
Asset-Centric Security Risk Assessment of Software
Components

Tobias Rauter, Andrea Höller, Nermin Kajtazovic, Christian Kreiner
Institute for Technical Informatics

Graz University of Technology
Graz, Austria

{tobias.rauter, andrea.hoeller, johannes.iber, christian.kreiner}@tugraz.at

ABSTRACT
Risk management is a crucial process for the development of
secure systems. Valuable objects (assets) must be identified
and protected. In order to prioritize the protection mech-
anisms, the values of assets need to be quantified. More
valuable or exposed assets require more powerful protection.
There are many risk assessment approaches that aim to pro-
vide a metric to generate this quantification for different do-
mains. In software systems, these assets are reflected in re-
sources (e.g., a file with important information) or functional
software components (e.g., performing a bank transfer). To
protect the assets from different threats like unauthorized
access, other software components (e.g., an authenticator)
are used. These components are essential for the asset’s
security properties and should therefore be considered for
further investigation such as threat modeling. Evaluating
assets only at system level may hide threats that originate
from vulnerabilities in software components while doing an
extensive threat analysis for all the system’s components
without prioritization is not feasible all the time.

In this work, we propose a metric that quantifies software
components by the assets they are able to access. Based on a
component model of the software architecture, it is possible
to identify trust domains and add filter components that
split these domains. We show how the integration of the
methodology into the development process of a distributed
manufacturing system helped us to identify critical sections
(i.e., components whose vulnerabilities may enable threats
against important assets), to reduce attack surface, to find
isolation domains and to implement security measures at the
right places.

1. INTRODUCTION
The development of secure systems is a difficult and error-
prone task. At business level, security properties (e.g., confi-
dentiality, integrity, availability) of physical or non-physical
valuable objects (assets) must be guaranteed. Many of these
assets are protected and/or used by information systems.

Therefore, it is important to identify the assets in these
systems and build proper protection mechanisms. At the
embedded domain in particular, where valuable informa-
tion like encryption keys often cannot be shielded physically,
building robust software countermeasures that protect the
assets is an essential task.

In the identification context, assessment and mitigation risk
management [1] is a widely used method [7-13]. Basically,
possible risks are identified, rated and prioritized. Based
on the prioritization, it is possible to focus on the protec-
tion of the assets with the highest loss potentials in case of
violation of its security properties. This risk-control step
consists of risk resolution, monitoring of the resolutions and
re-assessment.

In software systems, assets are mainly data (e.g., encryp-
tion key) or a functionality (e.g., a bank transfer function).
Other software components are either accessing or protect-
ing these assets. Threats to assets thus rise through exploits
of possible vulnerabilities in components that are able to ac-
cess the asset. Approaches that generate security require-
ments based on security goals for assets [2] and threat mod-
eling [3, 4] have been proposed. However, to the best of our
knowledge, no investigation into the systematic generation
of the list of software components that have to implement
these requirements for the high-level assets exists at present.
Furthermore the question of which components are crucial
for the system’s security properties and therefore should be
considered for exhaustive threat modeling can also not be
answered systematically.

In this work, we aim to achieve this enumeration and prior-
itization by rating components based on the assets they are
able to access at an architectural level. In particular, we

• identify required privileges of components by analyzing
accessed assets,

• introduce a metric that represents the criticality of the
components in the context of their privileges,

• classify components and component-groups according
to this metric,

• use this quantification as input for risk assessment and
as feedback for the privilege separation process to gen-
erate small trust domains.



Finally, we use the proposed method to analyze an exist-
ing software architecture of an embedded control system re-
garding security. Moreover, we adapt it in the development
phase of a distributed manufacturing and automated test
system for these devices. By using this approach, we are
able to reduce the number of critical components and to fo-
cus effort on actual threat modeling and countermeasures
in a prioritized manner. Additionally, the classification of
components and the identification of domains with the same
requirements regarding asset accesses can be used as input
for component isolation-technologies.

