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Abstract: The cell cycle is present in all cells of all species and it is of fundamental importance
in coordinating all the steps required for cell replication, including growth, DNA replication
and cell division. Budding yeast is an unicellular organism characterised by a mother cell that
buds to generate a daughter cell at each cell cycle. Each cell in a population buds at a different
time. Despite its importance in biological applications, such as unravelling cell-cycle machinery
mechanisms and production of valuable bioproducts, at present no yeast strain is capable of
budding synchronously. To overcome this problem, we used control theory to propose a strategy
to modify the yeast cell to endow it with the ability to synchronise its cell cycle across the
population. Our strategy relies on a quorum sensing molecule diffusing freely in and out of the
cell. The quorum sensing molecule is produced only during a specific phase of the cell cycle
and couples the cell-cycle across the cell population. Here we model the proposed strategy with
ordinary differential equations and numerically simulate it to demonstrate the feasibility of such
an approach.
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1. INTRODUCTION

Biological clocks give rise to rhythmic behaviour that are
of fundamental importance in the coordination of many life
processes (Winfree, 1967). One of the most prominent ex-
amples is the cell cycle machinery that generates rhythms
that coordinate the vital process of cell replication by
division, essential to guarantee the survival of species.

Cell cycle is a natural phenomenon occurring asyn-
chronously in budding yeast Saccharomyces cerevisiae and
whose regulation is highly conserved among the eukary-
otes (Li et al., 2004). The cell cycle process consists of
four sequential phases: G1, S (synthesis phase), G2, and
M (mitosis phase). The cell grows in size during the G1

phase. Then, the G1 checkpoint mechanism triggers the
start of the cell division process, only if a set of cellular
and environmental conditions favourable to cell replication
is satisfied. Upon G1 checkpoint release, the next three
phases of cell cycle occur, ending with cell division at
the end of the M phase, then the cell re-enters the G1

phase, thus completing the cycle. The overall process can
be described by the state diagram illustrated in Fig. 1.

Normally, cell division events occur asynchronously in the
cell populations, meaning that cells do not bud at the same
time. The reason behind this behaviour is that the cell-
cycle clocks are not coupled across cells in the same pop-
ulation. From a biological point of view, a desynchronised
collective behaviour could even be beneficial to increase
cellular heterogeneity in the event of a catastrophe that
can decimate the entire cell population (Acar et al., 2008;
Beaumont et al., 2009).
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Fig. 1. Diagram of cell cycle progression in yeast Saccha-
romyces cerevisiae.

However, there are situations in which it is desirable
to have synchronised cell-cycle across the cell popula-
tion, such as investigation of cell-cycle regulatory mech-
anisms (Davis et al., 2001), or production of valuable bio-
products. On top of this, it is interesting to check whether
feedback control theory can be applied also to such a
complex system. Biologists developed different methods
to force a cell population to divide synchronously (Davis
et al., 2001). However, all of these methods do not dy-
namically synchronise the cell population, but just force
each cell in the population to start from the same initial
condition. Therefore, after a few generations the cell-cycle
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clocks are again desynchronised because of extrinsic and
intrinsic biological noise (Di Talia et al., 2007).

Here, we propose a feedback control approach to synchro-
nise the cell-cycle across the cell population. Specifically,
we propose to synchronise the cell-cycle clocks in budding
yeast by coupling them through a cell-to-cell communica-
tion system based on the elements of the quorum sens-
ing machinery of bacterium Vibrio fischeri (Miller and
Bassler, 2001). We investigated the feasibility to endow
cells with controllers exploiting cell-to-cell communication
to synchronise the cell cycle across the cell population,
through theoretical and numerical analyses.

Numerical results demonstrate the feasibility of building
a synthetic biomolecular control circuit to solve the cell
cycle synchronisation problem in living yeast cells. The
approach presented here constitutes an example of bio-
logical application in the area of Cybergenetics, an in-
terdisciplinary field that works at the interface between
Control Theory and Synthetic Biology for engineering
synthetic controllers able to steer the dynamics of living
systems (Khammash et al., 2019).

2. SYNCHRONISED CELL-CYCLE CLOCKS
THROUGH QUORUM SENSING COUPLING

Our control objective is to synchronise the cell-cycle clocks
across a population of yeast cells. Basically, this means
that all the cells have to be in the same phase during the
time evolution. This also implies that cell division events
occur synchronously.

