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A B S T R A C T   

Buildings have become a major concern because of their high energy use and carbon emissions. Thus, a material- 
efficient prefabricated concrete element (PCE) system was developed to incorporate construction and demolition 
waste as feedstock for residential building energy renovation by over-cladding the walls of old buildings. By 
conducting life cycle assessment and life cycle costing using the payback approach, this study aims to explore the 
life cycle performance of energy conservation, carbon mitigation, and cost reduction of the PCE system in three 
European member states: Spain, the Netherlands, and Sweden. The results show that the energy payback periods 
for Spain, the Netherlands, and Sweden were 20.45 years, 17.60 years, 19.95 years, respectively, and the carbon 
payback periods were 23.33 years, 16.78 years, and 8.58 years, respectively. However, the financial payback 
periods were less likely to be achieved within the building lifetime, revealing that only the Swedish case achieved 
a payback period within 100 years (83.59 years). Thus, circularity solutions were considered to shorten the PCE 
payback periods. Using secondary materials in PCE fabrication only slightly reduced the payback period. 
However, reusing the PCE considerably reduced the energy and carbon payback periods to less than 6 years and 
11 years, respectively in all three cases. Regarding cost, reusing the PCE shortened the Swedish payback period to 
29.30 years, while the Dutch and Spanish cases achieved investment payback at 42.97 years and 85.68 years, 
respectively. The results can be extrapolated to support the design of sustainable building elements for energy 
renovation in Europe.   

1. Introduction 

As of late, the building sector has become a primary contributor to 
global warming and resource depletion, in which buildings account for 
approximately 40% and 33% of global energy use and greenhouse gas 
(GHG) emissions [1]. By 2050, it is projected that the global energy 
consumption of buildings might double, or even triple [2]. The Euro-
pean Union (EU) reacted to the IPCC (Intergovernmental Panel on 
Climate Change)’s 2 ◦C target by formulating legislative goals of 
reducing energy use and GHG emissions for the built environment in 
both the short- and long-term [3]. 

In the EU, building sector legislature has been prioritized as it has the 

potential to meet certain GHG mitigation and energy-saving targets. 
Currently, more than 30% of buildings in the EU are more than 50 years 
old, and over 70% of the building stock is energy-inefficient [4]. Thus, 
improving the overall energy performance of both old and new buildings 
is necessary. However, the construction of new energy-efficient build-
ings does not meet the short-term GHG mitigation goals [5]. Therefore, 
renovating existing buildings would enable the EU to meet its 2030 goals 
of 32.5% energy savings and a 40% GHG emissions reduction, as 
compared with 1990 [3]. 

EU-level legislative initiatives have been introduced for building 
renovations. In particular, directive 2012/27/EU requires member 
states to establish national strategies for cost-effectively renovating 
more than 3% of the central government’s gross building stock each year 
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[6]. Directive 2010/31/EU set minimum energy use standards and 
cost-optimal levels for old building renovations [4]. Amendment 
2018/844 to Directive 2010/31/EU introduced a clear target for the full 
decarburization of the EU’s building stock by 2050. However, an 
investigation of 16 EU regions (covering more than 60% of the gross EU 
floor area) indicated that over 97% of buildings must be renovated to 
accomplish the EU’s 2050 decarburization goal [7]. Hence, cost-efficient 
energy-saving solutions are necessary to support the current energy 
goals of the EU. 

Up-scaling building renovation by mitigating the energy dissipation 
from building heat loss is a priority for the EU building stock [8]. 
Recently, an EU project, the European Union Horizon 2020 project VEEP 
(VEEP), developed a technological system to use recycled construction 
and demolition waste (CDW) to manufacture prefabricated concrete 
elements (PCE). These PCEs have been used to improve the thermal 
performance of buildings by either being constructed as an envelope of 
new buildings (PCE1) or by over-cladding the envelope of existing 
buildings (PCE2). As the life cycle performance of PCE1 has been pre-
viously evaluated [9], this study examines the performance of PCE2. 

Life cycle costing (LCC) and life cycle assessment (LCA) are typical 
appraisal tools of life cycle management methodology [10]. An inte-
grated implementation of LCC and LCA can provide broader insights into 
sustainable products and technologies [11]. Therefore, this study aims 
to employ LCC and LCA simultaneously to evaluate the potential of 
implementing VEEP PCE2 in residential buildings to save costs, conserve 
energy, and mitigate GHG emissions under different EU member states’ 
climatic contexts. The results of the LCC and LCA are expressed for in-
vestment, energy, and carbon payback periods, and the applicability of 
VEEP PCE2 to EU residential buildings is examined. The results of this 
study will support policymakers in selecting cost-effective and 
material-efficient paths for building energy renovation in the EU. 

This study is outlined as follows: Section 2 illustrates the details of 
the technological system and main methods; Section 3 states the results; 
Section 4 discusses the application potential of the PCE2 system at an 
EU-wide scale and the reusability of PCE2, and Section 5 presents the 
conclusions of the study. 

2. Materials and methods 

This section presents the basic materials and methods used in this 
study. Section 2.1 details overviews of the literature related to LCC- and 
LCA-based payback period methods in the field of building energy 
renovation, proposing a conceptual framework for an energy-carbon- 
investment payback period analysis. Based on this conceptual frame-
work, Section 2.2 defines the goal and scope of the assessment system. 
Section 2.3 presents the life cycle environmental and economic in-
ventory LCC and LCA, and Section 2.4 details the life cycle environ-
mental and economic impact analysis. 

2.1. Life cycle management of building energy renovation 

2.1.1. Overview of life cycle energy, carbon emission, and cost analysis 
As one of the main techniques for life cycle management [10], LCAs 

are commonly used to explore opportunities in GHG emissions mitiga-
tion and energy efficiency in the building sector [12]. Based on an LCA, 
the life cycle carbon emission analysis (LCCO2A) and life cycle energy 
analysis (LCEA) specifically focus on the life cycle CO2 equivalent 
emissions and the energy consumption of buildings, respectively. 

The Building Assessment Information System [13] defines four life 
cycle stages for building performance assessment: production, con-
struction process, use, and end-of-life (EoL) stages. An LCEA is usually 
employed to calculate the overall energy-related inputs to buildings 
from a life cycle perspective [14]. Analogously, an LCCO2A accounts for 
the total CO2 equivalent emission outputs from a building over different 
phases of its life cycle [15]. Energy [14] and GHG emissions [16] in the 
operation stage normally account for 80%–90% of a building’s life cycle 
energy use and GHG emissions, followed by embodied energy and 
emissions, which accounts for 10%–20%. Meanwhile, the demolition 
energy [14] and emissions [16] are almost negligible, contributing 
approximately 1%. 

In an LCEA and LCCO2A, building materials production and building 
construction are often grouped into one stage. For example, studies on 
the LCEA [1,14,15,17] and LCCO2A [1,15,16] modeled the life cycle 
energy and emission of three stages: (i) embodiment (manufacturing and 
construction), (ii) operation (operation and use), and (iii) demolition 
(EoL). Therefore, estimating the life cycle energy consumption and life 
cycle GHG emissions of buildings can be determined by summing all the 
energies and emissions incurred during their life cycle, as expressed in 
Eqs. (1) and (2): 

Life cycle energy consumption =EE + EO + ED, (1)  

Life cycle carbon emission =CE + CO + CD, (2)  

where EE denotes the energy consumption incurred in the embodiment 
phase, EO represents the energy consumption incurred in the operation 
phase, ED denotes the energy consumption incurred in the demolition 
phase, CE denotes the GHG emissions incurred in the embodiment phase, 
CO represents the GHG emissions incurred in the operation phase, and 
CD denotes the GHG emissions incurred in the demolition phase. 

Despite their popularity, it is debated whether LCEAs and LCCO2As 
are stand-alone methodologies, a step, or indicators to be included in the 
life cycle inventory analysis or the life cycle impact assessment in an 
LCA. Chau et al. (2015) reviewed the literature regarding LCAs, LCEAs, 
and LCCO2As and found that an LCEA focuses on energy input and an 
LCCO2A on outputs, while an LCA considers both environmental inputs 
and outputs. In this manner, the LCA is an overarching environmental 
assessment that includes both LCEAs and LCCO2As. Conversely, the 
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cumulative energy demand (CED) is a key index for both LCAs and 
LCEAs. Klöpffer [18] stated that the CED is an inventory indicator that 
does not rely on any assumptions. However, Frischknecht [19] 
explained that some assumptions are necessary to develop CED factors 
[20]. Instead of employing the LCEA or LCCO2A as independent 
methods, this study used a standard LCA, which conforms to ISO 14040 
[21] and ISO 14044 [22], as an appraisal tool to explore the life cycle 
energy and carbon emissions of the PCE2 system. 