The paper is organized as follows. Section 2 discusses related
work. Section 3 describes the proposed methodology and the
metric used to evaluate the components. Section 4 shows
how we use the approach to examine a real case software
architecture. In Section 5, the benefits and the drawbacks
of the system, together with impulses and directions that
can be followed in future are summed up.

2. BACKGROUND AND RELATED WORK
This section provides an overview of a basic risk manage-
ment processes, also a summary of related risk assessment
methodologies.

2.1 Risk Management
Risk management is an important method for identifying,
evaluating and dealing with risks in information systems.
The ISO/IEC 27005 [5] contains guidelines for systematic
and process-oriented risk management. Basically, stakehold-
ers (e.g., owners) want to protect objects with some kind of
value. These objects are referred to as assets.

However, actual or assumed ’threat agents’ (e.g., malicious
users, hackers) may also place value on these assets and try
to abuse them. Threat agents therefore rise threats that also
increase the risks of an asset. The ’good’ stakeholders try
to implement countermeasures intended to reduce this risk
to an acceptable level [6].

Risk management is used to identify and prioritize these se-
curity risks. Various implementations and instructions have
been published for easing the integration process [7, 8]. The
left part of Figure 1 illustrates a simplified version of the
process according to ISO/IEC 27005:

First, the borders and criteria for risk evaluation are defined
(Context Establishment). Subsequently, risks are collected
by identifying all assets and threats their threats (Risk Iden-
tification). In this process, an asset is not only hardware
or software, but could also be a business process or infor-
mation. The next step is to estimate or rate the identified
risks (Risk Estimation). This can be done qualitatively (e.g.,
low to high) or quantitatively (e.g., amount of cash losses).
Based on the risk level identified in the estimation, risks can
be assessed and prioritized (Risk Evaluation). The decision
about how to handle the risk can now be made (Risk Treat-
ment). A risk can be accepted (e.g., the risk level is very
low), reduced (e.g., by a specific measure), avoided (e.g.,
the cause is eliminated) or transferred (e.g., an insurance).
When all risks are treated satisfactorily, an iteration of the
process is carried out (Risk Acceptance)

2.2 Risk Assessment
Generally, it is important to rate security risks of a system
regarding their criticality in order to prioritize them. Some
risks may need in-depth investigation, while others do not
need to be considered at all because of their small probabil-
ity. As a result of this range many frameworks and metrics
have been introduced for different domains [9, 10, 11, 12,
13]. In essence they all follow a similar risk assessment pro-
cess but vary with respect to the estimation criteria to fit
the specific domain. In general, they express risk as product
of probability and the possible impact of a threat. While
probability is often hard to calculate (QUIRC [10], for ex-
ample, uses statistics of common attacks in the internet), the
impact can be calculated by assigning relative values to secu-
rity properties for every asset. Such ’standard’ properties as
confidentiality, integrity and availability are commonly used.
Depending on the domain, some approaches add additional
properties such as legal aspects or safety impacts. Addi-
tionally, some methodologies extend the quantification by
taking into account asset dependencies to refine the metrics
[14] [15]. However, all presented approaches target either
the system or the organizational level. While some methods
(e.g., [16] with ’asset containers’) take the asset environment
into account, none of them systematically targets software
vulnerabilities in a specific component.

In the domain of software development different methodolo-
gies such as Microsoft’s DREAD [4], Common Vulnerabil-
ity Scoring System (CVSS) [17] and OWASP Risk Rating
Methodology [18] have been introduced. These focus on
quantifying threats to software components that may arise
by exploiting possible vulnerabilities. Similar to other risk
assessment methods, all these methods generate a rating by
combining (i.e., add or multiply) different weighted factors.
Here, these factors may also contain properties such as the
level of difficulty in finding a vulnerability or how many users
would be affected after a successful exploit. These methods
are suitable for in-depth analysis of critical components.

This work uses the output of the system wide risk assessment
methods to identify software components that are crucial for
important assets. Software/security engineers are able to
perform threat analysis on these components and the results
are integrated in the overall risk assessment process.

