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Abstract. Implementation of cost-effective energy conservation measures (ECMs) is expected to generate 

up to 18% of carbon emissions reductions in office buildings. In order to determine adequate ECMs for a 

specific building, operational data is required. However, buildings generally lack operational data in the 

form of time series that can limit a breath of analysis required for determining adequate ECMs. Energy 

time-series data is commonly lacking in the UK due to uneven availability of smart meters (heat, gas, 

water), security restrictions in Energy Information Systems (EIS) and building management systems (BMS), 

restrictions and costs associated for automated reporting from utility companies, etc. This work presents a 

non-intrusive computer vision-based reader to generate energy readings at 10-minute resolution using a 

Raspberry-Pi, a traditional webcam and an LED light. OpenCV, an open source computer vision library, is 

used to detect and interpret numeric values from a heat meter, which are in turn uploaded to a cloud-based 

energy platform to create a complete operational data set enabling detailed analytics, fault detection and 

diagnostics (FDD) and model calibration. A case study of an office building in Scotland is presented. The 

building has a heat meter with no remote access capabilities. The accuracy of the method, i.e. the ability of 

the script to accurately derive the rate of change between readings, resulted on a 92% percent during a test 

done for 100 samples. Recommendations for accuracy improvements are included in the conclusions.

1 Introduction  

Buildings consume 40% of the total energy used globally 

and are responsible of 30% of the total CO2 emissions 

[1]. In the UK, buildings account for 37% of the total 

annual greenhouse gas emissions [2]. Research shows 

that building stock can greatly reduce their energy 

demand by implementing energy conservation measures 

(ECMs) [3], [4]  and the Intergovernmental Panel on 

Climate Change (IPCC) report suggests that buildings in 

the public and commercial sector could achieve an 18% 

reduction in carbon emissions through no or low cost 

ECMs [5]. For the particular case of the UK, it has been 

shown that energy efficient operations, an example of a 

low-cost ECM, can achieve up to 34% savings in office 

buildings [6].   
In order to identify and implement ECMs, 

operational data from the studied building is required for 

detailed analysis, fault detection and diagnostics (FDD) 

and the creation of building energy models (BEM) that 

be used for evaluating cost-effective ECMs. Operational 

data refers to measured time-series data collected from 

the systems installed in the building. Operational data is 

usually collected by smart meters (AMR), data-loggers 

or building management systems (BMS) [7] .  

   

 With the spread use of automated electricity meters, 

building management systems (BMS), Internet of things 

(IoT) sensors, and cloud databases, a new generation of 

applications becomes available to understand how a 

building uses energy, and reduce energy use while 

keeping occupants comfortable. Applications enabled by 

a complete operational data set include, but are not 

limited to: 

-Predictions of building energy load and peak demands, 

in particular from heating, ventilation and air 

conditioning (HVAC) systems and other high energy 

consuming systems [8] .  

-Rule mining. Building operation rules can be extracted 

to determine associations and correlations in data that are 

not evident for facility managers [9]. 

-Calibrated building energy models. Examine the 

relation between energy loads and building components 

such as walls, windows, lighting, heating, ventilation, 

etc. to detect potential design and operation problems. 

Software such as the IES Virtual Environment (IES-VE) 

[10] and Energy Plus [11] are examples of tools that can 

be used to calibrate building energy models. 

-Savings estimations of installed ECMs, process also 

known as Measurement and Verification 2.0  [12]–[14] 

-Fault detection and preventive maintenance. 

Operational data can help to detect faults in buildings, 
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sometimes before they occur. Examples of applications 

are documented in [15], [16]. 

 Other applications include economic analysis, 

energy fraud detection and model predictive control [17]. 

All these applications are enabled only when a complete 

operational dataset is available, as energy-related data is 

a basic requirement.  

 A complete data set should include: outdoor weather 

variables, indoor comfort and air quality data, HVAC 

information regarding status of the systems alongside 

with analogue measurements, and energy data in the 

form of time series. In table 1 the typical source of these 

types of data is presented. It is worth noticing that 

energy data in the form of time-series is often the most 

challenging to capture from typical buildings in the UK. 

Hence, a low-cost, non-intrusive alternative to obtain 

this type of data is presented in this work. 

Table 1. Operational data categories and typical sources. 