Regarding economic assessment, LCC is a financial assessment tool 
that explores the costs incurred during the life cycle of a product system 
[23]. There are multiple cost breakdown structures for an LCC, such as 
life cycle-based, stockholder-based, and expenditure-based [24]. The 
selection of the cost breakdown structure depends on the user’s goal and 
scope. Owing to the characteristics of a life cycle perspective, the life 
cycle cost of a building is usually estimated based on the building’s life 
cycle. According to ISO 15686–5 [23], the life cycle cost of a building 
consists of construction costs, operation and maintenance costs, and EoL 
costs, as shown in Eq. (3). 

Life cycle cost = IE + IO + ID, (3)  

where IE represents the construction costs incurred in the embodiment 
stage, IO denotes the operation and maintenance costs incurred in the 
operation phase, and ID represents the EoL cost incurred in the demo-
lition phase. External costs, such as environmental or social costs, are 
not considered in this study. 

For the consistent application of LCAs and LCCs, the Society of 
Environmental Toxicology and Chemistry Europe working group 
defined an environmental LCC [25,26], which is not meant to consider 
environmental externalities, but has a methodological framework 
similar to a standard LCA. This study employed both an LCA and envi-
ronmental LCC (hereinafter referred to as LCC) to investigate the energy 
and carbon reductions and economic viability of the PCE2 system. 

2.1.2. Payback period method 
Several systematic reviews have been conducted on LCCs [1,27–29], 

LCAs [1,14,15,27–33], LCEAs [14,15,27,34–37], and LCCO2As [15,38] 
for buildings and the building sector. These reviews demonstrated that 
estimating the life cycle ecological and economic performance by 
summing all the impacts incurred during each life cycle stage over a 
lifetime is the most straightforward and commonly employed method 
for comparing building performances. 

However, in some studies, the temporal scope of the LCA was not 
directly defined, or the goal of a study was to explore a breakeven time, 
making comparison impossible. For instance, in this study, the lifespan 
of a PCE2 is dependent on the remaining lifetime of the building. 
Because the remaining building lifetime varies, due to different con-
struction times, the temporal span of a PCE2 cannot be directly set. In 
this case, it would be more straightforward to evaluate the life cycle 
results using the payback period approach. 

The payback period method is used to appraise the economic 
attractiveness of capital investments [39]. Despite its methodological 
deficiencies, a payback period is employed as a primary sieve or 
constraint for investment appraisal [40], representing the amount of 
time it takes to recover the cost of an investment, as expressed in Eq. (4) 
[39]. 

Investment payback period=
I
CF

=
1 − (1 + IRR)− L

IRR
, (4)  

where I is the investment outlay, CF denotes the annual cash flow, L 
represents the economic life, and IRR denotes the internal rate of return 
that makes the net present value equal to 0. 

Regarding energy efficiency issues, the payback method is commonly 
used in energy efficiency and low-carbon projects, such as photovoltaics 
[41] and building energy renovation [30]. Table 1 summarizes studies 
related to the payback method, wherein the estimation of the energy and 

Table 1 
Payback period literature in building energy renovation.  

Source Topic Area Main findings 

[49] Net Zero Energy 
building with solar 
power 

Quebec, Canada The energy payback 
time is 8–11 years in 
the cold climate of 
Quebec, suggesting, 
with the high 
investment of the solar 
system, the financial 
payback may never be 
achieved (6–39 years). 

[5] Residential building 
Renovation 

Finland The carbon payback 
period of rebuilding 
new dwellings is 
several decades longer 
than that of renovating 
existing buildings, but; 
the period of 
renovation is 25 years 
less than rebuilding. 

[42] Electrochromic 
window 

Greece The energy payback 
period is 8.9 years 
when considering 
aluminum frames. 

[44] Heating energy 
sources 

Sweden The energy payback 
period of renewable 
heating alternatives 
(photovoltaic, solar 
thermal, and heat 
pump). Heat pump is 
the most promising 
option, with an energy 
payback period of less 
than 1 year. 

[50] Insulation material 
for exterior wall of 
building 

Poland The economic payback 
periods of these 
materials (up to 24 
years) are much longer 
than the ecological 
payback periods (up to 
4 years). 

[45] Overhang shading for 
campus buildings 

Hong Kong, China The energy payback 
period of the shading 
system is 
approximately 46 
years; the carbon 
payback period is 
approximately 64 
years. 

[51] School buildings 
refurbishment 

Hong Kong, China Mean discounted 
financial payback (32.1 
years) is longer than 
carbon payback (3.9 
years). 

[46] Nearly-Zero Energy- 
level retrofit for 
school building 

Turin, Italy The carbon and energy 
payback periods show 
the same trend (3–7 
years); the economic 
payback periods (5–30 
years) are higher than 
the environmental 
periods. Retrofitting 
related to generators 
presents the biggest 
energy-saving 
potential. 

[52] Rebuild of 
commercial building 

San Francisco, 
California, USA 

The carbon payback of 
a new building with no 
solar versus that with 
an existing one is 
approximately 7 years; 
a net-zero-energy 
building with rooftop 
solar is approximately 
6.5 years. A full 
EcoIndicator99 impact 

(continued on next page) 
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carbon payback periods are expressed by Eq. (5) (Ardente et al., 2011; 
Asdrubali et al., 2019; Berggren et al., 2013; Comodi et al., 2016; Huang 
et al., 2012; Lu and Yang, 2010; Papaefthimiou et al., 2006), and (6) [43, 
45–47]: 

Energy payback period=
EE
Eo

, (5)  

Carbon payback period=
CE

Co
, (6)  

where EE is the initial embodied energy, EO is the annual operational 
energy saving, CE is the initial embodied GHG emission, and CO denotes 
the annual operational GHG savings. 

These studies demonstrate that the payback period method is a 
suitable approach to handle issues related to building energy renovation 
as it can be used for different purposes, such as the environment, energy, 
and economic payback period, or as an integrated ecological payback 
period that includes multiple environmental impact categories. The 
payback method can also be modified to assess various topics, including 
building materials, building elements, buildings, and the area of build-
ings. These payback studies also manifest in energy renovation projects 
in which economic investment has a longer return period to return than 
embodied carbon emissions and energy consumption. 

However, research gaps exist in the literature as studies do not 
consider the influence of material circularity in the EoL phase. Although 
the EoL impact accounts for approximately 1% of the life cycle energy 
and GHG emissions, utilizing secondary materials and reusing EoL 
products has the potential to significantly reduce the impact of the 
embodiment phase. Therefore, this study aims to examine cross-state 
cases to investigate the energy-carbon-investment payback period of 
the PCE2 system for building energy renovation and evaluate how ma-
terial circularity influences the payback periods. 

2.1.3. Methodological framework 
The energy/carbon/investment payback periods herein indicate the 

length of time required for the cumulative cost/energy/GHG reduction 
from the implementation of PCE2s to equal the cost/energy/GHG 
incurred in the embodiment and demolition phases. Based on Eqs. (4)– 
(6), the energy, carbon, and investment payback periods are calculated 
with Eqs. (7)–(9), respectively. This study applies process-based LCA 
and LCC to quantify PCE2 performance in different European cities, 
namely, Madrid, Amsterdam, and Stockholm. 

TE =
EPCE2
E + EPCE2

D

EBAUO − EPCE2
O

, (7)  

TC =
CPCE2
E + CPCE2

D

CBAU
O − CPCE2

O
, (8)  

TI =
IPCE2
E + IPCE2

D

IBAUO − IPCE2
O

, (9)  

where TE represents the energy payback period, EPCE2
E denotes the 

embodied energy consumption for manufacturing the PCE2, EPCE2
O de-

notes the energy demand for heating and cooling in the building oper-
ation phase after PCE2 refurbishment, EPCE2

D is the energy consumption 
for the treatment of EoL PCE2 in the demolition phase, and EBAU

O is the 
energy demand in the operation phase of a building with a business-as- 
usual (BAU) wall as a façade. Similarly, TC represents the carbon 
payback period, CPCE2

E represents the embodied GHG emission for PCE2 
manufacturing, CPCE2

O denotes the GHG emissions incurred in the oper-
ation phase of a building after refurbishment with PCE2, CPCE2

D demon-
strates the GHG emissions for treating EoL PCE2 in the demolition phase, 
and CBAU

O denotes the GHG emissions in the operation phase of a building 
with a BAU wall as a façade. Finally, TI represents the carbon payback 

Table 1 (continued ) 

Source Topic Area Main findings 

payback for a new 
building with no solar 
is 20 years; a solar net- 
zero building is 7 years 
as compared with a 
building with existing 
operation. 

[53] Highly energy- 
efficient house 

Rural Alaska, USA The carbon payback 
period of a house with a 
high insulation level is 
3 years compared with 
a typical house. 

[54] House complex 
refurbishment 

Sheffield, UK Advanced 
refurbishment can 
reduce the carbon 
payback from over 160 
years to less than 60 
years, as compared 
with ordinary 
refurbishment. 
Updating from heating 
by waste combustion to 
natural gas can reduce 
the carbon payback 
from 56 – 58 years to 
16 years. 

