
Interactive Mobile Musical Application using

faust2smartphone

WENG Ruolun

Shanghai Conservatory of Music
 20 Fenyang Road, Shanghai, China

allen1991shcm@gmail.com

ABSTRACT

We introduce faust2smartphone, a tool to generate an edit-ready

project for musical mobile application, which connects Faust

programming language and mobile application’s development. It is

an extended implementation of faust2api. Faust DSP objects can be

easily embedded as a high level API so that the developers can

access various functions and elements across different mobile

platforms. This paper provides several modes and technical details

on the structures and implementation of this system as well as some

applications and future directions for this tool.
Author Keywords

faust, musical mobile application, motion processing

CCS Concepts

• Applied computing → Sound and music computing;

Performing arts; •Software and its engineering → Software

notations and tools → Development frameworks and

environments → Application specific development

environments

1. BACKGROUND
Mobile devices are increasingly used as musical instruments in the

context of interactive performances and installations. Current real-

time audio or DSP (Digital Signal Processing) API (Application

Programming Interface) provided by common development

environments are written in different programming languages and

not easily approachable by composers and sound engineers of

interactive electronic music.

We introduce faust2smartphone, a tool to generate editable musical

mobile application projects using the Faust programming language.

faust2smartphone works as an extension of faust2api. Faust DSP

objects can be easily embedded as a high level API so that

developers can access various functions and elements across

different mobile platforms.

1.1 Faust and faust2api
Faust

[1]
 (Functional Audio Stream) is a functional programming

language for sound synthesis and audio processing with a strong

focus on the design of synthesizers, musical instruments, audio

effects, etc. Faust targets high-performance signal processing

applications and audio plug-ins for a variety of platforms and

standards. The core component of Faust is its compiler. It allows to

"translate" any Faust DSP specification to a wide range of non-

domain specific languages such as C++, C, JAVA, JavaScript,

LLVM bit code, WebAssembly, etc. In this regard, Faust can be seen

as an alternative to C++ but is much simpler and intuitive to learn.

Thanks to a wrapping system called "architectures," codes generated

by Faust can be easily compiled into a wide variety of objects

ranging from audio plug-ins to standalone applications or

smartphone and web apps, etc. If you are the users of other

programming languages such as Csound, Max, PureData,

SuperCollider, and SOUL, Faust also provides the bridge linking to

them.

faust2api
[2]

, is a tool to generate custom DSP engines for Android

and iOS using the Faust programming language. Faust DSP objects

can easily be turned into MIDI-controllable polyphonic synthesizers

or audio effects with built-in sensors support, etc. The various

elements of the DSP engine can be accessed through a high-level

API, made uniform across platforms and languages. At its highest

level, faust2api is a command line program taking a Faust code as its

main argument and generating a package containing a series of files

implementing the DSP engine. Various flags can be used to

customize the API. The only required flag is the target platform.

The goal of the faust2api is to provide a tool to easily generate

custom APIs based on one or several Faust objects. On one hand,

Faust DSP libraries implement hundreds of open source DSP

algorithms that can be turned into C++, C, JAVA, JavaScript and

LLVM bit code and embedded in your applications. On the other

hand, Faust C++ libraries can carry out a wide range of tasks going

from connecting Faust DSP objects to a specific audio engine

(CoreAudio, OpenSL/ES, Alsa, JACK, etc.) or adding MIDI and

polyphony support, sensor data handling, etc. to the same object.

Most major Faust targets are supported: iOS, Android, OSX

CoreAudio, ALSA, JACK, PortAudio, RTAudio, openFrameworks,
JUCE.

1.2 Why using faust2smartphone
The Faust architectures and faust2api allow us to focus more on

sound design in Faust. The Faust distribution already comes with a

comprehensive series of tools to generate mobile applications such

as faust2ios, faust2android, and faust2smartkeyb, so why we create

a new one?