Type of data Source 

Outdoor weather 

Local weather station, 

Third-party weather 

services, government 

weather stations 

Indoor comfort/ air 

quality 

Building management 

systems, stand-alone 

sensors 

HVAC 

Building management 

system, short-term 

measurements  

Energy data 
Smart meters, short-term 

measurements 

 

It is important that highlight that most of the 

building stock in the UK is equipped with non-energy 

efficient building management systems (or has no BMS 

at all) [6] meaning that a large proportion of operational 

data is not available for detailed analysis, FDD and 

BEMs, which limits the implementation of cost-effective 

ECMs. Additionally, time-series energy information is 

not always accessible in near real time due to the lack of 

smart meters for energy sources (heat, gas, water), 

security restrictions in Energy Information Systems 

(EIS) and building management systems (BMS), 

restrictions and costs associated for automated reporting 

from utility companies, limitations in the installation of 

newer meters due to lack of ownership in leased spaces, 

restrictions due to specific regulations of a country and 

the fact that meters must comply with safety regulations. 

 In this paper, we propose the implementation of a 

computer vision-based reader for analogue energy/water 

meters running in a low-cost embedded system that can 

turn building information (e.g. energy meters) into 

operational data. The data can be later analysed in detail 

alongside existing operational data, enabling a more 

comprehensive cost-effective ECMs estimation process. 

Notice that this technique relies on the pre-existence of 

meters of any time and relies on the assumption that 

these are calibrated. 

To achieve this goal requires the combined 

implementation of computer vision in the edge and 

building data analytics, two very active research topics 

which together can facilitate the acquisition of 

operational data in virtually any building. Improved data 

privacy can be considered as a side benefit of this 

approach given that no image/video actually leaves the 

edge device (i.e. a Raspberry Pi) but only the relevant 

bits information. Additionally, this solution overcomes 

the challenge of collecting private high frequency 

readings from energy suppliers, which is a difficult and 

sometimes impossible task, due to the current lack of 

legislation regarding free data access for commercial 

buildings in the UK [18]. 

Finally, the proposed approach can be used as 

short-term (e.g. two continuous weeks) data collection 

technique with negligible up-front costs to determine if a 

building is a good candidate for a deeper energy 

auditing, hence reducing energy efficiency investment 

risks.  

In the following subsection, a brief description of 

the concept of computer vision in the edge is presented. 

In section 2, the proposed methodology is described; 

section 3 presents a case study done in an office building 

in Scotland and in section 4 we draw conclusions on the 

current approach and present future work. 

1.1 Computer vision in the edge 

Computer vision consists of the transformation of image 

on video data into a new representation with the 

objective of achieve a goal. The most common type of 

computer vision applications are classification, detection 

and segmentation. Classification determines the “label” 

or “class” an image belongs to, for instance, decide 

whether a picture contains a “cat” or a “dog” based 

usually on some sort of probability per possible class. 

Detection consists in determining if an object appears in 

certain areas within an image, often detection is 

deployed using bounding boxes based on a probability 

threshold. Finally, segmentation classifies each pixel of a 

picture to determine, for instance, whether a pixel 

corresponds to a certain material. Computer vision tasks 

are usually not generalisable, meaning that in most cases 

a tailor-made solution is required for each specific 

problem.  

 OpenCV is an open source computer vision library 

available from http://opencv.org. It was developed in 

1999 with the intent of accelerating computer vision 

research. OpenCV is written in optimised C++, designed 

for computational efficiency focusing on real-time 

applications. It contains over 500 functions covering 

image processing, security, camera calibration and 

robotics. OpenCV is free and the code can be used in 

commercial or research applications [19]. 

In recent times, the concept of Edge AI, or artificial 

intelligence on the edge, has emerged, to mean placing 

AI workloads as close to the edge of the system where 

the data is created. Edge AI enables (nearly) local 

processing minimising network use, reducing latency 

and enabling real-time decision making for applications 

that require it [20]. The use of vision processing units 

(VPU) and Image processing units (IPUs) are expected 

to increase performance on small devices (e.g. Raspberry 
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Pi) to enable faster AI on edge applications. Applications 

of Edge AI include self-driving cars, robotics, animal 

tracking, and security video surveillance.  

 In the context of the current work, Edge AI means 

that relevant building energy information can be 

generated continuously from video or photo streams 

such as current energy consumption. Virtually any 

energy meter can be read and converted into a string of 

text that can be then exported to a cloud database. 

Additional applications of this approach can be 

developed for other analogue variations that affect 

energy use in the building such as window status, doors 

position and occupancy detection without compromising 

the privacy of building users.  