[55] Eco-Refurbishment of 
dwellings 

Liverpool and 
London, UK 

The carbon payback 
time of refurbishment 
is less than 7 years. 

[56] Wood-framed 
apartment retrofit 

Växjö, Sweden The energy payback 
period is less than 4 
years. 

[47] Public buildings 
under different 
retrofit strategies 

Brno, Czech; 
Gol, Norway; 
Plymouth, UK; 
Copenhagen; 
Denmark; Stuttgart, 
Germany; Vilnius, 
Lithuania 

Regarding different 
retrofitting actions, the 
carbon payback period 
ranges from 0.4 years 
to 1.9 years; the energy 
payback periods are in 
the range of 0.4–2.1 
years. 

[30] – – When considering all 
environmental impact 
categories, the payback 
period of an energy 
retrofit building is less 
than 7.5 years 

[48] Domestic hot water 
systems with 
unglazed and glazed 
solar thermal panels 

Rome, Italy; Madrid, 
Spain; Munich, 
Germany 

The energy payback of 
an unglazed panel 
system is 2–5 months 
and that of a glazed 
panel is 5–12 months. 
The carbon payback of 
an unglazed panel 
system is 1–2 months, 
while that of a glazed 
panel is 12–30 months. 
The economic payback 
is 9–11 years/8–13 
years for systems with 
unglazed/glazed panels 
when compared with a 
natural gas boiler, and 
3–4 years/4 years for 
those compared with 
an electric boiler. 

[43] Roof-mounted 
building-integrated 
photovoltaic (PV) 
system 

Hong Kong, China The energy payback 
time of a PV system 
ranges from 7.1 to 20 
years; the carbon 
payback time is 5.2 
years.  
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period, IPCE2
E denotes the investment for PCE2 manufacturing incurred in 

the embodiment phase, IPCE2
O denotes the operation costs incurred in the 

operation phase of a building after refurbishment with PCE2, IPCE2
D de-

notes the cost for PCE2 EoL treatment incurred in the demolition phase, 
and IBAU

O represents the GHG cost incurred in the operation phase of a 
building with the BAU wall as the facade. 

The LCA in this study was outlined using the four steps determined 
by the ISO standards: 1) goal and scope definition, 2) life cycle inventory 
analysis, 3) life cycle impact assessment, and 4) results interpretation. 
The CED and global warming potential were considered to be impact 
category indicators that belong to the life cycle impact assessment step. 
An LCC was performed using the same four steps, as proposed by Zhang 
et al. (2019). The conceptual framework of this study is shown in Fig. 1. 
Note that the LCA focuses on energy inputs and GHG emission outputs 
from the system, whereas the LCC centers on the investment inputs 
released from the system, thereby representing the three life cycle 
phases in the assessment. In the embodiment phase, both virgin and 
recycled raw materials were incorporated into the fabrication of PCE2. 
In the operation phase, individual air conditioning was assumed to 
model the demand for household cooling. For heating energy demand, 
residential buildings in different member states were assumed to be 
equipped with different household heating systems based on the TAB-
ULA database [57]. During the demolition phase, the impact of recycling 
and reusing PCE2 on the payback period was evaluated. Thus, this study 
used the payback method to investigate the energy-carbon-investment 
payback period of the proposed PCE2 system with the main research 
objective of determining what quantity of GHG mitigation, energy 
saving, and economic earnings from the operation phase offsets the 
additional inputs required in the embodiment and demolition phases. 

2.2. Goal and scope definition 

2.2.1. Goal and scope 
The goal of this study is to compare the energy and carbon payback 

periods for fabricating and operating the proposed PCE2 system as an 
energy retrofitting strategy for existing buildings with a conventional 
wall as a façade compared with those with conventional walls without 
any retrofitting in different EU member states: Spain, Sweden, and the 
Netherlands. Herein, the LCEA and LCCO2A building analyses included 
three phases: embodiment, operation, and demolition. The embodiment 
phase includes the manufacturing and transportation of raw materials 
for the fabrication of PCEs. The operation phase includes the cooling and 
heating needs related to the use of buildings with or without the 
application of PCEs. Finally, the demolition phase includes the PCE 
dismantling and the transport of EoL materials for either disposal or 
treatment. Note that the object of interest is the PCE, not the building. 

The system boundary for this assessment was the geographical 
boundaries of each studied city. Therefore, all the productive activities 
during the three life cycle phases are assumed to be conducted within 
each state. The capital cities Madrid, Amsterdam, and Stockholm were 
selected as the study areas. The climates and locations of these cities are 
listed in Table 2. 

2.2.2. Technological systems for building energy renovation 
The technological system in the VEEP project involves advanced 

drying recovery (ADR) integrated with a heating-air classification sys-
tem (HAS) to completely recycle the EoL lightweight concrete. The 
produced secondary coarse and fine concrete aggregate and cementi-
tious particles were used for the production of green lightweight 

Fig. 1. Conceptual framework of the study. LCA: life cycle assessment; LCC: life cycle costing; BAU: business-as-usual; PCE2: prefabricated concrete element for old 
building refurbishment. 
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concrete and green aerogel in the PCE2. Furthermore, a dry grinding and 
refining (DGR) system was developed to reprocess glass and insulating 
fiber wool waste to produce secondary ultrafine admixtures to substitute 
cementitious materials in the concrete, such as cement and lime. 

Two technological scenarios were considered herein: a BAU tradi-
tional wall and a BAU traditional wall retrofitted with different types of 
PCE2s. The cross-sections of the traditional wall in the BAU scenario and 
VEEP PCE2s for over-cladding the traditional wall are illustrated in 
Fig. 2. A typical façade for a residential building presented on the left of 
Fig. 2 was selected as a benchmark reference. Regarding the climate 
difference between Madrid, Amsterdam, and Stockholm, alternative 
structures were applied to the PCE2 designs. In particular, PCE2-a, 
which has a thinner aerogel layer, was employed for the Madrid case, 
while PCE2-b, which has a thicker aerogel layer, was implemented for 
the Amsterdam and Stockholm cases. The PCE2-a is 2 m long, 2 m wide 
and 0.08 m thick, and the PCE2-b is 2 m long, 2 m wide, and 0.12 m 
thick. 

In the BAU scenarios, a typical traditional wall was selected as the 
benchmark reference for comparison with the PCE2 energy retrofitting 

scenario. Because no precast concrete elements are applied in the BAU 
scenario, the associated GHG emissions and energy use only occur in the 
operation phase. 

Conversely, in the PCE2 scenarios, environmental impacts are 
incurred throughout the entire life cycle. In the embodiment phase, 
secondary raw materials are incorporated into the PCE2. Integrated ADR 
and HAS technologies recycle EoL concrete, and DGR technology re-
covers glass waste. In the operation phase, dynamic thermal simulations 
were performed to compare the thermal performances of each scenario. 
A typical virtual residential apartment building was selected as a case 
study building for the thermal simulations. Finally, in the demolition 
phase, the PCE2s are dismantled and recycled. The specific features of 
the BAU and PCE2 scenarios are summarized in Table 3. 

The functional unit for the assessment was retaining the heating and 
cooling comfort for 1 m2 floor area through (i) passive building façades 
(with or without the application of VEEP PCE2s) and (ii) active heating 
by different heating systems and cooling by individual air-conditioning 
for 1 year based on the climate conditions in the Madrid, Amsterdam, 
and Stockholm. Based on the structure of the case study building, 1 m2 of 
floor area requires 0.55 m2 of PCE2 to over-clad the building façade. 

2.3. Life cycle inventory analysis 

The goal and scope definition step is followed by the life cycle in-
ventory analysis, which further identifies the boundaries, background 
and foreground processes, and allocation scheme for a production sys-
tem [61]. The system boundaries of the BAU and VEEP PCE2 scenarios 
are shown in Fig. 3. The life cycle inventory is established according to 
the three phases of energy use and GHG emissions. The LCA software 
OpenLCA 1.9, with the Ecoinvent 3.4 Cutoff database, was used for the 
assessment. 

Table 2 
Climates and locations of three case cities. The data source for information about 
Madrid [58], Amsterdam [59], and Sweden [60].   

Madrid, Spain Amsterdam, the 
Netherlands 

Stockholm, 
Sweden 

Location in 
Europe 

Southern Europe Western Europe Northern Europe 

Coordinates 40◦25′N, 3◦43′W 52◦22′N, 
4◦54′E 

59◦19′46′′N, 
18◦4′7′′E 

Climate Mediterranean climate 
which transitions to a 
cold semi-arid climate 

Oceanic 
climate 

Oceanic climate 
with humid 
continental  

Fig. 2. Cross-section diagrams of BAU traditional wall (left), and VEEP PCE2-a (middle) to be implemented in Spain, and PCE2-b (right) to be implemented in the 
Netherlands and Sweden. BAU: business-as-usual; PCE2: prefabricated concrete element for old building refurbishment. 
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2.3.1. Embodiment phase 
The carbon emissions and energy use in the embodiment phase are 

only incurred in the VEEP scenarios. In this phase, virgin and secondary 
raw material transportation and preparation, PCE2 manufacturing, and 
PCE2 transport and installation were determined. 

