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ABSTRACT
Systems with mixed and independent levels of se-
curity and safety become more and more important
in the future. In the German funded Bundesminis-
terium für Bildung und Forschung (BMBF) research
project ARAMiS (Automotive, Railway and Avionic
Multicore Systems) different industry and scientific
partners concerned on using multi-core processor for
different security and safety critical use-cases.
This paper describes the motivation and use-cases
behind the research actives in different mobility do-
mains. Also two detailed descriptions and a compar-
ison of two implementation for Multiple Independent
Levels of Security and Safety (MILS) systems in mo-
bility domains are included. In the end of the paper
a outlook is given on potential further research ac-
tivities on this research topic.
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1. INTRODUCTION
Due to more and more complex functions on a Electronic

Control Unit (ECU), the complexity of the software com-
ponents and thus also the cost for the verification increases.
Also the dependence between the software components must
not be neglected, especially if they have different safety and
security levels and run on the same ECU.
To attain a reduction of the system complexity and isola-
tion of data despite increasing software scope, the MILS
approach can be used. The basic idea of the MILS approach
is that the critical parts of the system are small in terms of
lines of code and also have a low complexity, so that they can
be certified at high assurance levels. This is similar to the
recommendation of the economy of mechanism from Saltzer
and Schroeder for security systems [1, 2]. In this respect, a
(complete) MILS system must fulfill the NEAT properties
[3]:

• Non-bypassable: Policy enforcement functions cannot
be circumvented.

MILS Kernel (Hypervisor)
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Figure 1: MILS architecture (Source: [3])

• Evaluatable: Policy enforcement functions are small
enough and simple enough that proof of correctness is
practical and affordable.

• Always Invoked: Policy enforcement functions are in-
voked each and every time.

• Tamperproof: Policy enforcement functions and the
data that configures them cannot be modified without
authorization.

Basically a MILS architecture can be divided into two main
(software) layers, see Figure 1. The kernel or core layer
is responsible for the partitioning resources and maintains
isolation across components. This core consists of several
components, which implement and enforce the separation.
This is the core component and an MLS is the most critical
part of the architecture. In order to ensure independence,
the kernel must be formally checked. The second main layer
consists of the individual partitions, each of the partition
corresponds an Single Level of Security and Safety (SLS)
component [3].

To demonstrate the feasibility of multicore virtualization



and MILS approach as a key enabling technology for the cen-
tralization of functionality from different infotainment ECUs
onto one single commercial off-the-shelf hardware platform,
we built the Virtualized Car Telematics (VCT) computer [4].
It features an Intel-based multicore system along with a Xil-
inx Virtex-7 FPGA platform, both being connected to var-
ious input/output devices and other ECUs (e.g. via CAN
and Ethernet). The complete hardware platform is built
into the trunk of a BMW 320d touring car. The consolida-
tion of functions into one single ECU includes safety relevant
instrument cluster information as well as customer specific
applications that are not qualified by the vehicle manufac-
turer. Those functions share dedicated hardware resources
among several virtualized partitions.
Our paper is organized into 6 sections. Section 2 gives the
motivation for the research activities and shows a current
and future use-case. The following section 3 describes one
architecture approach. Section 4 describes two realizations
with examples. In section 5, we compare both realizations
and discuss the differences. In the last section we give a
outlook for potential future work and research topics in the
field of MILS in the different mobility domains.

2. MOTIVATION
As already described in the introduction, were considered

different use cases in the context of ARAMiS. In the follow-
ing section we describe two use cases, in which the MILS
pattern is a key solution. One use case is from the ARAMiS
project and the second is from the current automotive re-
search.

2.1 Use cases
According to Mark Weiser the ubiquitous computing and

its follow-up approaches Cyber Physical Systems (CPS) and
Internet of Things (IoT) is also becoming increasingly im-
portant in the automotive field [5]. Vehicles will soon be in-
volved more deeply in the connected world, similar to smart-
phones at the moment. In addition to the automotive info-
tainment system, the classic driving systems will be more in-
volved in the connected world, to enable a higher functional
performance. The customer is expecting a similar function-
ality and flexibility like it is known of smartphones or tablet
from the automotive infotainment systems, thus the cus-
tomer demands are increasing rapidly. Especially when the
previous driving time is available by self driving vehicle, the
available infotainment options must be improved. To ful-
fillment of the customer demands can only be achieved by
a widespread consumer operating systems, like Android or
iOS, with a large range of apps. Due to to the usability the
two areas entertainment and information can not be sepa-
rated. These two areas must still be reconciled in the future,
while the gap between their requirements is increasing.