To couple the cell-cycle process across cells , we con-
sider endowing yeast cells with a cell-to-cell communica-
tion system based on the quorum sensing machinery of
bacterium Vibrio fischeri (Miller and Bassler, 2001). In
its natural implementation, the quorum sensing system
produces and releases in the extracellular environment
a signalling small molecule, here defined as an inducer
molecule, that increases in concentration as a function of
cell density (Danino et al., 2010). The inducer molecule
can freely diffuse in and out of the cell and once inside
the cell can activate the production of downstream genes
via specific inducer-sensitive promoters. We thus propose
to incorporate this cell-to-cell signalling mechanism in the
cell cycle machinery to couple this process across cells,
as shown in Fig. 2b. In our design, the inducer molecule
is produced during the G1 phase and released into the
extracellular medium. The inducer molecule can then be
imported in the cell, and activate the start of the cell cycle,
but only if the cell is in the G1 phase.

For the purpose of controlling the cell cycle progression
by means of the quorum-sensing system, we need to
modify the cell cycle machinery to enable its control by
the inducer molecule. In budding yeast, three G1 cyclins
(CLN1, CLN2, and CLN3) control the transition from the
G1 phase to the S phase. However, expression of just one
of these three cyclins is sufficient. Thus, we propose to
delete the two endogenous G1 cyclins CLN1 and CLN3
from the genome, as done by Rahi et al. (2016), and
drive CLN2 gene expression from an inducible promoter
sensitive to the quorum sensing inducer molecule I. At
the same time, I is produced by an activator protein A,

E
I

Yeast cell

S

G2

G1

G1

G2

M

Ea

I

b
Start transition G1/S

pG1 A

pA I

External
environment

Fig. 2. Quorum sensing coupling for synchronising cell-
cycle across yeast cells. a, Schematics of the working
principle of the quorum sensing coupling. I is the
inducer molecule inside the cell, and it is produced
only when a cell is in the G1 phase. The inducer
molecule is free to diffuse in and out of the cell through
a diffusion-like mechanism via the cell membrane. E is
the inducer molecule in the extracellular environment.
When the inducer molecule concentration inside the
cell in the G1 phase reaches a threshold value, it
triggers the transition to the synthesis (S) phase. b,
Biological implementation of the synthetic biomolec-
ular circuit coupling the cell cycle machinery in the
cell population through the inducer molecule.

which is itself produced only in the G1 phase. Thus, in
absence of inducer molecule, the cell-cycle is stuck in the
G1 phase. However, in this phase, the inducer molecule is
produced by the cell itself via the activator molecule and
can freely diffuse into the extracellular environment (E), as
illustrated in Fig. 2a. The addition of the quorum sensing
mechanism thus effectively couples the cell cycle across
cells and may induce synchronisation. In what follows we
denote by I, and E the concentration of the signalling
molecules inside the intracellular environment, and the
extracellular environment, respectively.

3. MATHEMATICAL MODEL

We provide here a deterministic mathematical description
of the considered biomolecular circuit presented in Sec-
tion 2. Consider a population of N ∈ N homogeneous yeast
cells. First, we derive an ordinary differential equation de-
scribing the behaviour of the modified cell cycle machinery.

Mathematically, the cell cycle can be described as a
dynamical system of the general form:

dx

dt
= f(t, x, u) , (1)

where t ∈ R is time, x ∈ Rn is the state vector, and
u ∈ Rm is the input vector of the possible external
perturbations that affect the cell cycle machinery. If (1)
has an exponentially stable limit cycle γ ⊂ Rn with period
T , then (1) is an oscillator that, according the phase
reduction method (Winfree, 2001; Kuramoto, 1984), can
be modelled as a dynamical phase oscillator
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dϑ

dt
= ω + Z(ϑ, u) , (2)

where ϑ is the phase of the oscillator on the unit circle S1,
ω = 2π

T is the angular frequency, and Z : S1 × Rm → R
is the 2π-periodic phase response curve (PRC) of the
oscillatory system to u (Sacre and Sepulchre, 2014).