Secondary raw materials were extracted from the waste stream via 
ADR, HAS, and DGR to fabricate the PCE2. A previous study explored 
the mass balance of integrated ADR and HAS technological systems for 
recycling both normal-weight siliceous [24] and lightweight concrete 
wastes [62], revealing that a larger 0–4 mm fraction is produced by 
processing lightweight concrete (48%) than normal-weight concrete 
(32%). A detailed flow chart of ADR and HAS is shown in Fig. S1 in the 
SI. 

DGR extracts secondary raw materials from glass, mineral wool, and 
fiber wool waste. In this study, DGR was used to recycle glass waste to 
produce recycled glass ultrafine admixture as a substitute primary 
cement in lightweight concrete. The mass balance of the DGR system is 
shown in Fig. S2 in the SI. Because the amount of residue from DGR is 
negligible, the recycling coefficient is assumed to be 100%. 

As transport has proven to be of considerable importance in CDW 
recycling, especially when on-site recycling occurs [24,63], the impact 
of transportation of recycling facilities, raw materials, PCE2s, and waste 
residue were considered in this study. The crusher (Keestrack Destroyer 
1313), ADR, and HAS can be transported for on-site recycling. While 
DGR was once a stationary recycling facility, it has been optimized to 
process the CDW on-site. Therefore, all the recycling facilities in this 
study (crushing set, ADR, HAS, and DGR) were modeled as mobile. The 
truck travel distance from where recycling facilities are stored at the 
demolition site is assumed to be 20 km, and a typical building demoli-
tion project contains approximately 15 Kt of EoL concrete [24]. Ac-
cording to the share of EoL concrete and glass waste in the CDW by 
weight [64], approximately 80 tons of glass waste is generated from a 
typical demolition site. The impact of recycling facility transport is 
allocated based on the waste recycled for PCE2 manufacturing and the 
gross waste generated from the demolition site. The operating weights of 
each facility are listed in Table S1 in the SI. 

In the PCE2 system, pre-crushing concrete rubble, recycling 

lightweight concrete waste by ADR and HAS, and recycling glass waste 
by DGR are multifunctional processes. Thus, allocation is applied to 
distribute the environmental impact of functional flow from these 
multifunctional processes. The allocation method for an LCA is based on 
process-based allocation. The energy use and GHG emissions of multi-
functional processes are both allocated via the mass-based allocation 
scheme, as summarized in Table S2 in the SI. Further, the detailed costs 
of virgin and secondary raw materials for the fabrication of PCE2 are 
listed in Table S3 in the SI. Pre-crushing of concrete rubble, recycling 
lightweight concrete waste by ADR and HAS, and recycling glass waste 
by DGR are multifunctional processes. Allocation is applied to distribute 
environmental impacts of functional flow from a multifunctional pro-
cess. The allocation method for LCA is process-based allocation. The 
energy use and GHG emission of multifunctional processes are both 
allocated via the mass-based allocation scheme as presented in Table S2 
in the SI. The detailed bill of virgin and secondary raw materials for 
fabrication of a PCE2 is presented in Table S3 in the SI. After extraction 
and refining, raw materials are transported to the factory to manufac-
ture the PCE2s. It is assumed that the average truck travel distance of the 
recycled material is 20 km while that of virgin materials is 50 km [9]. 
The energy utilities related to VEEP PCE2 manufacturing are listed in 
Table S4 in the SI. 

After fabrication, the PCE2s are transported to the construction site 
for installation. It is assumed that the average truck travel distance of 
PCE2 is 50 km [9]. The utilities and material inputs for PCE2 installation 
are listed in Table S5 in the SI. 

2.3.2. Operation phase 
Dynamic thermal simulations were conducted to quantify the energy 

required to maintain heating and cooling under different climate con-
ditions. Thermal assessments at the building scale were conducted on a 
typical residential multi-story building in Europe, as shown in Fig. S3 in 
the SI. 

The thermal transmittance (U-value) of the building walls varied 
from less than 0.2 W/(m2⋅K) to more than 2.0 W/(m2⋅K) depending on 
the construction age [65]. Thus, a typical wall (as depicted in Fig. 1) 
with an average level of thermal performance was selected for this case 
study. The thermal conductivities of the materials and components in 
the wall and PCE2 are listed in Table S6 in the SI. The U-values of the 
traditional wall before and after PCE2 refurbishment were determined 
in accordance with ISO 6946 [66]. The calculated U-values of each 
building element are listed in Table S7 in the SI. 

The heating and cooling conditions considered herein are listed in 
Table 4. Note that the workdays and weekends were modeled with 
different occupation and vacancy conditions. When rooms are occupied, 
the temperature of the rooms is maintained at 21 ◦C via an individual 
condensing boiler for heating and at 26 ◦C via an individual air- 
conditioning for cooling. When rooms are vacant, the temperature is 
maintained at 18 ◦C via an individual condensing boiler for heating and 
30 ◦C via an individual air-conditioning for cooling. 

The annual heating and cooling distribution requirements for 
Madrid, Amsterdam, and Stockholm based on the dynamic thermal 
simulations are shown in Fig. 5. It is clear that with increasing latitude, 
more heating energy is required, while near the equator, more cooling 
energy is required. Overall, buildings (retrofitted or not) in the 
Netherlands and Sweden consume significantly more heating energy 
than those in Spain, while their cooling energy is negligible. 

Based on the thermal dynamic simulations shown in Fig. 4, the 
annual heating and cooling demand/floor area for both the BAU and 
VEEP scenarios in each region is listed in Table 5. Detailed information 
for modeling the heating and cooling demand is provided in the SI. 

2.4. Demolition phase 

In the demolition phase, demolishing the VEEP PCE2s and BAU 
traditional walls and disposing of the BAU traditional wall were not 

Table 3 
Six scenarios developed based on technological and climate conditions. BAU: 
business-as-usual; PCE2: prefabricated concrete element for old building refur-
bishment; ES: Spanish case; NL: Dutch case; SE: Swedish case; GHG: greenhouse 
gas.   

Spanish case Dutch case Swedish case 

BAU BAU-ES: traditional 
wall of existing 
building under the 
climatic conditions of 
Madrid, Spain; 
associated investment, 
GHG emissions, and 
energy use are only 
incurred in the 
operation phase 

BAU-NL: traditional 
wall of the existing 
building under the 
climatic conditions of 
Amsterdam, 
Netherlands; 
associated investment, 
GHG emissions, and 
energy use are only 
incurred in the 
operation phase 

BAU-SE: traditional 
wall of the existing 
building under the 
climatic conditions of 
Stockholm, Sweden; 
associated investment, 
GHG emissions, and 
energy use are only 
incurred in the 
operation phase 

PCE2 PCE2-ES: traditional 
wall of the existing 
building refurbished 
with PCE2-a under the 
climatic conditions of 
Madrid, Spain; 
associated investment, 
GHG emissions, and 
energy consumption 
are incurred in the 
embodiment, 
operation, and 
demolition phases 

PCE2-NL: traditional 
wall of the existing 
building refurbished 
with PCE2-b under the 
climatic conditions of 
Amsterdam, 
Netherlands; 
associated investment, 
GHG emissions, and 
energy consumption 
are incurred in the 
embodiment, 
operation, and 
demolition phases 

PCE2-SE: traditional 
wall of the existing 
building refurbished 
with PCE2-b under the 
climatic conditions of 
Stockholm, Sweden; 
associated investment, 
GHG emissions, and 
energy consumption 
are incurred in the 
embodiment, 
operation, and 
demolition phases  
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considered in the assessment. Further, the constituents of the PCEs (steel 
frame, concrete, and aerogel) were assumed to be recycled at this stage. 

Specifically, steel is treated by collecting and then selling it directly 
on-site, and the environmental impact of the follow-up re-melting pro-
cess was not considered in the study. The EoL lightweight concrete is 
recycled by crushing on-site with a crusher. Disposal options for fibrous 
materials include landfilling or incineration [67]. The aerogel is recy-
clable and reusable if it remains intact. Herein, it was assumed that the 
aerogel was recycled by DGR on-site. The reusability of PCE2 is exam-
ined in Section 4.1. Further recycling information is provided in the SI. 