While in the information sector stricter and higher secu-
rity requirements are necessary due to self driving, in the
entertainment sector a higher open awareness and flexibility
is required due to networking and applications from the con-
sumer sector. Future functions - regardless of whether its a
driving function or from the infotainment area - have to sat-
isfy the claim that these must be smarter. This smarter can
be seen as a third processing stage. Thereby, in the future
might exist three processing stages in an E/E system - reflex,
conscious action, and cognition, similar to the human body.
In order to achieve this intelligence in the newly introduced

cognition stage mentioned earlier, bigger software compo-
nents have to be used in which a protection is not always
practicable. Therefore, these software components must be
executed in a dedicated environment, which are separated
from the other software environment to ensure security and
safety according ISO 26262. It will become even more im-
portant to carry out a separation of different levels of safety
and security [6].

2.2 Existing solutions
A study carried out a wide range of existing Android based

in-vehicle infotainment (IVI) solutions. Many solutions were
retrofitting solutions for the head unit, on which only one
operating system instance is running. In most of this sce-
narios Android had a direct access to the Internet as well as
to the electrical system of the vehicle. This leads to a entry
point for attacks against the vehicle. An available Android
IVI solution from AMG Mercedes, which must be ordered
ex-factory, includes dedicated hardware for Android and a
separate hardware firewall for protection against attacks of
the electrical system of the car [7].

2.3 Research issue
The mentioned solution of AMG Mercedes is acceptable

for exclusive cars, but not in production cars. Such a solu-
tion requires additional space in the car and must be consid-
ered in the construction phase of the car. Additional hard-
ware and software interfaces are necessary, whichs leads to
additional dependencies. But additional hardware means
additional weight and this will increase energy consump-
tion and fuel use. Therefore, it is necessary to find prac-
tical solutions, which allows variability without additional
manufacturing and production costs. So a possible realiza-
tion solutions for this is to use supervised AMP in order
to have enough power to run two or more operating system
instances. But it is important that the necessary periph-
eral hardware resources, such as Controller Area Network
(CAN) or storage medium, can be shared. Here, the access
method is important to ensure an operation without inter-
ference is possible. Especially when safety critical instances
are executed. In the case of IVI a protection could be done,
in which the IVI operating system is hardened or a walled
garden is created around the IVI operating system.

This leads to loss benefits, which is gained through the
use of consumer electronics (CE) operating system. Also
update cycles would be thus extend, if adaptation must be
performed on operating systems. Therefore, the protection
without modification of the operating system must be done,
which also allows quick update cycles, which especially in
safety-critical updates is necessary.

3. ARCHITECTURE FOR MILS PLATFORMS
In the first part of this section we list automotive require-

ments for the MILS platforms. Then we give an overview of
the different platforms. In the last section the platform is
described more detailed.

3.1 Automotive Requirements on MILS Plat-
form for Separation

The architecture of the MILS platform for both automo-
tive systems has been driven by the use-case requirements.
These requirements can be categorized into the following
groups:



• Host Android for well-known HMI and Apps

• Execute embedded Linux for COTS drivers and soft-
ware stacks

• Share graphics and QoS for graphics

• Provide connectivity for user equipment, e.g. USB

• Provide network connections, e.g. Ethernet

• Guarantee high assurance separation with gateways for
security critical applications, e.g. payment, tachographhs

• Provide direct access to IO memory/devices, e.g. for
latency critical devices

• Provide secure access to IO memory/devices, e.g. for
shared devices or possible non-trusted drivers

• Execute legacy application, OSEK and/or old Autosar
applications

• Enable ECU consolidation, i.e. running multitude of
applications on the same ECU