 In figure 1, we present an example of a webcam 

connected to Raspberry Pi where the object detection 

and classification script is executed, then a single value 

(0 == Closed, 1 == Opened) alongside a timestamp is 

securely sent to a cloud database where it can be 

visualised.  

 

Fig. 1. Example of application of computer vision in the edge, 

using a script that is able to detect a window in the image and 

determine whether it is opened or closed (upper part), then the 

information is turned into time-series data (bottom part).  

1.2 Cloud analytics platform: iSCAN 

iSCAN (intelligent Control and Analysis) is a cloud-

based analytics platform developed by Integrated 

Environmental Solutions, Ltd [21]. iSCAN allows users 

to centralise any time-series data from different BMS 

systems, utility meters, sensors and portable data loggers 

in one platform. Users can then organise and analyse this 

data to gain hidden insights to improve building or 

portfolio operation.  

 iSCAN includes a graphic user interface (GUI) 

which is used to set up incoming data, post processing 

and analysis of the data through flexible plot 

visualisations, and create alerts to detect data issues and 

anomalies. iSCAN allows to manage several data sets at 

the same time (e.g. different type of sensors in different 

buildings) while maintaining them separate through 

granular user access permissions.  

 Once the data has been set up it can be accessed via 

API, allowing its use in a variety of other applications 

(e.g. detailed analytics, alarm notifications, building 

energy modelling, etc.). API access is secured by tokens 

linked to authorised project users. Figure 2 shows an 

example of how data can be visualised in iSCAN for two 

different data streams, also known as channels.  

 

Fig. 2. Example of how data can be visualised in iSCAN for 

two different data streams, also known as channels.  

2 Methodology 

The process follows the same approach as the connection 

to iSCAN of any sensor that is installed in the building. 

In figure 3, we present a basic diagram explaining the 

process. The data source is an analogue screen, and 

conversion to time series requires interpreting a seven-

segment display for specific time intervals. An image is 

captured by a webcam and interpreted by a computer 

vision algorithm specialised on the specific interpretation 

task. Then the interpreted value is paired to a time-stamp 

of the moment of the capture of the image. A JSON file 

with a SenML structure is created and pushed to iSCAN 

through the use of an API that requires a user-unique 

token for security reasons. Once the data is in iSCAN it 

is pre-processed before it becomes available for display 

alongside data collected from the other building sensors. 

 

Fig. 3. Basic schematic representation of the proposed solution 

in the context iSCAN and other building sensors. 
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 In the following subsections, the computer vision 

script for seven-segment screen digit interpreter, the data 

export and the pre-processing steps are documented. 

2.1. Computer vision in the edge  

A 1080P@30fps webcam is connected to a Raspberry Pi 

4 equipped with a Broadcom BCM2711 Processor Quad-

core A72 and 5GB LPDDR4 SDRAM. We chose this 

device due to its Wi-Fi connectivity and relatively 

simple use through the Raspbian OS [22]. The actual 

hardware implemented is presented in figure 4. 

 

Fig. 4. Raspberry Pi 4 and standard webcams used for the 

experiment. 

 A seven-segment screen digit screen reader script 

has been created for this example. The script is written in 

Python 3.7 and uses OpenCV libraries both to detect 

digits and identify them. The process is explained in the 

following paragraphs. 

 Image is captured in 600 seconds (10 minutes) 

intervals and cropped to display only the section of the 

picture where the meter is located. This process is 

explicitly indicated in the script. Then cropped picture is 

rotated automatically by detecting the inclination of the 

main lines (cv2.HoughLinesP function) of the cropped 

pictures, figure 5.  

 

Fig. 5. Sample image cropped and rotated to extract the meter 

region. 

 After extracting the meter region from the original 

acquired image, a series of pre-processing steps are 

carried out to segment the LCD region. Given the meter 

image as input, the pre-processing script converts it from 

RGB to greyscale, then performs the following broad 

steps on the greyscale meter image. 

1. Extracting candidate regions of interest. This 

involves improving the image contrast (histogram 

equalisation), followed by some morphological 

processing to remove the digit pixels and make 

the LCD region a dark homogeneous region. 

Then, a thresholding step (OTSU) separates this 

dark LCD region (along with other small dark 

regions) from the background which is bright. 

The output is a binary image that indicates that 

indicates the locations of all candidate regions of 

interest. 