2.3 Component Isolation
As a general rule, components should not be allowed to
access assets that are not needed for the component func-
tion. Therefore, different technologies have been introduced
that enforce this so called principle of least privilege [19].
Isolation-based access control methods provide each confined
application with its own set of resources [20, 21]. Similar
results can be achieved by using virtualization [22]. Rule-
based access control methods do not rely on an own copy
of resources, but confine the access directly based on a pol-
icy (e.g., SeLinux [23] or AppArmor [24]). Architectural
approaches such as Multiple Independent Levels of Security
(MILS) use similar separation techniques together with con-
trolled information flows to form architectures that target
composable assurance [25]. Our work supports such tech-
nologies by the systematic identification of trust domains
and the assets each domain needs to access and protect.
Moreover, the information flows needed between these do-



mains are revealed.

3. ASSET-BASED COMPONENT RATING
The aim of this work is to classify single software compo-
nents or sets of software components with regards to their
privileges or permissions as input for further risk assessment
or threat modeling tools. This section provides an overview
of the proposed metric and rating methodology and how its
integrated into a risk assessment process.

3.1 Process Overview
In order to illustrate how our methodology could be inte-
grated into a systems-engineering process, we use a sim-
plified system development model that consists of system-
architecture, software architecture, implementation and sub-
sequently test and verification stages for all previous levels.

Context Establishment

Risk Identification

Risk Estimation

Risk Evaluation

Risk Treatment

Risk Acceptance

Risk Assessment Software Risk Assessment

Software
Risk Assessment

High-Level
Risk Managment

according to ISO/IEC 27005

Asset Transformation

Component Classification

Threat Modeling
and Component Risk

Assessment

Assets

Additional 
Threats

to Assets

Trust Domain 
Reduction

Figure 1: A simplified risk management process ac-
cording to ISO/IEC 27005 [5] (left), and how our
approach is used to generate additional possible
threats to assets that may originate from vulner-
abilities in software components.

Using the system model, it is possible to identify and quan-
tify all assets at this level by applying one of the method-
ologies described above. Figure 1 illustrates, how our ap-
proach fits into the standard risk management process. Af-
ter all assets and their risk ratings are identified, the assets
are mapped to the software architectural model. Here, the
components are classified and optimizations regarding trust
domains (or trust boundaries) can be performed. Based on
the classification, additional assessment methodologies such
as threat modeling can be prioritized. The output of this
sub-process comprises additional threats to the assets that
can be used for further evaluation.

3.2 Asset Mapping
The upper part of Figure 2 shows an exemplary output of
the risk estimation step: A rated list of dependent assets.
When generating the software architectural model(s), either
a subset or all of these assets are mapped to resources or
software components. An information asset, for example,
maps into a data resource (e.g., a file or a database), while
a critical business function maps into a software component
(e.g., a bank transfer). This mapping is illustrated in the

lower part of Figure 2. To enable the rating of all com-
ponents, we use a metric that basically quantifies software
components by accumulating the risk ratings of the assets
they are able to access directly or indirectly. Cohering parts
of the architecture that share the same rating are referred
to as trust domains. The edges of these domains are called
trust borders.

Server Room

Server 1

Server 2

DB System

 Banking 
Application

A
ss

et
 d

ep
en

de
nc

ie
s 

an
d

 
as

se
ss

m
en

t 
at

 
or

ga
ni

za
tio

na
l l

ev
el

Risk Rating: 3

DB Interface

DB System

User Interface

Component 1

Banking Application

Private Data

Money Transfer
Function

Money Transfer
Function Private Data

Component 2

A
ss

et
s 

an
d 

co
m

po
ne

nt
s 

at
so

ft
w

ar
e 

ar
ch

ite
ct

ur
e

le
ve

l

Mapping

Risk Rating: 5

Risk Rating: 5

Risk Rating: 10

Risk Rating: 10

Risk Rating: 20

Risk Rating: 20

Figure 2: The risk assessment process generated a
list of assets, their dependencies and their risk rat-
ing. Some of the assets have a counterpart in the
different software architectural models. Based on
this mapping, the rating of all software components
can be calculated.