We use faust2ios and faust2android in the framework of the

“SmartFaust” project to generate mobile applications with

standard Faust user interfaces (e.g., sliders, buttons, etc).

faust2smartkeyb is specifically designed to make smartphone-

based musical instruments with a keyboard interface. It also

requires the use of a specific metadata declaration to define the

keyboard information. The SmartKeyboard UI allows to

implement a wide range of controllers (basic keyboards,

isomorphic keyboards, pads, X/Y controllers, etc.) on a touch-

screen and can be configured directly in the Faust code. These

two sets of tools are relatively closed environments, faust2ios

and faust2android are more for general purposes, we take these

two frameworks as the fundamental projects for Faust mobile

applications, because they make it easy to quickly test your

Faust code with a basic controllable interface. faust2smartkeyb

is more oriented for the keyboard performance implementation.

On the other hand, these specificity makes the customization

and integration with other frameworks hard. faust2api is a

Proceedings of the International Conference on New Interfaces for Musical Expression (NIME-20), Birmingham, 2020

1

generic tool to generate a set of API files for different platforms

including mobile devices. However, it only creates a raw file

package with one C++ and one header file that needs to be re-

generated each time a new project is started from scratch.

Comparing the standard audio signal processing workflow in

JUCE and openFrameworks, faust2api help us to facilitate the

sound programming and keep the possibility to integrate other

third-party addons from their environments.

We wanted to extend the capabilities of faust2api by adding more

specific functions to facilitate the development of musical mobile

applications. In this paper, we present faust2smartphone which

provides the same features on iOS and Android (Windows phones

are not supported yet). For now, faust2smartphone is a separate

branch and maintained on Github. Normally it should work with the

latest version of the Faust official branch.

You can find all the source of this project on
https://github.com/RuolunWeng/faust2smartphone.git

2. OVERVIEW
Followed by the installation instruction of Faust and

faust2smarphone, you are ready to explore the function by

simply taping in your terminal “faust2smartphone -help” for

the details. As faust2smartphone is designed for iOS and

Android, “-ios, -iosmotion, -iosplugin” and “-android, -

androidmotion, -androidplugin” will guide you to the target. As

illustrated in Figure 1, faust2smartphone inherits from

faust2api, so almost all the options for mobile systems are

ready to be called, including: “-oscall/-oscalias” will activate

the OSC (Open Sound Control) interface; “-soundfile” to
active libsndfile support.

2.1 Simple Mode
When simple mode is used, faust2api is automatically called and

copies the generated files (e.g., DspFaust.cpp and DspFaust.h) to a

template XCode or Android Studio project. That is what we call an

“edit-ready” project, which bears the same name as the Faust code,

embeds the Faust audio DSP engine and is ready to be used. This

project is just a workplace to start, all the faust2api functions can be

used and custom interfaces can be designed.

2.2 Motion Mode
As illustrated in Figure 2, this special mode is based on motion.lib

and can be used as a platform to prototype musical applications

involving motion gestures. motion.lib uses the accelerometer,

gyroscope, and rotation matrix signals provided by smartphones as

an input. The output is the result of sensor’s processing. In this mode ,

we have two DSP engines:

• DspFaust, which is the same as in simple mode and that is used for

audio signal processing;

• DspFaustMotion, which is the pre-compiled engine for our motion

processing.

This is an engine modified from the simple DspFaust structure in

order to process motion rather than audio data, and hence is not

driven by the audio driver like CoreAudio in iOS. The engine runs

at the sample rate of DspFaust divided by the buffer size of the

DspFaust and a block size of 1. We think that this is enough for

motion. Using audio processing rate for the sensors seems too

expensive, that’s also why we don’t import motion.lib directly in the

Faust code.

How to retrieve the sensor values and get the corresponding result

from the DspFaustMotion engine? We decided to provide access to

the inputs and outputs of the motion engine, which means that we

can send the sensor’s value and get the result through two new

functions: setInput() and getOutput().