• Support of different ASIL, i.e. support modular certi-
fication

• Dependable moderation of resources usage, e.g. CPU
time, memory bus bandwidth

• Quick and Secure booting, e.g. secure boot and fast
boot for critical applications

• Secure update, e.g. for partition and whole system

• Partition management, e.g. start, stop, restart

• System management and monitoring

3.2 MILS Platforms Overview
The MILS platforms used in both automotive systems

consist of hardware and software parts. The hardware parts
are based on COTS hardware (one x86 based and one ARM
based) extended with domain specific devices prototyped
on FPGA connected via common interfaces (ePCI, I2C).
The software parts consists of separation kernels (SYSGO
PikeOS, VxWorks), drivers for critical devices (e.g. PCI
manager for DMA and TPM driver), non-critical device
drivers, as well as Linux for COTS software stacks. A sep-
aration kernel takes control over the hardware, and thus,
manages the hardware resources according the divined pol-
icy and provides the operation environment of separated par-
titions to execute system components.

3.3 PikeOS
PikeOS is a real-time operating system for safety and secu-

rity critical applications [8, 9]. PikeOS is certified according
standards DO-178B for avionics, IEC 61508 for safety in gen-
eral, EN 50128 for railway and is under security certification
Common Criteria. The PikeOS origin lies in the avionic area
(e.g. Airbus A350, A400M), which is well-known for requir-
ing highly robust components. Currently, PikeOS is used in
different critical domains (e.g. automotive, railway, space,
communication) it has highly modular and runs on a variety
of hardware platforms.

Figure 2: PikeOS architecture

Architecturally PikeOS consists of two major components:
a micro-kernel and a virtualization layer (see Figure 2). The
micro-kernel is very compact and provides the very basic
functionality inspired by the ideas of Liedtke [10]. The virtu-
alization layer is implemented on the top of the micro-kernel
and provides separated execution partitions, also known as
virtual machines, for user applications. User applications
run in the isolated partitions which can be “personalized”
with APIs, e.g. POSIX, Autosar, Linux/GenIVI etc. The
scheduler of PikeOS is a multi-core real-time time-triggered
scheduling with support of integration of events-triggered
threads.

One of the critical issue on multicore is usage of common
hardware resources such as memory bus and control of re-
sulting interferences. We use PikeOS support to avoid inter-
ferences between critical SW components by utilizing space
and time partitioning for multicore [11]. Figures 3 shows
a typical multicore setup. In this configuration there are 4
cores (A-D) and 4 resource partitions (RP1-RP4). There
are also 3 time partitions. In the same way as a resource
partition “contains” the software access to memory and de-
vices etc, so time partitions can be thought of as a container
which dictates when software can execute. Using the above
methods, software can be configured to not only run on a
particular processing core but also at a particular time. Fur-
thermore, using time partitions for multicore one can restrict
what runs at the same time on different cores. This directly
addresses one of the concerns raised earlier regarding in-
terference patterns between cores. This architecture allows
to control amount of interferences on the shared hardware
through the platform, and hence, provide more guarantees
for safety (i.e. WCET) and security (timing cover channels)
critical applications.

Another important abilities for any separation kernel is
to support precise security domains and integration strategy
for critical components, e.g. critical device drivers. Thus,
MILS platforms shall provide dependable support (e.g. im-
plemented as a driver) to manage resources and function-
ality provided by these devices according the system level
security policy. In this paper we have two such devices:
PCI complex and TPM connected via i2c bus. PikeOS pro-
vides a PCI manager which is implemented as a separated
SW component despite its direct access to the PCI complex.
Similarly, TPM integration is also implemented as a isolated
SW component which allows several partitions (i.e. virtual
machine) to access it on their dedicated interfaces. Thus,



Figure 3: Space and Time partitioning with PikeOS

this allows creation of a virtual TPM device (see Figure 9).

4. REALIZATION
In the following two subsections, two different implemen-

tations are described which develops and be used within the
ARAMiS project.

On platform A which is based on the Wind River hyper-
visor, a hardware-based virtualization approach for shared
coprocessors is used. The second implementation on plat-
form B based on the Sysgo hypervisor, a software-based vir-
tualization approach for a hardware security module is used
instead.