3.3 Component Classification
3.3.1 System Composition

The metric that is used to quantify components is based on
their privileges. Here, a privilege is the possibility of a com-
ponent to access (i.e., read or modify) an asset. This clas-
sification enables an early assessment about the criticality
of a component regarding the system’s security properties.
Components with a higher criticality classification should be
considered for a more in-depth analysis. To introduce auto-
mated calculations and analysis, a software architecture is
modeled as illustrated in Figure 3.

Components. A system is composed of a set of software
components. These components may be different processes,
libraries or components of one process. Each component
accesses a set of assets (by owning specific privileges) and
possesses explicit information flow connections to other com-
ponents. Based on the accessed assets, there may be other,
implicit, information flows (e.g., two components are access-
ing the same file). Each asset represents a resource that has
to be protected in some way (e.g., a privacy-sensitive infor-
mation). A component thus has to have a certain privilege
to access the asset.

Privileges. A privilege is the possibility of a component to
access a resource and is composed of a resource type and
an access mode. Currently, we distinguish between Data,
Network and Service privileges. However, depending on the
system, there may be many other privilege types for access-
ing shared resources or hardware like sensors or actuators.



Figure 3: The basic view on software systems: Dif-
ferent components are interacting with each other
and have access to different assets. To enable these
accesses, privileges are needed. Moreover, there ex-
ist special components that are in charge of protect-
ing security properties of critical assets.

A set of access modes exists for each type. For example Data
privileges may enable access to different type of data (like
privacy-sensitive or system) in different modes (read, write).

Assets. Each asset represents a critical resource that has
to be protected. The accessCriticality reflects the relative
’value’ that has been identified at a higher level. Currently,
we are using a scalar value that represents the impact of a
violation of security properties. However, for a more fine-
grained view on the system, it would be easily possible to
use a vector with different properties here. Different types
of assets requires different types of protection mechanisms.
Therefore, there exists an accessPrivilege, accessing compo-
nents have to own. Moreover, there may exist privilege-
combinations that raise the criticality of the component that
accesses an asset. A component that accesses sensitive infor-
mation requires more care if it also has access to the inter-
net. In order to represent this increased level of criticality,
an asset contains a set of riskFactors that map additional
privileges by weightings.

Filter Components. A filter component is a special type
of component that does not propagate specific or any privi-
leges. Formally, a filter component is a transformation of a
set of assets to another set of assets. An authenticator, for
example, transforms the asset ’all data’ to ’data of a specific
user’. Cipher components transform the assets ’confidential
data’ and ’encryption key’ to ’encrypted data’.

3.3.2 Privilege Rating
In order to generate an early estimation of the possible risks
of vulnerabilities in one component, we calculate a privilege
rating (PR) for each component. In this work, we use the
commonly used risk model that expresses risk as product of
probability and impact. A vulnerability of a component that
accesses a more critical asset may generally have a higher
impact on the system’s overall security properties. There-
fore, the privilege rating is used as a factor for the impact
and is thus directly proportional to the risk. Probabilities of
successful attacks have to be examined in a later step with
methodologies such as threat modeling.

Component Rating. Each privilege P enables a compo-
nent C access to an asset A. Since similar privileges may
enable access to different assets, we do not directly rate the
privileges but use the accessCriticality (Crit(A)) property
of the accessed asset. This property is a numeric value,
where higher value means a more critical or more ’impor-
tant’ asset. Moreover, each asset contains weighted riskFac-
tors. For each of the component’s privileges that is con-
tained in this list, the risk factor is increased by the weight
(RF (A,P )). Therefore, the overall privilege rating of a com-
ponent PR(C) is generated by Crit(A) of all accessed assets
and the sum of all active risk factors.