2. Extracting the largest region of interest from the 

candidates. This involves running a connected-

component analysis on the binary image from 

step (1) to generate a label image. Then, the area 

of each component is calculated; only the largest 

component is retained in the label image. This 

label image is the output of this step. 

3. Improving the contrast of the digits against the 

LCD background in the greyscale meter image. 

This involves a morphological processing step to 

first correct uneven illumination, followed by a 

contrast-limited adaptive histogram equalisation 

(CLAHE) step to improve local contrast. The 

output of this is a greyscale meter image with 

improved contrast. 

4. Generating an image with only the LCD region in 

it. This simply involves using the label image 

output of step (2) as a mask on the greyscale 

meter image output of (3). 

Sample result after this process is presented in figure 6. 

 

Fig. 6. Meter image pre-processed to segment and enhance the 

LCD region. 

 Once the LCD region is segmented, the following 

broad sequence of steps are performed to recognise and 

localise digits. 

1. For every digit, a “template” image is loaded 

and slid across the input image to find matches, 

using the template matching algorithm. This is 

done using the normalised correlation 

coefficient as the similarity measure. Matches 

lower than a specified threshold are discarded. 

Duplicate matches (i.e., the same digit detected 

at the same location with slight shifts) are also 

discarded. This step generates a list of locations 

in the form of bounding boxes, for every digit. 

2. Then, overlaps across digits are checked (e.g., a 

“9” in the input image would match the 

template for 9, but it would also match the 

template for 3 because of the same segments 
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lighting up). The digit for which the similarity 

measure is the highest is retained, and the 

others are discarded. This results in a list of 

locations in the form of bounding boxes, for 

every digit, with each location being unique. 

 

 Finally, a sorting step sorts the list of bounding 

boxes so that they are arranged in the left-to-right 

sequence. From this sorted list, the final reading is 

generated as shown in figure 7. 

 

Fig. 7. Reading generated after digit recognition and 

localisation. 

2.2 Export values data cloud platform (iSCAN) 

Once the value of the meter has been extracted from the 

image, a second script is used to post-process and to 

upload the data in the form of SenML. Given that the 

raw data consist on energy usage in kWh, the post 

processing consists on calculating the positive difference 

between sample values divided by their time difference 

(e.g. 10 minutes) and the rate is converted to the building 

sample time (i.e. the sample time for which all building 

data is being displayed, e.g. 30 minutes). Then, 

calculated rates are averaged and converted to units per 

hour. It means that the script calculates the average rate 

of change over one hour, so the final units displayed are 

kW even if the source data is kWh.  

An illustrative example is presented in figure 8, the line 

represents rate between values in units per quarter hour. 

The contribution of the value is the gradient of the 

orange line. If the right-hand point’s value is left than the 

left-hand point’s value, then it is treated as the counter 

having been reset to zero. Hence, the second value (7, 4) 

has a positive difference of 4 compared to the first value. 

The difference in time is 6 minutes.  4 units / 6 minutes 

is equal 10 units / 15 minutes, hence the first bar has a 

height of 10. The average height of the bars in the first 

quarter of the hour is 12 (10 and 14), hence the average 

rate is 12 units / 15 minutes or 48 units per hour. 48 is 

the value that is visualised. 

 

Fig. 8. Energy data (cumulative) into power (gradient) data 

example. 

 Notice that while this calculation is ideal for heat 

meters where peak instantaneous demand is limited by 

the boiler capacity, bespoke post processing might be 

required for other types of measurements. 

 Data is exported in the form of time-series data 

following a Sensor Measurement Lists (SenML) 

structure in JSON (JavaScript Object Notation) file 

format [23].  For authentication, the script requires a 

project URL, a building name and a token linked to a 

user that has access to the project. The upload script 

requires the use of a library called “scan_api” which has 

been developed to enable other python libraries to 

interact to other applications such as computer vision 

and data analytics. The relevant part of the script used to 

upload the values is presented below. Notice that meter 

value() is a function that returns a post processed value 

in kW.   

1. while True:   
2.     data = {   
3.             'bt': dt.datetime.now().times

tamp(),# timestamp   
4.             'n': 'heatingGroundFloor',  #

 unique ImportReference   
5.             'v': processed_value() # (Ret

urns post processed power value)    
6.             }   
7.     print(data)   
8.     send_data(ds,data)   
9.     time.sleep(600) # wait for 10 minutes 

3 Case study: Office building 

Integrated Environmental Solutions LTD (IES) 

headquarters in Glasgow UK is used as case study. The 

Helix building is an office type of building with a floor 
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area of 2900m2. It was constructed post 2000s and has 

been historically used by two companies. The building 

has natural ventilation and heating is provided and a 

biomass (main) and natural gas (back up) boiler. The 

building can host around 180 people. A picture of the 

building is presented in figure 9. Additionally, main 

areas of the studied building are specified in figure 10. 