Next question is how we check in the motion.lib which function the

Faust code wants to call and how to affect the right controller. The

first thing we need to do is a declaration in the metadata of the

controller:

tot=hslider(“tot[motion:ixp]”,0,0,1,0.01);

Figure 1. Implementation of faust2smartphone

faust2smartphone	

Proceedings of the International Conference on New Interfaces for Musical Expression (NIME-20), Birmingham, 2020

2

where “motion” is the keyword, followed by which function you

want to call in the motion.lib.

By default, all the processes in motion.lib are muted to save CPU

consumption; only if the program detects that you call the function,

it will activate the corresponding process and affect this controller

with the result calculated. We have some other reserved keywords

declarations:

toto=checkbox(“touchgate”);

tata=nentry(“cue”,0,0,5,1);

tit=hslider(“screenx/screeny”,0,0,1,0.01);

This suite works with a sub-mode of motion mode, we call it

cueManager. We provide a simple interface for this mode to deal

with the code composed with different cues. To active cueManager,

you just need to add –cuemanager in the command line.

2.3 Plugin Mode
This mode is not an audio VST plug-in generator. The idea is to have

an engine which uses Faust code to process non-audio signals, the

purpose is not to generate sound, but capture the signal digital value

as envelope follower to affect other digital processing like video or

lightening etc. The engine which is simplified version of

DspFaustMotion from the motion mode will be computed by a

simple timer, we can use the result for any parameter of post-

processing.

For example, if we want to use the amplitude of an oscillator to

control the alpha of the phone’s screen, the output of os.osci(0.5) can

be connected to the alpha parameter. The user then needs to

configure this manually in the script using the methods we already

provide: render() and getOutput(), the template of plugin mode is a

simple example to get started.

3. APPLICATIONS
faust2smartphone has already been used in these productions:

“Audio Guide” is an application designed by Christophe Lebreton

and me for blind person to experience a special sound map in the

project created by GRAME and La Maison des Aveugles in Lyon.

Based on the sound processing generated by faust2smartphone, we

combine another framework in iOS, CoreLocation/CLBeacon for

the Beacon part, which allows Bluetooth devices to broadcast or

receive tiny and static pieces of data within short distances. Check

the introduction online: http://www.grame.fr/events/carte-sonore-

de-traces-en-traces.

A brand new creation named “Virtual Rhizome” at 2018 Biennale

of Music in Lyon, created by Vincent-Raphaël Carinola and

Christophe Lebreton, a solo performer armed by two smartphones,

is diving into a virtual sound architecture that he must dispense and

that changes every moment. We use the motion mode in

faust2smartphone, with an interface modified from the cueManager

sub mode. You can check a video clip online:

https://www.youtube.com/watch?v=cGZB44KI9Y0.

faust2smartphone

Smartphone

x+

y-

z+

*Motion Motor: Faust API for the traitement of MOTION

DspFaustMotion.cpp

DspFaustMotion.h
motion.lib

pre-compiled

Motion Engine: Motion "Dummy Audio"
Drived by "Timer" at speed of SR/BS

update possible

 propagate sensor data dspFaustMotion.propagateAcc
dspFaustMotion.propagateGyr
*dspFaustMotion.sendInput(channel,value)

iOS / Android

*Audio Motor: Faust API for the traitement of AUDIO

syndax

motion.lib

input -> enable -> output

eg:process(brasG_x,brasG_y,brasG_z....)
 = vgroup("Motion",
(brasG_cours(brasG_x,brasG_y,brasG_z)
 : enable(checkbox("brasG_coursOn"))
);

DspFaust.cpp

DspFaust.h

toto.dsp
 faust2smartphone
 -soloios/soloandroid
 [-osc -cuemanager]

Audio Engine: iOS-CoreAudio
/ Android audio

 Active the process needed
dspFaustMotion->setParam("MUTE",1);

*dspFaustMotion->getOutput(channel)
 Change the corresponding controller

syndax

toto.dsp

titi = hslider / checkbox / nentry

eg:
tata = hslider("p1[motion:ixp]",0,0,1,0.01);
cue = nentry("cue",0,0,3,1);
touchGate = checkbox("touchgate");

_Mode MotionLib

update: Dec 2017

https://github.com/RuolunWeng/faust2smartphone

Figure 2. Motion mode of faust2smartphone

.