PR(C) =
∑

A=Assets(C)

(
Crit(A) +

∑
P=Priv(C)

RF (A,P )
)

Component Compositions. Whenever two components A
and B are connected via an information flow, the privileges
of the components are merged. This is a rough generaliza-
tion only, however, due to of the following problems:

1. A directed information flow may not allow the sharing
of privileges in both directions.

2. Some components may not allow access to their privi-
leges at all or only in a restricted manner.

Problem (1) is not faced in this work, because it requires a
more detailed model of information flows and privilege types
and is part of ongoing work. Problem (2) is solved with filter
components.

3.4 Trust Domain Reduction
Components that share their privileges are part of the same
trust domain. In order to reduce the attack surface, the
size of trust domains with a high risk should be minimized.
Therefore, the software and/or security architect is able to
introduce filter components, which are able to transform as-
sets regarding their criticality. An authenticator in the ’DB
System’ in Figure 2, for example, may reduce the asset ’all
private data’ to ’data of a specific user’. A filter compo-
nent thus separates these domains and introduces a trust
border. By re-applying the metric, the effect is reflected in-
stantaneously in the architectural model and the software
architect is able to iterate this step until the trust domains
are acceptable in terms of size and risk.

3.5 Threat Modeling
Now, a list of software components with high criticality, as
well as components that are in charge of protecting high
risk assets (i.e., filter components on trust borders) can be
generated. Based on this list, it is possible to prioritize
components that should be taken into account for in-deep
risk analysis and threat modeling. This analysis identifies
new threats (or threat-tree-branches) for assets that can be
integrated into the high-level risk management process.

4. USE CASE AND EVALUATION
In order to examine the feasibility of the privilege rating,
we are using the methodology to analyze an actual soft-
ware architecture. We also implemented the tools needed



to describe and visualize a software architecture in the way
described in Section 3, also the algorithms that calculate
the privilege rating and trust borders. Based on a high level
risk assessment on the system assets, we apply the privilege
rating metric to identify critical domains in the architec-
ture that need further investigation. Moreover, based on the
classification, we identify component interconnections that
should be filtered to provide privilege separation.

4.1 Evaluated System
A manufacturing system is used by a company that de-
veloped and sells an embedded control system (vendor) to
manage the production process. This process is distributed
among different manufacturing companies (manufacturers).
Each manufacturer receives a test equipment unit, an em-
bedded device that is used to lead the manufacturing pro-
cess. This process includes product assembling and integra-
tion tests. All manufacturing entities are connected to a
central database (server), where test and production results
are stored. The vendor is able to place orders and review
the production data, for example to generate statistics of
calibration data. Since critical information like encryption
keys are generated and distributed during the process, secu-
rity is a key concern here. In this section, the central server
is evaluated.

In order to evaluate the system, we implemented a tool that
uses textual representation of the system to generate its
model and visualization. Figure 4 shows the overall sys-
tem: A web-application provides a service that enables the
vendor access to all test data. Each test equipment accesses
the database by using the test interface. However, this inter-
face only provides the sub-set of the information for Digital
Rights Management (DRM) reasons. For the sake of sim-
plicity, we designate all manufacturers, as well as the vendor
’users’ here. Each user is only allowed to access its own data.
Therefore, credential-based authentication is used. More-
over, the vendor is backing up all data to a physically sepa-
rated backup server via a private network connection.

4.2 Asset Mapping
Based on high-level risk assessment, three data assets (Cre-
dentials, Manufacturing data and Common data), as well as
two network assets (WAN and LAN) have been identified
and evaluated (Table 2). In order to access these assets, two
privilege types must be defined (shown in Table 1) and the
privileges must be assigned to the direct connected compo-
nents. The resulting privilege rating of all components is
shown in Table 3. The assets and their criticality have to
be added to the model manually to enable further compu-
tations.

