative emphasis placed on musical
outcomes vs interpretative outcomes.

Manipulating music without disturbing musical time re-
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quires an orthogonal channel of change, in this case the
relative volume of the instrumental part for each channel of
data. This approach sits between parameter mapping soni-
fication and model-based sonification in Walker and Nees’
taxonomy [24]. Taken without the machine-learning aspect,
it is a parameter-mapped sonification connecting attention-
score to part-gain. However, with the machine-learning
component included, it is more a model-based sonification
where a patient’s movements cause responses in the machine-
learning system that are themselves sonified.

The general approach could be adapted for use with larger
groups e.g. dyads or triads. The degree of interpretation
and its representation could be altered, e.g. for a dyad, one
might be interested in comparing the difference in absolute
position between therapist and patient (or between a pair of
dancers) and thus use that difference as the driver of part
gain, but also in the difference in the interpretation of body
part importance (that might also be visually represented).

In addition to considering the nature of sonification control,
one must consider when such control should be applied
temporally. We identify a number of temporal scales and
contexts that need to be supported:

o Movement-synchronous: movement is analysed in real-
time as it happens.
Movement-asynchronous: movement is analysed after
it has happened.
— Movement-replay: movement is analysed by re-
playing forwards as recorded.
— Movement-reversed: movement is analysed by
replaying it backwards.
— Movement-scaled: movement is analysed on a
scaled timing, e.g. half-speed.
Music-synchronous: movement corresponds to musical
features (e.g. beats).
Music-asynchronous: movement does not correspond
to musical features.
Discursive-free: movement is analysed in free time and
in any direction for the purpose of discussion.

It is likely that some of these modalities will be combined e.g.
a patient may undertake music-synchronous movement with
a therapist undertaking movement-synchronous analysis. On
the ‘opposite’ end of the scale, a patient may undertake
music-asynchronous movement and discursive-free analysis.

The final component in the sonification design is obtaining
the interpretation of movement. People with chronic pain,
aiming to protect themselves from increased pain or feared
injury, may move cautiously in ways that are not efficient,
and can contribute to longer term disability. Their fear and
anxiety toward the pain and injury lead to the adoption of
different strategies during functional activities. Specifically,
their body parts are engaged in inefficient and biomechani-
cally unnecessary ways, which could be typically observed
for the use of a specific body part at different activity stages.

The machine learning model [25] used in this study was
originally proposed to detect the protective movement be-
haviour of people with chronic pain, by paying attention
to the salient body configurational and temporal evidences.
The input to the model comprises 13 joint angles computed
from the position of 26 full-body joints. During training, the
attention mechanism learns to give more weight to the body
parts (represented by joint angles) and temporal stages most
informative for discriminating protective from non-protective
movement behaviour. The training of the model is based on
motion capture data of people, including those with chronic
pain, engaged in everyday functional activities (e.g. sit to
stand, stretch forward), and physiotherapists’ annotation of
occurrences of protective and non-protective behaviour in
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Mapping: Select mapping...

Figure 1: Proof-of-concept implementation with data loaded,
three channels disabled, and the timeline partway through.

this data. The model is realised as weights along each of the
joint and time dimensions of the movement data. These are
normalised in the range zero to one and output as numeric
values, thus can be simply used as a gain value for musical
parts. For details on the model architecture and detection
evaluations see [25] and for a description of the dataset used
for the study please refer to [4].