Figure 3. Interface of faust2smartphone

.

Proceedings of the International Conference on New Interfaces for Musical Expression (NIME-20), Birmingham, 2020

3

“sfPivoine” is a mobile application which I created for a participative

performance selected by International Computer Music Conference

(ICMC) 2018, “Pivone, for Pipa, Electronic music, Kunqu Opera

and Smartphones of public”. The spectators could have an

immersive and augmented experience with their participations. This

application merges the project generated by faust2smartphone and

the simple audio-visual part using some animation and AR

(Augmented Reality). The application is both available at App Store

and Google Play.

All of these projects are still maintained and envolving based

on the previous feedback. “Audio Guide” is becoming the

general experience option in the residence for the blind. Every

year, the residents will update the content of the app with their

new sound creation. An “open-day” in each July will also

welcome the public for a special event. “Virtuel Rhizome”

became one of the reference projects of mobile musical

applications, implemented for its related sound installation,

also generalised under the concept called “Smart Hand

Computer” by Christophe Lebreton. “sfPivoine” keeps the trend

of download activity by attacting many chinese culture lovers.

With the positive impacts, there are also some critical options

on the perfomance with smartphone, like the mixing with

chinese opera and traditionnal instrument. They help us to keep

in mind that we should always justify our choice of the

application, technical frame must serve the global idea

smoothly.

4. FUTURE WORKS

Elaborating the documentation of faust2smartphone is the essential

task for the next step. In order to well guide people to use the project,

we will also enrich the examples and instructions.

For the people who is interesting for the development of motion.lib,

which is used in the motion mode, they are welcome to cooperate

with us for the new functions based on the sensors etc.

Since there are many other frameworks, programming languages

and Web development, more and more adapt to the mobile

environment, how to identify or merge with them to make a more

flexible project is also our goal.

For the applications, we will try to finish the performance version

and publish them in the app store. Last but not least, we still need

more user cases to test the workflow.

5. ACKNOWLEDGEMENT
Special thanks to Mr. LEBRETON Christophe, Mr. LETZ Stephane,

Mr. ORLAREY Yann, Mr. POTTIER Laurent for their supports

during the research.

The paper is also based on the speech of the 1
st
 International Faust

Conference, which is held in Mainz of Germany in 2018.

6. REFERENCES
[1] Faust Website: http://faust.grame.fr/

[2] R. Michon, J. Smith, S. Letz, C. Chafe and Y. Orlarey,"

faust2api: a Comprehensive API Generator for Android and

iOS," in Proceedings of the Linux Audio Conference (LAC-

17), Saint-Etienne, France, 2017.

[3] R. Michon, J. O. Smith, C. Chafe, M. Wright and G.

Wang, "Nuance: Adding Multi-Touch Force Detection to

the iPad," in Proceedings of the Sound and Music

Computing Conference (SMC-16), Hamburg, Germany,

2016.

[4] R. Michon, J. O. Smith and Y. Orlarey, "MobileFaust: a Set

of Tools to Make Musical Mobile Applications with the Faust

Programming Language," in Proceedings of the Inter-

national Conference on New Interfaces for Musical

Expression, Baton Rouge, USA, 2015.

[5] R. Michon, "Faust2android: a Faust Architecture for

Android," in Proceedings of the 16th International Conference

on Digital Audio Effects (DAFx-2013), National University

of Ireland, Maynooth, Ireland, Sept. 2-5, 2013.

[6] Yann Orlarey, Stéphane Letz, and Dominique Fober, New

Computational Paradigms for Computer Music, chapter

“Faust: an Efficient Functional Approach to DSP

Programming”, Delatour: Paris, France, 2009.

Proceedings of the International Conference on New Interfaces for Musical Expression (NIME-20), Birmingham, 2020

4