Table 1: Privilege types and their corresponding ac-
cess modes

Name Access Mode
Network WAN, LAN

Data
Credentials, Manufacturing, Specific,

Test Data, Common

4.3 Component Classification
The architecture shown in Figure 4 is the first draft that
is used as input for the risk assessment. By analyzing the

Credentials
100

Man. Data
20

Common
0

LAN
5

WAN
10

Webserver

Backup 
Server

Backup 
Service

Application

DB Access

Test Data
Interface [Asset Name]

criticality

Component
Name

Server

Figure 4: Use-Case: The central database of a dis-
tributed manufacturing and test system. One user
is able to place orders and to access test data via a
web application. Test entities from different manu-
facturing companies are accessing the server via the
more restrictive test interface. To improve readabil-
ity, the privilege rating (criticality) of the different
components is encoded in colors (green: <=5; yel-
low: <=50; red: >50). The actual values are shown
in Table 2 and 3.

Table 2: Use-Case assets
Name Crit(A) Risk Factors

Credentials 100 Network(WAN), 10
Manufacturing 10 Network(WAN), 5

Common 0
LAN 10 Network(WAN), 2
WAN 10

User-Specific Data 5 Network(WAN), 2
Test Data 5 Network(WAN), 2

information flows, our tool calculates the privilege ratings
of all components. Currently, there is only one privilege do-
main (there is an implicit information flow between backup
service and database access). Therefore, all privileges are
shared among all components (in the figure, the rating is en-
coded as color; numeric values are shown in Table 3). This
does not mean that every component is able to access all as-
sets per-se, but vulnerabilities in any component may have
a critical impact. In order to obtain useful information, the
architecture must thus be refined with filter components to
separate the privilege domains.

4.4 Trust Domain Reduction
In order to achieve the separation into smaller privilege do-
mains, two virtual assets are introduced: User-Specific Data
and Test Data. Moreover, three filters must be added to the
model manually:

• User-Specific Filter: This filter component imple-
ments methods that prevents access to all user data
that is not owned by the currently authenticated
user. It therefore reduces a Data(User) privilege to
a Data(User-Specific) privilege.

• Test-Data Filter: This filter blinds all data that is not
intended to be provided via the test interface. Here the



reduction is from Data(User-Specific) to Data(Test-
Data).

• Authenticator: This filter implements authentication.
The filter prevents other components from reading cre-
dential information. It only returns whether the au-
thentication succeeded. For simplification, here this
information is considered harmless and no privileges
are needed to access it.

• Network Filter: This filter prevents the internal com-
ponents (Domain 1) from accessing the WAN-Port.
Moreover, it protects the LAN domain from access of
external components. This filter could be implemented
with a firewall.

4.5 Evaluation
Figure 5 shows the system after adding these filters. The
recalculation is done automatically and the resulting system
contains three trust domains with different privileges. The
numerical values of the privilege ratings are shown in Table
3.

• Domain 1: This domain has full access to the under-
lying data. Therefore, special care should be taken for
these components in the threat analysis process. The
backup-part should not be accessible for anyone and
the authenticator and the filter for user-specific data
should be designed and reviewed carefully.

• Domain 2: This part handles user-specific data and
is accessible through the internet. Although it is not
as critical as the components of Domain 1, in-depth
thread modeling should be considered.

• Domain 3: The test interface has relatively few privi-
leges. It is only able to handle a subset of the currently
authenticated user data. Therefore, this component
has the weakest requirements regarding security.

In general, the overall criticality of the components is re-
duced drastically. Of course, this reduction mainly origi-
nates from our asset ratings and relatively high weights for
risk factors. However, we can see that the number of crit-
ical components is reduced and we are able to focus effort
for actual threat modeling and countermeasures in a prior-
itized manner. Based on the results of the threat modeling
process, new threats to assets that originate in vulnerabili-
ties of specific software modules are revealed in a systematic
manner. This information supports the overall risk manage-
ment process (e.g., by completing a threat tree for an asset)
and eases decision regarding resource allocation for threat
treatment strategies.

5. CONCLUSION AND FUTURE WORK
In this work, we introduced a risk assessment method for
software components based on assets they are able to access.
These assets are identified on a system or organizational
level and mapped into the software domain. The classifica-
tion is based on the architectural component model and its
dataflow relations. This enables the possibility to connect
the risks of these high-level assets to software components.