4.1 Hardware-based Virtualization Approach
In multicore systems, competing parallel accesses to shared

resources like interconnects, memory or coprocessors can
lead to collisions as only one of the accessing cores can be
successful. All other cores get at least delayed which can
lead to missing deadlines of applications. Therefore the de-
sign of safety critical systems has to achieve determinism as
well as segregation in time and space.

In order to address this challenge and to support determin-
ism for shared resource usage we developed a hardware based
scheduling and interface approach for coprocessors that is
able to guarantee Quality of Service (QoS) in terms of exe-
cution time, throughput and latency for hard real-time sys-
tems. It is a hardware extension of the coprocessor and can
be seen as a wrapping layer around the coprocessor function-
ality which is transparent for the applications, meaning that
no additional control steps besides the initial configuration
have to be integrated in existing applications.

A use case for a shared resource in a multicore system, are
cryptographic coprocessors. These coprocessors, having a
much better latency and performance-to-power-consumption
ratio than general-purpose processors, are required for cryp-
tographic secured communication of embedded systems with
low latency such as in Vehicle-to-X communication scenar-
ios (e.g. ECDSA [12]). They can furthermore be used in
a Trusted Boot/Execution scenario, where software codes
have to be cryptographically verified before they can be
started.

These use cases also show that access requests may be
from very different nature: Vehicle-to-X communication mes-
sages are sent and received periodically requiring a hard real-
time behavior but having a small data amount, whereas the
verification of software codes has rather large data amounts
but occurs only once (Trusted Boot) or sporadic (Trusted
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Figure 4: Variants of Resource Sharing Mechanisms
for Multicore Systems

Execution) and tends to be soft or not real-time.

Multicore Resource Sharing
Sharing of resources like coprocessors can be achieved through
different mechanisms. Temporal segregation is the major
challenge as typically a software task requiring the service
of a coprocessor would send a request to the coprocessor, in-
cluding pointers locating required data in the main memory.
The coprocessor then fetches those data from the memory
using the DMA engine, calculates the results and then writes
them back to the memory using the DMA engine. If another
task requests the service of the coprocessor during that time,
it has to wait an unknown amount of time for the execution
to finish. That is unacceptable for the determinism and
real-time behavior of coprocessor requests respecting their
software tasks.

Different mechanisms for the sharing of a coprocessor are
exemplarily shown in Fig. 4. All four systems consist of
three cores (in this context equal to partitions), which try
to gain access to one shared coprocessing resource over a
shared interconnect. Here an asymmetric processing ap-
proach is assumed, where each core has its own independent
task scheduling. For simplicity this figure abstracts from
operating systems and virtualization solutions.

Fig. 4 a) shows a time based solution for shared resource
accesses. Each core has a timer, that indicates based on a
predefined schedule, when access to the resource is granted.
This means that the partitioning and assignment of fixed
time slices has been done during design time. The major
disadvantage is the poor efficiency due to empty slots, when-
ever it is not used by the corresponding core.

In Fig. 4 b) the coprocessor resource sharing is not time
but request based. Whenever a partition has a request it
checks the coprocessors availability in coordination with the
other cores. If the resource is free it gets access. Major
disadvantage here is the full blocking of the resource by any
of the accesses. Additionally as the scheme is completely
distributed it does not allow to enforce priority rules. Also
all partitions need the same safety and trust level.

Fig. 4 c) proposes a centralized approach where one par-
tition schedules the requests to the shared resource. This
approach supports spatial and temporal isolation but has
the disadvantage of additional latency. Such an emulation
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approach of software-based virtualization for hardware re-
sources sharing can not fulfill the strict performance and
real-time requirements of many safety-critical systems.

Fig. 4 d) depicts the approach, which is described below.
Basically it is the same as in c) but moves the shared resource
scheduling close to that resource. This way a tight coupling
of the resource and the request scheduling can be achieved.
Moreover the scheduling can be implemented in hardware,
which is the key for fine grain and real-time scheduling de-
cisions. The scheduling extension also provides several in-
terfaces for the different cores/partitions. This way spatial
segregation can be easily achieved by means of the existing
MMU infrastructure. No additional interaction among the
cores for resource access is necessary.