To model the phase evolution of the modified cell-cycle,
we derive the following ordinary differential equation to
describe the dynamics of cell-cycle phase of one cell (cell
i):

dϑi
dt

= f(ϑi) + z(ϑi) ui , (3)

where i ∈ {1, . . . , N} denotes the i-th cell of the popu-
lation, ϑi ∈ S1 is the 2π-periodic cell cycle phase, and
ui ∈ R+ is the single bounded input acting on the cell
cycle machinery via the internal inducer molecule Ii. The
phase-dependent switching function f : S1 → R describes
the fact that the cell-cycle stops in the G1 phase, if there
is not enough inducer molecule (e.g. ui = 0):

f(ϑ) =

{
0 if ϑ ∈ [0, ϑc[

ω if ϑ ∈ [ϑc, 2π[
, (4)

where ϑc ∈ S1 represents the end of the G1 phase and
the beginning of the S phase. The phase response curve
z : S1 → R describes the linear response of the cell-cycle
phase ϑi to the input ui:

z(ϑ) =

{
ω if ϑ ∈ [0, ϑc[

0 if ϑ ∈ [ϑc, 2π[
. (5)

The input ui is a Hill function of Ii with dissociation
constant K and Hill coefficient h:

ui =
Ii
h

Kh + Ii
h
. (6)

The dynamics of the activator A that couples the cell-cycle
clock with the quorum sensing mechanism is described by
the following ordinary differential equation:

dAi
dt

= αA g(ϑi)− δA Ai , (7)

where i ∈ {1, . . . , N} is the i-th cell of the population, αA
is the production rate of species Ai, δA is the degradation
rate of species Ai, and g : R → R is the 2π-periodic
switching function that links the production of Ai to the
cell cycle phase. Specifically, the species Ai is produced
only when the cell cycle is in the G1 phase:

g(ϑ) =

{
1 if ϑ ∈ [0, ϑc[

0 if ϑ ∈ [ϑc, 2π[
. (8)

Next, we describe the dynamics of the inducer molecule in
the intracellular and the extracellular environment. The
molecules flow in and out of the extracellular environment
through a diffusion-like phenomenon, hence the dynamics
of E can be modelled using the partial differential equa-
tion:

∂E

∂t
= η

N∑
i=1

(Ii − E)− δE E +Θ ∇2E . (9)

Equation 9 comprises three terms. The first one is the dif-
fusion term between the intracellular and the extracellular
environment, and it is characterised by the cell membrane

diffusion rate η. The second term describes the degradation
of the inducer molecule in the extracellular environment
with degradation rate δE . The third term represents the
diffusion of the inducer molecules in the extracellular en-
vironment, and it is characterised by the external diffusion
coefficient Θ. To solve the partial differential equation, we
consider periodic boundary conditions in (9).

Notwithstanding the diffusion-like coupling requires a con-
tinuous spatial model to describe its own behaviour, the
discrete spatial organisation of the cells inside the space
allows the use of ordinary differential equations rather
than partial differential equations (Ma and Yoshikawa,
2009). To discretise the partial differential equation (9),
we derived a multi-compartment model by dividing the
continuous spatial environment in as many compartments
as the number of cells in the population, in this case N .
The i-th cell is surrounded by the i-th compartment, and
it is able to exchange the internal inducer molecules Ii only
with its own compartment. Instead, the compartments
are able to exchange the extracellular inducer molecules
with their neighbours. We denote by Ei the discrete space
concentration of the inducer molecules in the extracellular
environment of the i-th compartment. The overall system
can be seen as a network of N cells. Indeed, the compart-
ments represent the nodes, whereas the exchange of the
extracellular inducer molecules establishes the links among
the nodes. The way in which the nodes are linked among
them defines the topology of the network.

So, the discretisation of (9) relies on the assumptions made
on the continuous spatial model and on the topology of
the multi-compartment model. To this end, we consider a
population of N cells in a one-dimensional space, where
each cell exchanges information only with its left and
right neighbour. Such assumption was similarly done by
Danino et al. (2010), and it represents a simplification
of the real quorum sensing system that well adapts to
understand the collective behaviour of the population in
a simplified manner. Hence, we replace (9) by a one-
dimensional array of N ordinary differential equations
representing individual cells coupled through the second-
order discrete diffusion operator ∆y−2 (Ei−1 + Ei+1 −
2 Ei), where y denotes the spatial coordinate of the one-
dimensional space. Considering D = Θ ∆y−2 as the new
external diffusion rate parameter, then the dynamics of
the inducer molecules in the extracellular environment
becomes:

dEi
dt

= η (Ii−Ei)−δE Ei+D (Ei−1 +Ei+1−2 Ei) , (10)

where i ∈ {1, . . . , N} is the i-th cell of the population. Also
in this case we consider periodic boundary conditions at
the limits of the array of N cells, that is E0 = EN and
EN+1 = E1. Under the latter assumption, the network of
N cells is characterised by a ring topology.