Credentials
100

Man. Data
20

Common
0

LAN
5

WAN
10

Webserver

Backup 
Server

Backup 
Service

Application

DB Access

Test
Interface [Asset Name]

criticality

Component
Name

Authenticator User-Specific

Filter

Test-Data

Domain 3

Domain 2

Domain 1

Network

Figure 5: Trust domains after inclusion of filter com-
ponents.

Table 3: Component criticality before and after the
introduction of filter components

Component Name w/o Filter with Filter
Domain Criticality Domain Crit.

Webserver 0 1120 2 10
Application 0 1120 2 10
DB Access 0 1120 2 10

Test Interface 0 1120 3 8
Backup Service 0 1120 1 125
Backup Server 0 1120 1 125
Authenticator - - 1 125
User-Specific - - 1 125
Test-Filter - - 2 10

Network-Filter - - 2 10

Therefore, critical components that are in charge of protect-
ing the assets can be easily identified. Moreover, architec-
tural regions with similar risk (trust domains) are identified
and the impact of implementation of filter components is
instantaneously reflected in the model. We showed how the
approach is adapted in a real-world scenario and helped us
to identify critical sections of an architecture, to reduce the
attack surface and to implement security measures at all the
right places.

Some tasks remain to be done future work. One major goal
is the automated insertion of filters to optimize trust do-
mains based on their size and risk rating. To achieve this,
additional information such as the users of the system and
the assets they need to access will need to be reflected in
the model. Based on a comprehensive data flow model and
parameters that describe desirable results (e.g., small trust
domains), different optimization strategies could be used to
identify optimal filter placement. This automation is also
desirable because it would be a step towards an automated
generation of information flow- and isolation-policies based
on the model of a software architecture and the system-level
assessment of assets.

The prototype implementation of the model description lan-



guage is sound enough to evaluate the approach and inves-
tigate different architectures. However, in order to simplify
the integration into existing processes, we are considering
implementing the risk assessment and metric approach into
existing model-driven security UML-extensions for software
architecture. Other possible extensions are concerning the
metric. Basically, not all components in one trust domain
should be rated with the same risk. Components on edges
between different trust domains (i.e., filters) should be given
more attention, because these are the components potential
adversaries are able to interface with. Moreover, the risk
rating is currently only represented by one scalar impact
factor. In order to enable a simpler adoption for other do-
mains, we are planning to work out this gap and allow the
usage of a dynamic set of security properties.

6. REFERENCES
[1] Barry Boehm. Software risk management: principles

and practices. IEEE Software, 8(January):32–41, 1991.

[2] Charles B. Haley, Jonathan D. Moffett, Robin Laney,
and Bashar a. Nuseibeh. A framework for security
requirements engineering. Proceedings of the 2006
international workshop on Software engineering for
secure systems - SESS ’06, page 35, 2006.

[3] Suvda Myagmar. Threat Modeling as a Basis for
Security Requirements. In StorageSS ’05: Proceedings
of the 2005 ACM workshop on Storage security and
survivability, pages 94–102, 2005.

[4] Frank Swiderski and Window Snyder. Threat
Modeling. Microsoft Press, 2004.

[5] International Organization for Standardization (ISO).
ISO/IEC 27005:2008 - Information technology -
Security techniques - Information Security Risk
Management, 2008.

[6] International Organization for Standardization (ISO).
Information technology - Security techniques -
Evaluation Criteria for IT Security - Part 1, 2009.

[7] The Open Group. Technical Guide FAIR – ISO / IEC
27005 Cookbook. The Open Group, 2010.

[8] Alexander Leitner and Ingrid Schaumüller-Bichl.
Arima - A new approach to implement ISO/IEC
27005. 2009 2nd International Symposium on Logistics
and Industrial Informatics, LINDI 2009, pages 1–6,
2009.

[9] J Samad, S W Loke, K Reed, and Ieee. Quantitative
Risk Analysis for Mobile Cloud Computing: a
Preliminary Approach and a Health Application Case
Study. 2013 12th Ieee International Conference on
Trust, Security and Privacy in Computing and
Communications, pages 1378–1385, 2013.