2.5. Life cycle impact assessment 

The impact assessment step in an LCA characterizes the inventory 

results according to the target impact categories [61]. This study uses an 
LCA to quantify the GHG mitigation and energy saving potential of the 
PCE2 system. The “Global Warming (kg CO2 eq)” from the “CML-IA, 4.4 
issues, January 2015” database, and “OpenLCA LCIA methods 1.5.7,” 
and Cumulative Energy Demand (MJ) [68] from the “OpenLCA LCIA 
methods 2.0.3” database were selected as impact indicators. As an in-
dividual impact indicator is sufficient to estimate each type of payback 
period, the weighting scheme and normalization step were not consid-
ered in the LCA. 

The cost category, time value of an investment, and cost results 
expression are discussed in the economic impact assessment [24]. 
Herein, the LCC was performed from the homeowner’s perspective. 
Therefore, the costing system only considers the real cash flows incurred 
by the owner, and environmental costs are excluded. Since 2020, the 
euro area has had a zero interest [69], which even reached a negative 
rate in developed areas, such as the Netherlands [62], thus, the interest 
rate was not considered for the payback estimation. The LCC result is 
expressed as the investment payback period. 

3. Results 

Section 3 presents the results of the embodiment, operation, and 
demolition phases of the LCA and LCC, which are converted into 
payback period in Section 3.2. 

Fig. 3. Assessment boundaries of the PCE2 (left) and BAU scenarios (right). ADR: Advanced dry recovery system; BAU: Business-as-usual; CRLWCA: coarse recycled 
lightweight concrete aggregate; DGR: Dry Grinding & Refining system; EoL: end-of-life; ES: Spanish case; FRSCA: Fine recycled siliceous concrete aggregate; 
FRLWCA: Fine lightweight recycled concrete aggregate; HAS: Heating-Air Classification System; NL: Dutch case; PCE2: prefabricated concrete element for building 
refurbishment; RCA: recycled concrete aggregate; RGUA: recycled glass ultrafine aggregate; SE: Swedish case; URLWCA: Ultrafine recycled lightweight concrete 
aggregate; URSCA: Ultrafine recycled siliceous concrete aggregate. 

Table 4 
Weekly heating and cooling conditions.   

Temperature in occupation Temperature in vacancy 

Monday 00:00 to 10:00 and 18:00 to 24:00 10:00 to 18:00 
Tuesday 00:00 to 10:00 and 18:00 to 24:00 10:00 to 18:00 
Wednesday 00:00 to 10:00 and 13:00 to 24:00 10:00 to 13:00 
Thursday 00:00 to 10:00 and 18:00 to 24:00 10:00 to 18:00 
Friday 00:00 to 10:00 and 18:00 to 24:00 10:00 to 18:00 
Saturday 00:00 to 24:00 / 
Sunday 00:00 to 24:00 /  
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3.1. Environmental and economic impacts of each life cycle phase 

The results of energy use, GHG emissions, and the cost in each phase 
of all scenarios are presented in Fig. 5. Fig. 5 (a), (b), and (c) show 
similar trends, revealing that energy, emissions, and costs incurred in 
the demolition phase are nearly negligible. This is consistent with the 
conclusions of previous building life cycle assessment studies. Regarding 
the renewability of mixed energy, non-renewable sources, especially 
fossil energy, are the main energy sources in every phase. In the 
embodiment phase, the impacts of the Spanish case are less than those of 
the Dutch and Swedish cases because PCE2-a uses less aerogel. 

Meanwhile, in the operation phase, all three cases show that PCE2 
refurbishment reduces energy use, GHG emissions, and costs. As the 
operation impacts are expressed in annual values, they are not directly 
comparable to embodiment impacts. Thus, the results are aggregated 
into payback periods in Section 3.2. 

3.2. Energy, carbon, and investment payback period 

Using Eqs. (7)–(9), the impact results were converted into payback 
periods. The energy, carbon, and investment payback periods of the 
PCE2-ES, PCE2-NL, and PCE2-SE scenarios are shown in Fig. 6. The 

Fig. 4. Distribution of the annual heating and cooling requirements and heat loss of virtual buildings in Madrid, Amsterdam, and Stockholm. BAU, business-as-usual; 
PCE2, prefabricated concrete element for building refurbishment; ES, Madrid, Spain; NL, Amsterdam, Netherlands; SE, Stockholm, Sweden. 
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differences between each energy payback period is subtle, ranging from 
17.60 years for the Dutch case to 20.45 years for the Spanish case. 
However, disparities between the carbon payback periods are signifi-
cant. The Spanish case has the longest carbon payback time of 23.33 
years, the Dutch case has a middle-range payback of 16.78 years, while 
that in Sweden is considerably short, requiring only 8.58 years. These 
results indicate that the implementation of the PCE2 system in colder 
areas achieves shorter energy, carbon, and investment payback periods. 

However, within a time span of 100 years, all the investment costs 
were not recouped. The Swedish scenario, which exhibited the best 
response, requires approximately 84 years to return the initial invest-
ment. Meanwhile, the investment payback periods of the Spanish and 
Dutch cases are more than 100 years, exceeding the average lifetime 
(120 years) of residential buildings in Europe [70]. Therefore, financial 
payback will probably never be achieved if the PCE2 system is imple-
mented in the Netherlands and Sweden. 

4. Discussion 

This section discusses the impact of reusing PCE2s, the application 
potential of the PCE2 system in an EU context, and the limitations of this 
study. 

4.1. Influence of material circularity solutions on payback periods 

Although the PCE2 system has relatively short energy and carbon 
payback periods, its economic payback is not achievable within the 
building’s lifetime. To make the PCE2 system more cost-effective [4,6], 
this section assesses how material circularity solutions, such as recycling 
and reuse, influence the payback periods, especially the economic 
payback period. 

In the EoL stage of PCE2, its components (concrete layer, aerogel 
layer, and steel frame) are assumed to be recycled. Recycling waste 
provides two functions: treating waste and producing secondary mate-
rial. It can be seen from the LCC and LCA results that the demolition 
phase barely influences the payback period estimate as compared with 
the embodiment phase. However, the benefits of incorporating recycled 
materials into the production of green concrete and aerogels are not 
clear. Therefore, the influence of recycling was quantified using sec-
ondary raw materials in the embodiment phase. Consequently, the 
payback period of implementing a PCE2 that only contains primary raw 
materials was calculated. 

Furthermore, as a non-structural element, one prominent merit of the 
PCE2 system is its reusability. Reusing PCE2 is realized by applying a 
dismantlable connecting and anchoring system that makes it possible to 
disassemble an intact PCE2 for reuse. As 90% of the cost of installation is 
the cost of labor [62], a dismantlable connecting and anchoring system 
can reduce labor costs through quick installation. Successful reuse can 
not only prevent the generation of waste but also avoid raw material 
consumption in the future production of PCE2s. Therefore, the addi-
tional assessment in this section focuses on the extent to which reuse can 
avoid the additional PCE2 production in the embodiment phase. In this 
study, PCE2 reuse is modeled as 1) an avoidance of 90% of the material 
and energy input in the embodiment phase for PCE2 manufacturing, and 
2) a reduction of the installation cost by 50% [62]. 

As shown in Fig. 7, using secondary materials can slightly reduce all 
three payback periods. However, it does not shorten the investment 
payback periods in the Dutch and Swedish cases to less than 100 years. 
Nevertheless, reusing PCE2 decreases the payback period more than 
recycling. With reuse, the energy payback period of the three cases can 
decrease from approximately 20 years to 4.11–5.99 years, and the car-
bon payback period can be reduced by 3–11 years for all three cases. 
Regarding economic impacts, when reusing PCE2, the Dutch and 
Spanish cases can achieve the investment payback at 42.97 years and 
85.68 years, respectively. Meanwhile, the investment payback of the 
Swedish case can reach as low as 29.30 years. 

4.2. Applicability of PCE2 system under EU context 

This section evaluates the applicability of the PCE2 system in mul-
tiple EU member states. The system’s energy consumption and associ-
ated costs and GHG emissions were modeled to directly relate to the U- 
value of building envelopes. In particular, the U-values considered were: 
the BAU wall (1.25 W/(m2⋅K)), BAU wall retrofitted with VEEP PCE2-a, 

Fig. 5. (a) Cumulative energy demand, (b) GHG emissions, and (c) cost in each 
phase of six scenarios. BAU: Business-as-usual; PCE2: prefabricated concrete 
element for building refurbishment; ES: Spanish case; GHG: greenhouse gas; NL: 
Dutch case; SE: Swedish case. 

Table 5 
Annual heating and cooling demand/floor area for BAU and PCE2 scenarios. 
BAU: Business-as-usual; PCE2: prefabricated concrete element for building 
refurbishment; ES: Spanish case; NL: Dutch case; SE: Swedish case.   