Although the ring topology captures well a simplified
quorum sensing communication, we also considered a more
realistic scenario in which the compartments are free
to communicate with all the other compartments, thus
realising an all-to-all coupling among the cells. Assuming
an all-to-all coupling topology, then (10) becomes:
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Table 1. Nominal parameter values used for the
numerical simulations.

Parameter Value Units

ω 0.025 π rad ·min−1

ϑc 0.5 π rad

K 0.5
h 8

αA 20 min−1

δA 1 min−1

αI 0.05 min−1

δI 1 min−1

δE 1 min−1

η 2 min−1

D 160 min−1

dEi
dt

= η (Ii − Ei)− δE Ei +D
N∑
j=1

(Ej − Ei) , (11)

where i ∈ {1, . . . , N} is the i-th cell of the population.

Finally, we modelled the dynamics of the intracellular
inducer molecules I with the following ordinary differential
equation:

dIi
dt

= αI Ai − δI Ii + η (Ei − Ii) , (12)

where i ∈ {1, . . . , N} is the i-th cell of the population, αI
is the production rate of Ii, δI is the degradation rate of
Ii, and η is the cell membrane diffusion rate between the
intracellular and the extracellular environment.

4. ANALYSIS OF COLLECTIVE BEHAVIOUR

Here, the synthetic quorum sensing coupling is simulated
to assess its performance in synchronising the cell-cycle
clocks. We provide the following definition:

Definition 1. (Asymptotic phase synchronisation). A pop-
ulation of N cells, modelled by (3), (7), (10), and (12);
achieves asymptotic phase synchronisation if all the phases
ϑi(t) in (3) converge to the same value for t→∞.

The same definition holds in the case of an all-to-all
coupling, that is considering (11) in lieu of (10).

All numerical simulations were performed by considering
a fixed population of N identical cells. The initial phases
ϑi(0) of individual cells were uniformly spaced in the
interval [0, 2π[. The initial conditions of concentrations
Ii(0), Ei(0), and Ai(0) were all set equal to zero. Unless
otherwise specified, numerical simulations were run with
nominal parameters as reported in Table 1. The nominal
parameters were chosen heuristically although they were
coherent with the possible biological implementation of the
overall system. Note that the concentrations are dimen-
sionless. The system composed of the set of ordinary dif-
ferential equations was solved using the MATLAB ode23t
solver.

4.1 Numerical validation

We first ran a series of numerical simulations considering
a small population of N = 10 cells with both ring and
all-to-all topology. Although the number of cells is not
biologically realistic, we decided to validate the proposed
system first on networks of small dimensions, and then on
networks composed by a larger number of nodes.

Fig. 3. Illustrative numerical simulations considering a
population of N = 10 cells with both ring (a) and
all-to-all (b) topology. Each numerical simulation
depicts temporal evolution of cell-cycle phases ϑi
(top), internal inducer molecules Ii (middle), and
external inducer molecules Ei (bottom).

Numerical simulations show that asymptotic phase syn-
chronisation of cell cycle clocks can be achieved with both
topologies even when starting from a totally desynchro-
nised population. Illustrative numerical simulations are
reported in Fig. 3a (ring topology) and Fig. 3b (all-to-
all topology). It can be appreciated that after a transient
of approximately 25 hrs, the solutions of ϑi, Ii, and Ei
reach a consensus value and become periodic. Also, the all-
to-all coupling yields a faster transient achieving asymp-
totic phase synchronisation earlier than the ring coupling.
Definitely, both topologies guarantee asymptotic phase
synchronisation in at most 25 hrs, which is reasonable from
an experimental point of view.

We then performed a series of more biologically realistic
simulations considering a population of N = 100 cells.
Since the ring topology is not biologically reasonable in
this scenario, we validated only the multi-compartment
model with an all-to-all coupling. Numerical simulations
confirm the results obtained in the scenario with few cells
(i.e. N = 10). An illustrative numerical simulations is
shown in Fig. 4.
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Fig. 4. Illustrative numerical simulation considering a
population of N = 100 cells coupled with an all-to-all
topology. The numerical simulation depicts temporal
evolution of cell-cycle phases ϑi (top), internal inducer
molecules Ii (middle), and external inducer molecules
Ei (bottom).