[10] P. Saripalli and B. Walters. QUIRC: A Quantitative
Impact and Risk Assessment Framework for Cloud
Security. Cloud Computing (CLOUD), 2010 IEEE 3rd
International Conference on, pages 280–288, 2010.

[11] Georg Macher, Harald Sporer, Reinhard Berlach, Eric
Armengaud, and Christian Kreiner. SAHARA: A
Security-Aware Hazard and Risk Analysis Method. In
Design, Automation & Test in Europe Conference &
Exhibition, pages 621–624, 2015.

[12] Nikos Vavoulas and Christos Xenakis. A Quantitative
Risk Analysis Approach for Deliberate Threats. In
International Workshop on Critical Information

Infrastructures Security, pages 13–25, 2010.

[13] Cristian Ruvalcaba and Chet Langin. Whitepaper:
Threat Modeling: A Process To Ensure Application
Security. 2009.

[14] Jakub Breier and Frank Schindler. Assets
Dependencies Model in Information Security Risk
Management. In International Conference on
Information and Communication Technology, pages
405–412, 2014.

[15] Bomil Suh and Ingoo Han. The IS risk analysis based
on a business model. Information & Management,
41(2):149–158, 2003.

[16] Richard Caralli, James Stevens, Lisa Young, and
William Wilson. Technical Report: Introducing
OCTAVE Allegro : Improving the Information
Security Risk Assessment Process. Technical Report
May, Software Engineering Institute, 2007.

[17] Peter Mell, Karen Scarfone, and Sasha Romanosky.
The Common Vulnerability Scoring System (CVSS)
and Its Applicability to Federal Agency Systems.
NIST Interagency Report 7435, 2007.

[18] OWASP. OWASP Risk Rating Methodology.

[19] J.H Salzer and M.D Schroeder. The Protection of
Information in Computer Systems. In Proceedings of
the IEEE, pages 1278 – 1308, 1975.

[20] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley
Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. Native Client: A
Sandbox for Portable, Untrusted x86 Native Code.
2009 30th IEEE Symposium on Security and Privacy,
pages 79–93, May 2009.

[21] Li Gong, Marianne Mueller, H Prafullchandra, and
R Schemers. Going Beyond the Sandbox: An
Overview of the New Security Architecture in the Java
Development Kit 1.2. In Proceedings of the USENIX
Symposium on Internet Technologies and Systems,
number December, 1997.

[22] Andrew Whitaker, Marianne Shaw, and SD Gribble.
Denali: Lightweight virtual machines for distributed
and networked applications. In In Proceedings of the
USENIX Annual Technical Conference, number Figure
1, 2002.

[23] NSA Peter Loscocco. Integrating flexible support for
security policies into the Linux operating system. In
USENIX Annual Technical Conference, 2001.

[24] Crispin Cowan, Steve Beattie, Greg Kroah-Hartman,
Calton Pu, Perry Wagle, and Virgil Gligor.
{SubDomain}: Parsimonious Server Security. In
USENIX LISA, pages 1–20, 2000.

[25] Holger Blasum, Sergey Tverdyshev, Bruno
Langenstein, Jonas Maebe, Bjorn De Sutter, Bertrand
Leconte, Benôıt Triquet, Kevin Müller, Michael
Paulitsch, Axel Söding-Freiherr von Blomberg, and
Axel Tillequin. Whitepaper: Secure European
Virtualisation for Trustworthy Applications in Critical
Domains. 2013.


	Introduction
	Background and Related Work
	Risk Management
	Risk Assessment
	Component Isolation

	Asset-Based Component Rating
	Process Overview
	Asset Mapping
	Component Classification
	System Composition
	Privilege Rating

	Trust Domain Reduction
	Threat Modeling

	Use Case and Evaluation
	Evaluated System
	Asset Mapping
	Component Classification
	Trust Domain Reduction
	Evaluation

	Conclusion and Future Work
	References