BAU- 
ES 

PCE2- 
ES 

BAU- 
NL 

PCE2- 
NL 

BAU- 
SE 

PCE2- 
SE 

Heating need 
[kWh/ 
(m2⋅year)] 

34.95 23.73 73.36 45.99 115.69 78.19 

Cooling need 
[kWh/ 
(m2⋅year)] 

19.89 18.81 1.31 1.98 1.55 1.99  
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and the BAU wall retrofitted with VEEP PCE2-b. Each U-value was 
compared to the average-level building envelopes of EU building stock 
constructed at different times, as shown in Fig. 8. 

Sandberg et al. investigated 11 European countries and found that 
the average lifetime of European residential buildings was approxi-
mately 120 years [70]. Thus, the potential building stock for refur-
bishment was considered to be constructed from 1900 to 2020. As 
shown in Fig. 8, building stock constructed from 1900 to 1989 accounts 
for 75% of the total EU building stock. This stock has a higher U-value 
than that of the BAU traditional wall (illustrated by gray bar) used in this 
study. The U-values of the PCE2s were even lower than the average 
U-value of the envelope of the buildings constructed after 2010, 
implying that the EU has a large potential market for the implementa-
tion of the PCE2 system for building energy renovation. 

However, the energy required for heating accounts for the largest 
share (approximately 70%) of building energy consumption [65]. 
Considering the high importance of heating, heating demands in the 
BAU and PCE2 scenarios were compared with those of buildings in other 
EU member states that were constructed at different times, as shown in 
Fig. 9. In general, the energy required for heating in each member state 
declined over time. With PCE2 implementation, the largest energy 
reduction potential was associated with the refurbishment of older 

buildings. In accordance with the EU’s requirement for building energy 
efficiency, buildings constructed after 2000 require significantly less 
heating energy. For instance, the heating required in the PCE2-ES sce-
nario is higher than that of a building constructed after 1980 in a con-
tinental and Atlantic climate. 

Southern EU member states, such as Spain and Italy, have lower 
heating demands because of their milder winters. Meanwhile, heating 
demands in northern European countries, such as Sweden, and Norway, 
remain relatively stable but generally require more heating than those of 
southern and western European countries. Note that because the heating 
energy demand of households depends on many factors, such as climatic 
characteristics, modeling methods, efficiency of the heating system, and 
insulating levels of building facades, the results shown in Fig. 9 are not 
directly comparable. However, these results, to some degree, can 
demonstrate insights into the transitional trend of heating energy con-
sumption in some EU member states and the application potential of 
PCE2. 

4.3. Limitations and outlooks 

LCA and LCC building analyses are based on multiple simplifications 
and assumptions. Atmaca (2016) compiled the basic assumptions in 

Fig. 6. (a) Energy, (b) carbon, and (c) investment payback periods for Spanish, Dutch, and Swedish cases. BAU: Business-as-usual; GHG: greenhouse gas; PCE2: 
prefabricated concrete element for building refurbishment; ES: Spanish case; NL: Dutch case; SE: Swedish case; TE: energy payback period; TC: Carbon payback 
period; TI: investment payback period. 
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building LCA and LCC analyses. Other than these assumptions, the 
specific limitations of this study are as follows. 

First, the PCE2 lifetime was determined by considering the remain-
ing lifetime of the building to be retrofitted. Because of the variance in 
building lifetimes, the payback method was applied. The lifetime pro-
longation of a product is a common method for reducing the life cycle 
environmental impacts [71]. After refurbishment, the lifetime of a 
building is extended. However, because of the natural characteristics of 
the payback method [39], it failed to consider the benefits of this pro-
longed lifetime. 

Second, PCE2 implementation in buildings constructed in different 
periods will result in different payback periods. For example, renovating 
older buildings will lead to shorter payback periods than renovating 
newer buildings. Herein, only one BAU traditional wall with a U-value of 
1.25 W/(m2⋅K) was selected as the benchmark for refurbishment, which 
does not provide comprehensive insights into building energy 
renovation. 

Further, this study did not consider the time value of money. As the 
interest rates in the European area decreased to 0% in 2020, a steady- 

state costing system that did not consider interest rates was employed. 
Nevertheless, interest rates can considerably influence the results of an 
LCC [26]. 

Finally, the payback assessment was conducted at a building element 
level in order to explore the environmental and economic performance 
of the PCE2 system. However, it is not clear if the PCE2 system can be 
scaled up to a regional level. For example, will EoL lightweight concrete 
generation be sufficient for massive building retrofitting. Thus, dynamic 
building stock model should be combined with life cycle management to 
investigate the up-scaled benefits of PCE2 implementation at a regional 
level. 

5. Conclusions 

This study combined LCA and LCC analyses to determine the energy, 
carbon, investment payback periods for buildings renovated with the 
PCE2 system in the climatic context of three EU member States: Spain, 
the Netherlands, and Sweden. Two technological systems were consid-
ered: the BAU traditional wall and the BAU traditional wall retrofitted 
with PCE2-a and PCE2-b. In addition, a dynamic thermal simulation of 
the energy required to heat and cool a virtual residential apartment 
building was conducted. 

The results show that the energy payback periods of the Spanish, 
Dutch, and Swedish cases were 20.45 years, 17.60 years, and 19.95 
years, respectively. Meanwhile, the carbon payback periods for the three 
cases were 23.33 years, 16.78 years, and 8.58 years, respectively. 
However, the financial payback periods revealed that payback was un-
likely to be achieved within the lifetime of a building, and only the 
Swedish case reached a payback period within 100 years (83.59 years). 
The impacts of material circularity on the payback period of PCE2 were 
also evaluated. The influence of recycling was quantified using sec-
ondary raw materials in the embodiment phase. However, the results 
show that using secondary materials in the PCE2 system only slightly 
reduces the payback periods. However, reusing the PCE2 can noticeably 
shorten the energy and carbon payback periods to 4.11–5.99 years and 
3.03–10.82 years, respectively, for all three cases. Regarding cost, 

Fig. 7. Influence of material circularity on energy, carbon, and investment payback periods. BAU: Business-as-usual; PCE2: prefabricated concrete element for 
building refurbishment; ES: Spanish case; NL: Dutch case; SE: Swedish case. 

Fig. 8. EU buildings’ age and average thermal transmittance for building en-
velopes. Data source: [7]; BAU: Business-as-usual; EU: European Union; PCE2: 
prefabricated concrete element for building refurbishment; PCE2-a: PCE2 
containing a thin aerogel layer; PCE2-b: PCE2 containing a thick aerogel layer. 
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reusing the PCE2 reduced the payback period of the Swedish case to 
29.30 years, and those of the Dutch and Spanish cases to 42.97 years and 
85.68, respectively. 

The applicability of VEEP PCE2 was evaluated by comparing the U- 
values and annual heating energy of EU buildings constructed at 
different times. The U-values of PCE2-a and PCE2-b were significantly 
lower than that of the average building envelope in the EU. Considering 
the lifetime, construction age, and energy performance of the EU 
building stock, the potential building stock for refurbishment was con-
structed from 1900 to 2020. 

The integrated energy-carbon-investment payback analysis herein 
explored the life cycle stage of the PCE2 for building refurbishment. The 
results can be extrapolated to support design and manufacturing of 
sustainable building elements for building energy renovation in Europe. 
Further investigations will be conducted to integrate the life cycle 
management with the dynamic building stock model [72] address the 
question of region-level applicability and up-scaled ecological/financial 
benefits. 

Fig. 9. Annual/floor area energy required to meet heating demand of apartment blocks by construction year in (a) southern Europe, (b) western Europe, and (c) 
northern Europe. Data collected from the TABULA database [57]; BAU: Business-as-usual; ES: Spanish case; PCE2: prefabricated concrete element for building 
refurbishment; NL: Dutch case; SE: Swedish case. 
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building refurbishment: a literature review. Energy Build 2017;135:286–301. 
https://doi.org/10.1016/j.enbuild.2016.11.042. 

[31] Singh A, Berghorn G, Joshi S, Syal M. Review of life-cycle assessment applications 
in building construction. J Architect Eng 2011;17:15–23. https://doi.org/10.1061/ 
(ASCE)AE.1943-5568.0000026. 

[32] Buyle M, Braet J, Audenaert A. Life cycle assessment in the construction sector: a 
review. Renew Sustain Energy Rev 2013;26:379–88. https://doi.org/10.1016/j. 
rser.2013.05.001. 

[33] Anand CK, Amor B. Recent developments, future challenges and new research 
directions in LCA of buildings: a critical review. Renew Sustain Energy Rev 2017; 
67:408–16. https://doi.org/10.1016/j.rser.2016.09.058. 

[34] D’Oca S, Hong T, Langevin J. The human dimensions of energy use in buildings: a 
review. Renew Sustain Energy Rev 2018;81:731–42. https://doi.org/10.1016/j. 
rser.2017.08.019. 

[35] Sadineni SB, Madala S, Boehm RF. Passive building energy savings: a review of 
building envelope components. Renew Sustain Energy Rev 2011;15:3617–31. 
https://doi.org/10.1016/j.rser.2011.07.014. 