 

Fig. 9. The Helix building. An office type of building located 

in Glasgow, Scotland used as case study. 

The building is controlled by two thermostats. The 

current temperature is 24, with a night setback of 15 C 

for both of them (boiler is actually never switched off).  

Currently, the building has 14 indoor environmental 

sensors at desk level plus 5 ceiling-level additional 

sensors. Information is polled with a 5-minute resolution 

every 10 minutes. Additional measurements include 

relative humidity, CO2 concentration in the indoor air, 

motion and lighting levels (lux). A weather station, 

located on the rooftop of the building, senses data 

including dry-bulb temperature, relative humidity, and 

solar radiation. 

 

Fig. 10. Main areas of the office building used as case study, 

each of these areas is equipped with indoor environmental 

sensors. 

With regards to energy information, electricity is 

sub metered using live current meters; two heat meters 

are installed, one for each floor. The heat meter values 

are currently manually recorded in a spreadsheet 

alongside with photographic evidence on a monthly 

basis.  

In this case study, a camera was mounted on a 

nearby structure as well as the raspberry pi. The camera 

was set up in order to point to the ground floor heat 

meter with a sampling interval of 10 minutes. The 

Raspberry was connected to the local Wi-Fi network so 

it was possible to upload directly the values directly to 

iSCAN. The arrangement of the camera near the heat 

meter is presented in figure 11. 

 

Fig. 11. Heat meter arrangement in the Helix building. 

A 17-hour period, consisting on 100 readings with 

10-minute intervals, was used as test. For this example, 

observations done during a week indicated that the 

maximum value change during a 10-minute interval, 

cannot be higher than 7, meaning that the outermost right 

digit (the one representing the unit) is the only relevant 

value. The accuracy was defined as the number of 

instances where the last digit was read correctly divided 

by the total number of samples. Hence, the accuracy 

metric represents the ability of the script to accurately 

derive the rate of change between readings, which 

resulted on a 92% percent during a test done for 100 

samples. It means that 92 out of 100 values were 

predicted correctly. Actions such as improved lighting 

and more representative digit templates are expected to 

increase the accuracy. The script has yet to be tested in 

multiple lighting conditions and camera positions, 

however the implemented automated thresholding is a 

step toward this goal. 

 

Fig. 12. Heating demand during weekdays (Mon to Fri) in the 

Helix building using an overlay plot in iSCAN. The black 

dotted line represents the mean value over the all the selected 

days. 
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Once data is uploaded, it can be plotted for its 

analysis detailed in iSCAN. Figure 12 is an example of 

an overlay plot that shows the use trends over a 5-day 

period during workdays (Monday to Friday). 

Additionally, heating data can be compared 

directly with indoor air temperature values, as presented 

in figure 13. It can be noticed that there is a correlation 

between the heat demand and the increase in 

temperature. Also, it can be seen that the cool-off rate 

varies for some of the rooms. 

 

Fig. 13. Heat demand during a specific day plotted alongside 

air temperature data in various areas in the Helix building. 

Finally, daily heating demand can be also 

calculated. It can be seen that the building consumes 

around 224 kWh per day and that this demand has an 

inverse correlation with the mean external air 

temperature, as expected, figure 14. 

 

Fig. 14. Total heating demand alongside average outdoor 

temperature for three days in the Helix building. 

3 Conclusions and future work 

In this paper we propose the implementation of a 

computer vision-based reader for analogue energy/water 

meters, via a low-cost embedded system that can turn 

analogue building information (e.g. analogue meters) 

into operational data. Benefits of this approach include 

increased privacy, reduced risk for energy efficiency 

investments, and access to otherwise unavailable data. A 

case study in an office building in Scotland is presented. 

The accuracy of the method, i.e. the ability of the script 

to accurately derive the rate of change between readings, 

resulted on a 92% percent during a test done for 100 

samples. Actions such as improved lighting and more 

representative digit templates are expected to increase 

the accuracy. The script has yet to be tested in multiple 

lighting conditions and camera positions. 

This paper has received funding from the European Union’s 

Horizon 2020 research and innovation programme under grant 

agreement No 847053. 
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