4.2 Sensitivity analysis

A sensitivity analysis was carried out to assess the robust-
ness of the considered system in achieving a synchronised
collective behaviour also in presence of perturbation of the
nominal parameters. For simplicity, we consider an ideal
quorum sensing control, thus the Hill coefficient in (6) is
assumed to be equal to h = +∞, and the Hill function in
(6) becomes an ideal step.

To evaluate the performance of the proposed system in
synchronising the cell-cycle clocks, we introduce the fol-
lowing synchronisation index:

J =
1

tf

∫ tf

0

R(τ) dτ . (13)

where tf is the simulation time, and R(t) is the mean phase
coherence of the Kuramoto order parameter (Kuramoto,
1984). The mean phase coherence R ∈ [0, 1] is defined as:

R(t) =

∣∣∣∣∣ 1

N

N∑
i=1

eϑi(t)

∣∣∣∣∣ , (14)

where ϑi is the phase of i-th cell.

The sensitivity analysis was carried out in the same sce-
narios used previously to validate the multi-compartment
model. The values of the synchronisation index defined in
(13) were obtained by varying the external diffusion rate
D and the dissociation constant K. To compute J , we
consider tf = 4000 min in (13). The external diffusion
rate D is varied in the interval [0, 200] min−1, whereas the
dissociation constant K is varied in the interval [0, 0.6[.
The choice of the upper bound of the parameter K is
motivated by the fact that the concentration Ii can not
exceed that value, a behaviour that can be appreciated also
in the numerical simulations reported in Fig. 3. The results
of the sensitivity analysis are shown in Fig. 5a (N = 10,
ring topology), Fig. 5b (N = 10, all-to-all topology), and
Fig. 6 (N = 100, all-to-all topology).

Fig. 5. Synchronisation index J as a function of the ex-
ternal diffusion term D and the dissociation constant
K, assuming h = ∞ in (6). The multi-compartment
model was simulated considering a population of N =
10 cells coupled with ring (a) and all-to-all (b) topol-
ogy.

Fig. 6. Synchronisation index J as a function of the ex-
ternal diffusion term D and the dissociation constant
K, assuming h = ∞ in (6). The multi-compartment
model was simulated considering a population of N =
100 cells coupled with an all-to-all topology.

As depicted in Fig. 5 and Fig. 6, a broad range of perturbed
parameters leads to synchronised collective behaviours. In
particular, the dissociation constant K is the dominant
parameter that defines the onset of synchronised collective
behaviours. This can be explained by observing that input
ui depends on the concentration of the internal inducer
molecule Ii. In the assumption of an ideal quorum sensing
control (Hill coefficient h = +∞), the cell-cycle phase ϑi
of i-th cell is perturbed if Ii is greater than or equal to
the dissociation constant K. In turn, Ii depends on the
concentration of the external inducer molecule Ei, that
according to the nominal parameters used here has an
upper bound equals to 0.4. The latter value is also the
minimum value of K that leads to synchronised collective
behaviours. This means that if the dissociation constant
K is not large enough, then each cell can produce enough
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inducer molecule (Ii) on its own to start the cell cycle,
without having to wait for the external concentration (Ei)
to increase.

5. CONCLUSION

In this work, we have investigated the problem of syn-
chronising the cell-cycle across a population of yeast cells.
To address this problem, we proposed the construction
of an in vivo quorum sensing mechanism to couple the
cell-cycle across the cell population. We presented an in
silico proof-of-principle implementation of the synthetic
biomolecular circuit. For the purpose of controlling the
cell cycle, we propose to modify the cell-cycle machinery
in order to stop the cell cycle in the G1 phase, as done
in (Rahi et al., 2016). We also validated the in silico
implementation through a series of numerical simulations
and demonstrated the feasibility of our approach.

To the best of our knowledge, this is the first time that
a synthetic quorum sensing system is proposed to couple
all the cells in a population to synchronise their cell-
cycle clocks. Previously, the synchronisation problem was
addressed by considering an open-loop control strategy
where an external periodic input was used to entrain the
cell-cycle clocks across the cell population, although with
limited success (Charvin et al., 2009). Recently, two in
silico studies have demonstrated the feasibility of using
external feedback control of the CLN2 gene expression to
synchronised the cell-cycle clocks (Perrino et al., 2019a,b).

The next step is to implement the proposed quorum sens-
ing system in living yeast cells. A possible in vivo im-
plementation can rely on the α-factor mating pheromone,
that has been used recently in the design of an orthogonal
cell-to-cell communication system in yeast (Shaw et al.,
2019).
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