3. PROOF OF CONCEPT

A proof-of-concept implementation of the P(l)aying Atten-
tion approach has been realised in Processing [1]. Stems
for each of the thirteen parts were recorded using MIDI
instruments in Ableton Live [2], frozen and exported, and
then mixed to mono (to enable panning with Processing’s
sound library). Looping behaviour is provided within the
Processing library itself. Two sound sets have been pro-
duced: one in the style of Afro-Cuban percussion, drawing
on patterns described by Uribe [22] and augmented by one
of the authors (Gold) to bring the part-count to thirteen;
the other an arrangement of parts of the Pachelbel Canon
(based on selections from the original score [14] and again,
augmented by Gold). The purpose of this implementation
was to investigate whether changes in movement interpreta-
tion are observable in the music under an absolute mapping
of attention score to part gain. This requires that each part
has sufficient continuity in its musical material that it could
be associated to a particular joint group by the user or ther-
apist even if sounding alone (or prominently, in comparison
to other sounding parts). Although thirteen parts is not
unusual in music, generating that many that are individually
identifiable, playing constantly, and sufficiently congruent
to work as a whole was somewhat challenging. Attention to
body location is driven by the machine learning model.
Figure 1 shows the user interface for the proof-of-concept
implementation. The column of buttons on the left-hand
side represent the active data channels, each mapped to a
particular audio loop and panned either hard left or hard
right to create channel separation and support easier associ-
ation of musical material with a joint group. Data is loaded
into the system using the buttons at the top left, and music
playback controlled at the top-right. Data is explored using
the panel at the bottom of the screen, supporting playback
at real-time speed or at a scale factor thereof, or the ability
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to ‘scrub’ through the timeline freely in either direction.
Data frames are sampled at 60Hz and are here sonified with-
out smoothing or aggregation. The representative human
figure shows the connections between the 26 joints that are
assessed by the machine-learning system.

The coloured lines of different weights are Bezier curves
plotted between the joints in each group, with line weights
varying in proportion to the attention scores. This graph-
ical representation provides a second modality by which
movement can be understood in conjunction with the sound,
helping those using the system to a better understanding
of movement, a stronger association between instrumental
part and joint group, and an easier route to exploring the
creative and expressive possibilities of the approach.

Most of the multi-temporal requirements are met by the
proof-of-concept implementation: data can be explored freely
or under time constraint, and in any direction and at differ-
ent speeds. Data for whatever the current frame constitutes
at any moment (whether transient during playback, or static
during ‘scrubbing’) is reflected in the audio and visual ren-
derings. Real-time rendering is not yet implemented thus
of the scales and contexts identified earlier, only movement-
synchronous is not currently supported.

Durrant and Varvarigou [8] identify movement as a tool
for a kinesthetic approach to musical expression. Since our
implementation enables control over a pre-recorded ensemble
through interpretation of body movement, rather than focus-
ing on analytical concerns it is possible for a user to direct
the ensemble through their movement and draw out aspects
of the music accordingly. They would be “co-conducting”
in partnership with the machine-learning system that is in-
terpreting their gestures, and developing a vocabulary of
conducting gestures that lead to particular interpretations in
the machine learner and thus changes in ensemble balance.

4. RELATED WORK

Gesture, movement, time, sound, interpretation, and atten-
tion have long been studied in a variety of contexts. Dubus
and Bresin present a systematic review of mapping strate-
gies for sonifying physical quantities [7], and Schaffert et
al. review the use of sound in the context of sports and
rehabilitation [15]. Previous work has considered sound and
music for chronic pain support [13, 17, 18, 19]. There is a
large body of work relating to artistic uses of gestural sound
and music interfaces. Of relevance to the techniques used
here, examples include Caramiaux et al. who explore gesture
to sound mapping using machine learning [6], Siegel who
reports experiences of using motion-tracking technology to
control multi-speaker sound diffusion [16] and Lee and Yeo
who report work using dancers’ respiration to control the
volume of separate tracks within a multitrack MIDI File [11].

S. FUTURE WORK AND CONCLUSIONS

This paper has presented a framework and proof-of-concept
implementation of a sonification of interpreted body move-
ment, designed to support analytical understanding and
with the potential for creative applications in music.
Future work will include extending the implementation
to allow variations in the relationship between data and
sonification (e.g. smoothing, aggregation, relative mapping),
and user interface enhancements (fully assignable colour,
pan position, audio, and more advanced animation), and
new modalities (dyadic representation, and real-time data).
Empirical studies will be undertaken to determine the appli-
cability of the approach in a range of scenarios, generative
music directly derived from body movement may be used to
‘personalise’ the resulting multi-track audio, and we intend
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to explore longer musical forms and timbral control.
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