[36] Deng S, Wang RZ, Dai YJ. How to evaluate performance of net zero energy building 
- a literature research. Energy 2014;71:1–16. https://doi.org/10.1016/j. 
energy.2014.05.007. 

[37] Sartori I, Hestnes AG. Energy use in the life cycle of conventional and low-energy 
buildings: a review article. Energy Build 2007;39:249–57. https://doi.org/ 
10.1016/j.enbuild.2006.07.001. 

[38] Chastas P, Theodosiou T, Kontoleon KJ, Bikas D. Normalising and assessing carbon 
emissions in the building sector: a review on the embodied CO2 emissions of 
residential buildings. Build Environ 2018;130:212–26. https://doi.org/10.1016/j. 
buildenv.2017.12.032. 

[39] Yard S. Developments of the payback method. Int J Prod Econ 2000;67:155–67. 
https://doi.org/10.1016/S0925-5273(00)00003-7. 

[40] Weingartner HM. Some new views on the payback period and capital budgeting 
decisions. Manag Sci 1969;15. https://doi.org/10.1287/mnsc.15.12.B594. B-594- 
B-607. 

[41] Peng J, Lu L, Yang H. Review on life cycle assessment of energy payback and 
greenhouse gas emission of solar photovoltaic systems. Renew Sustain Energy Rev 
2013;19:255–74. https://doi.org/10.1016/j.rser.2012.11.035. 

[42] Papaefthimiou S, Syrrakou E, Yianoulis P. Energy performance assessment of an 
electrochromic window. Thin Solid Films 2006;502:257–64. https://doi.org/ 
10.1016/j.tsf.2005.07.294. 

[43] Lu L, Yang HX. Environmental payback time analysis of a roof-mounted building- 
integrated photovoltaic (BIPV) system in Hong Kong. Appl Energy 2010;87: 
3625–31. https://doi.org/10.1016/j.apenergy.2010.06.011. 

[44] Berggren B, Hall M, Wall M. LCE analysis of buildings – taking the step towards net 
zero energy buildings. Energy Build 2013;62:381–91. https://doi.org/10.1016/j. 
enbuild.2013.02.063. 

C. Zhang et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.rser.2021.111077
https://doi.org/10.1016/j.rser.2021.111077
https://doi.org/10.1007/s11367-016-1050-8
http://bpie.eu/publication/climate-change-implications-for-buildings/
http://refhub.elsevier.com/S1364-0321(21)00365-8/sref3
http://refhub.elsevier.com/S1364-0321(21)00365-8/sref3
https://eur-lex.europa.eu/eli/dir/2010/31/oj
https://eur-lex.europa.eu/eli/dir/2010/31/oj
https://doi.org/10.1088/1748-9326/7/3/034037
https://doi.org/10.1088/1748-9326/7/3/034037
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32012L0027
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32012L0027
http://bpie.eu/wp-content/uploads/2017/12/State-of-the-building-stock-briefing_Dic6.pdf
http://bpie.eu/wp-content/uploads/2017/12/State-of-the-building-stock-briefing_Dic6.pdf
http://refhub.elsevier.com/S1364-0321(21)00365-8/sref8
http://refhub.elsevier.com/S1364-0321(21)00365-8/sref8
https://doi.org/10.1111/jiec.12991
http://refhub.elsevier.com/S1364-0321(21)00365-8/sref10
http://refhub.elsevier.com/S1364-0321(21)00365-8/sref10
https://doi.org/10.1016/j.jclepro.2017.08.187
https://doi.org/10.1016/j.rser.2010.09.008
https://doi.org/10.1016/j.rser.2010.09.008
http://refhub.elsevier.com/S1364-0321(21)00365-8/sref13
http://refhub.elsevier.com/S1364-0321(21)00365-8/sref13
https://doi.org/10.1016/j.enbuild.2010.05.007
https://doi.org/10.1016/j.enbuild.2010.05.007
https://doi.org/10.1016/j.apenergy.2015.01.023
https://doi.org/10.4236/gep.2019.76013
https://doi.org/10.4236/gep.2019.76013
https://doi.org/10.1016/j.rser.2013.08.037
https://doi.org/10.1016/j.rser.2013.08.037
https://doi.org/10.1007/BF02978754
https://doi.org/10.1007/BF02978800
https://doi.org/10.1007/s11367-015-0897-4
http://refhub.elsevier.com/S1364-0321(21)00365-8/sref21
http://refhub.elsevier.com/S1364-0321(21)00365-8/sref21
http://refhub.elsevier.com/S1364-0321(21)00365-8/sref22
http://refhub.elsevier.com/S1364-0321(21)00365-8/sref22
http://refhub.elsevier.com/S1364-0321(21)00365-8/sref23
http://refhub.elsevier.com/S1364-0321(21)00365-8/sref23
https://doi.org/10.1016/j.resconrec.2019.06.023
https://doi.org/10.1016/j.resconrec.2019.06.023
https://doi.org/10.1201/9781420054736.ch3
https://doi.org/10.1007/s11367-011-0287-5
https://doi.org/10.1007/s11367-011-0287-5
https://doi.org/10.1016/j.buildenv.2013.05.022
https://doi.org/10.1016/j.buildenv.2013.05.022
https://doi.org/10.1016/j.rser.2014.10.006
https://doi.org/10.1016/j.jclepro.2020.125438
https://doi.org/10.1016/j.enbuild.2016.11.042
https://doi.org/10.1061/(ASCE)AE.1943-5568.0000026
https://doi.org/10.1061/(ASCE)AE.1943-5568.0000026
https://doi.org/10.1016/j.rser.2013.05.001
https://doi.org/10.1016/j.rser.2013.05.001
https://doi.org/10.1016/j.rser.2016.09.058
https://doi.org/10.1016/j.rser.2017.08.019
https://doi.org/10.1016/j.rser.2017.08.019
https://doi.org/10.1016/j.rser.2011.07.014
https://doi.org/10.1016/j.energy.2014.05.007
https://doi.org/10.1016/j.energy.2014.05.007
https://doi.org/10.1016/j.enbuild.2006.07.001
https://doi.org/10.1016/j.enbuild.2006.07.001
https://doi.org/10.1016/j.buildenv.2017.12.032
https://doi.org/10.1016/j.buildenv.2017.12.032
https://doi.org/10.1016/S0925-5273(00)00003-7
https://doi.org/10.1287/mnsc.15.12.B594
https://doi.org/10.1016/j.rser.2012.11.035
https://doi.org/10.1016/j.tsf.2005.07.294
https://doi.org/10.1016/j.tsf.2005.07.294
https://doi.org/10.1016/j.apenergy.2010.06.011
https://doi.org/10.1016/j.enbuild.2013.02.063
https://doi.org/10.1016/j.enbuild.2013.02.063


Renewable and Sustainable Energy Reviews 145 (2021) 111077

15

[45] Huang Y, Niu JL, Chung TM. Energy and carbon emission payback analysis for 
energy-efficient retrofitting in buildings - overhang shading option. Energy Build 
2012;44:94–103. https://doi.org/10.1016/j.enbuild.2011.10.027. 

[46] Asdrubali F, Ballarini I, Corrado V, Evangelisti L, Grazieschi G, Guattari C. Energy 
and environmental payback times for an NZEB retrofit. Build Environ 2019;147: 
461–72. https://doi.org/10.1016/j.buildenv.2018.10.047. 

[47] Ardente F, Beccali M, Cellura M, Mistretta M. Energy and environmental benefits in 
public buildings as a result of retrofit actions. Renew Sustain Energy Rev 2011;15: 
460–70. https://doi.org/10.1016/j.rser.2010.09.022. 

[48] Comodi G, Bevilacqua M, Caresana F, Paciarotti C, Pelagalli L, Venella P. Life cycle 
assessment and energy-CO2-economic payback analyses of renewable domestic hot 
water systems with unglazed and glazed solar thermal panels. Appl Energy 2016; 
164:944–55. https://doi.org/10.1016/j.apenergy.2015.08.036. 

[49] Leckner M, Zmeureanu R. Life cycle cost and energy analysis of a Net Zero Energy 
House with solar combisystem. Appl Energy 2011;88:232–41. https://doi.org/ 
10.1016/j.apenergy.2010.07.031. 

[50] Dylewski R, Adamczyk J. Life cycle assessment (LCA) of building thermal 
insulation materials. Eco-efficient Constr. Build. Mater. Elsevier; 2014. p. 267–86. 
https://doi.org/10.1533/9780857097729.2.267. 

[51] Bull J, Gupta A, Mumovic D, Kimpian J. Life cycle cost and carbon footprint of 
energy efficient refurbishments to 20th century UK school buildings. Int J Sustain 
Built Environ 2014;3:1–17. https://doi.org/10.1016/j.ijsbe.2014.07.002. 

[52] Faludi J, Lepech M. Ecological payback time of an energy-efficient modular 
building. J Green Build 2012;7:100–19. https://doi.org/10.3992/jgb.7.1.100. 

[53] Hossain Y, Marsik T. Conducting life cycle assessments (LCAs) to determine carbon 
payback: a case study of a highly energy-efficient house in rural Alaska. Energies 
2019;12:1732. https://doi.org/10.3390/en12091732. 

[54] Schwartz Y, Raslan R, Mumovic D. Implementing multi objective genetic algorithm 
for life cycle carbon footprint and life cycle cost minimisation: a building 
refurbishment case study. Energy 2016;97:58–68. https://doi.org/10.1016/j. 
energy.2015.11.056. 

[55] Mohammadpourkarbasi H, Sharples S. Eco-Retrofitting very old dwellings: current 
and future energy and carbon performance for two UK cities. In: PLEA2013 - 29th 
conf. Ustainable archit. A renew. Futur., munich, Germany; 2013. https://doi.org/ 
10.1016/S1071-9164(96)80007-8. 

[56] Dodoo A, Gustavsson L, Sathre R. Life cycle primary energy implication of 
retrofitting a wood-framed apartment building to passive house standard. Resour 
Conserv Recycl 2010;54:1152–60. https://doi.org/10.1016/j. 
resconrec.2010.03.010. 

[57] TABULA. National building typologies-TABULA WebTool. 2017. accessed 
September 22, 2020, http://webtool.building-typology.eu/#bm. 

[58] Wikipedia. Madrid. 2020. accessed December 9, 2020, https://en.wikipedia.org/ 
wiki/Madrid. 

[59] Wikipedia. Amsterdam. 2020. accessed December 9, 2020, https://en.wikipedia. 
org/wiki/Amsterdam. 

[60] Wikipedia. Stockholm. 2020. accessed December 9, 2020, https://en.wikipedia. 
org/wiki/Stockholm. 

[61] Guinée JB, Heijungs R, Huppes G, Kleijn R, de Koning A, van Oers L, et al. 
Handbook on life cycle assessment: operational guide to the ISO standards. 
Dordrencht. 2001. 

[62] Zhang C, Hu M, Laclau B, Garnesson T, Yang X, Li C, et al. Environmental life cycle 
costing at the early stage for supporting cost optimization of precast concrete panel 
for energy renovation of existing buildings. J Build Eng 2020:102002. https://doi. 
org/10.1016/j.jobe.2020.102002. 

[63] Zhang C, Hu M, Dong L, Xiang P, Zhang Q, Wu J, et al. Co-benefits of urban 
concrete recycling on the mitigation of greenhouse gas emissions and land use 
change: a case in Chongqing metropolis, China. J Clean Prod 2018;201:481–98. 
https://doi.org/10.1016/J.JCLEPRO.2018.07.238. 

[64] Zhang C, Hu M, Yang X, Miranda-Xicotencatl B, Sprecher B, Di Maio F, et al. 
Upgrading construction and demolition waste management from downcycling to 
recycling in The Netherlands. J Clean Prod 2020;266:121718. https://doi.org/ 
10.1016/j.jclepro.2020.121718. 

[65] Economidou Marina. Europe’s buildings under the microscope: a country by 
country review of the energy performance of buildings. 2011. https://doi.org/ 
ISBN: 9789491143014. 

[66] Iso Iso. 6946:Building components and building elements - thermal resistance and 
thermal transmittance - calculation methods. 2017. 

[67] Karatum O, Bhuiya MMH, Carroll MK, Anderson AM, Plata DL. Life cycle 
assessment of aerogel manufacture on small and large scales: weighing the use of 
advanced materials in oil spill remediation. J Ind Ecol 2018;22:1365–77. https:// 
doi.org/10.1111/jiec.12720. 

[68] Frischknecht R, Jungbluth N, Althaus HJ. Implementation of life cycle impact 
assessment methods (Final report Ecoinvent 2000). Duebendorf; 2003. 

[69] De Nederlandsche Bank. 10-year interest rates. 2020. accessed December 17, 2020, 
https://statistiek.dnb.nl/dashboards/rente/index.aspx. 

[70] Sandberg NH, Sartori I, Heidrich O, Dawson R, Dascalaki E, Dimitriou S, et al. 
Dynamic building stock modelling: application to 11 European countries to support 
the energy efficiency and retrofit ambitions of the EU. Energy Build 2016;132: 
26–38. https://doi.org/10.1016/j.enbuild.2016.05.100. 

[71] Aguilar-Hernandez GA, Sigüenza-Sanchez CP, Donati F, Rodrigues JFD, Tukker A. 
Assessing circularity interventions: a review of EEIOA-based studies. J Econ Struct 
2018;7:14. https://doi.org/10.1186/s40008-018-0113-3. 

[72] Zhang C, Hu M, Sprecher B, Yang X, Zhong X, Li C, et al. Recycling potential in 
building energy renovation: A prospective study of the Dutch residential building 
stock up to 2050. J Clean Prod 2021;301:126835. https://doi.org/10.1016/j. 
jclepro.2021.126835. 

C. Zhang et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.enbuild.2011.10.027
https://doi.org/10.1016/j.buildenv.2018.10.047
https://doi.org/10.1016/j.rser.2010.09.022
https://doi.org/10.1016/j.apenergy.2015.08.036
https://doi.org/10.1016/j.apenergy.2010.07.031
https://doi.org/10.1016/j.apenergy.2010.07.031
https://doi.org/10.1533/9780857097729.2.267
https://doi.org/10.1016/j.ijsbe.2014.07.002
https://doi.org/10.3992/jgb.7.1.100
https://doi.org/10.3390/en12091732
https://doi.org/10.1016/j.energy.2015.11.056
https://doi.org/10.1016/j.energy.2015.11.056
https://doi.org/10.1016/S1071-9164(96)80007-8
https://doi.org/10.1016/S1071-9164(96)80007-8
https://doi.org/10.1016/j.resconrec.2010.03.010
https://doi.org/10.1016/j.resconrec.2010.03.010
http://webtool.building-typology.eu/#bm
https://en.wikipedia.org/wiki/Madrid
https://en.wikipedia.org/wiki/Madrid
https://en.wikipedia.org/wiki/Amsterdam
https://en.wikipedia.org/wiki/Amsterdam
https://en.wikipedia.org/wiki/Stockholm
https://en.wikipedia.org/wiki/Stockholm
http://refhub.elsevier.com/S1364-0321(21)00365-8/sref61
http://refhub.elsevier.com/S1364-0321(21)00365-8/sref61
http://refhub.elsevier.com/S1364-0321(21)00365-8/sref61
https://doi.org/10.1016/j.jobe.2020.102002
https://doi.org/10.1016/j.jobe.2020.102002
https://doi.org/10.1016/J.JCLEPRO.2018.07.238
https://doi.org/10.1016/j.jclepro.2020.121718
https://doi.org/10.1016/j.jclepro.2020.121718
http://refhub.elsevier.com/S1364-0321(21)00365-8/sref65
http://refhub.elsevier.com/S1364-0321(21)00365-8/sref65
http://refhub.elsevier.com/S1364-0321(21)00365-8/sref65
http://refhub.elsevier.com/S1364-0321(21)00365-8/sref66
http://refhub.elsevier.com/S1364-0321(21)00365-8/sref66
https://doi.org/10.1111/jiec.12720
https://doi.org/10.1111/jiec.12720
http://refhub.elsevier.com/S1364-0321(21)00365-8/sref68
http://refhub.elsevier.com/S1364-0321(21)00365-8/sref68
https://statistiek.dnb.nl/dashboards/rente/index.aspx
https://doi.org/10.1016/j.enbuild.2016.05.100
https://doi.org/10.1186/s40008-018-0113-3
https://doi.org/10.1016/j.jclepro.2021.126835
https://doi.org/10.1016/j.jclepro.2021.126835

	Energy-carbon-investment payback analysis of prefabricated envelope-cladding system for building energy renovation: Cases i ...
	1 Introduction
	2 Materials and methods
	2.1 Life cycle management of building energy renovation
	2.1.1 Overview of life cycle energy, carbon emission, and cost analysis
	2.1.2 Payback period method
	2.1.3 Methodological framework

	2.2 Goal and scope definition
	2.2.1 Goal and scope
	2.2.2 Technological systems for building energy renovation

	2.3 Life cycle inventory analysis
	2.3.1 Embodiment phase
	2.3.2 Operation phase

	2.4 Demolition phase
	2.5 Life cycle impact assessment

	3 Results
	3.1 Environmental and economic impacts of each life cycle phase
	3.2 Energy, carbon, and investment payback period

	4 Discussion
	4.1 Influence of material circularity solutions on payback periods
	4.2 Applicability of PCE2 system under EU context
	4.3 Limitations and outlooks

	5 Conclusions
	CRediT author statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	References