Virtualized Car Telematics Computer
Fig. 5 shows the system architecture of the VCT computer.
It consists of four cores, namely Core 0 to Core 3 and three
Virtual Machines, which can be seen as containers for appli-
cations and run time infrastructure, running on top of the
Wind River hypervisor. Core 0 and Core 1 are jointly used
by Virtual Machine 1 that executes one operation system
providing the infrastructure for applications on these two
cores. Similarly Virtual Machine 2 and Virtual Machine 3
have their own operating systems and applications. The
FPGA is used for the hardware implementation of a shared
devices, a cryptographic coprocessor for Vehicle-to-X com-
munication. The virtual machines are segregated from each
other, so that failures within one can not spread to others.
While the trusted VM based on Ubuntu contains only soft-
ware from the vehicle manufacturer which is supposed to be
safety critical and free from malicious code, an untrusted
VM running Android is available for the integration of arbi-
trary user applications. Furthermore, there is a server VM
running a Linux distribution which provides services used
by the remaining VMs and additional management tasks.

Virtualization Technology for Shared Resources
Following the trend towards virtualization, the PCI-SIG re-
leased the SR-IOV specification [13] as an extension to the
PCIe standard. SR-IOV refines the notion of a PCI func-
tion, distinguishing between physical and virtual functions
(PF/VF). A PF corresponds to an existing PCI function in

a PCIe system without SR-IOV, while a light-weight VF is
meant to be accessed directly from virtual machines. Each
VF is assigned to a PF in a manner that the same PCI con-
figuration resources are shared between a PF and its VFs.
Other function-specific hardware resources (data buffers, work
queues, etc.) are available exclusively to each VF and are
accessible from a virtual machine without intervention of
software.

With Xilinx’s Virtex-7 FPGA series, support for SR-IOV
has been recently added to their latest PCIe Endpoint IP
block. SR-IOV has been designed to be able to work with
existing system-level virtualization supports (e.g Intel Vir-
tualization Technology for Directed I/O [14]). The cooper-
ation between SR-IOV and these technologies enables the
efficient spatial segregation of PCIe accesses on the path
from the CPU into PCIe devices using the low overhead of
direct device assignment as shown in [15]. This makes SR-
IOV the favored choice for virtualization of PCIe devices in
an embedded environment.

Coprocessor Architecture
The principal approach is to make the coprocessor look like
several coprocessors for the remaining part of the system.
This is similar to device emulation in virtualization concepts
that comes along with the aforementioned performance and
latency limitations (similar to Fig. 4 b). The proposed co-
processor architecture consists of the coprocessor, a hard-
ware extension for virtualization support and a hardware
scheduler to achieve the deterministic, segregated and ef-
ficient management and processing of coprocessor requests
in multicore safety-critical systems. Within the hardware
extension layer, there are one configuration interface and
several access interfaces supporting the system partition-
ing concept from above: access requests from cores as well
as data exchanges corresponding to different partitions are
routed to different interfaces. This way spatial segregation
of partitions is guaranteed.

With these access interfaces, each VM can be given ex-
clusive access to its ”own” accelerator reducing hypervisor
overheads. To establish an as generic as possible interface
for shared coprocessors, the connecting infrastructure is de-
signed and implemented in a highly flexible manner in order
to support a wide variety and easy replacement of coproces-
sors. Our approach covers the adaption to a standard PCIe
interface on one side and a generic AXI interconnect [16] on
the other side. Using an AXI interconnect allows to connect
a wide range of components with different performance and
throughput requirements.

The requests will be scheduled for execution on the co-
processor according to a defined configuration by a hardware
scheduler. The configuration interface is solely accessible un-
der specific circumstances (e.g. at boot time) by a trusted
partition or the hypervisor.

Virtualized Coprocessor Interface
To couple the cryptographic coprocessor used in the VCT
demonstrator with the host system, we developed a flexible
coprocessor interface infrastructure for virtualized systems
using SR-IOV and fulfilling the requirements stated above.
These generic infrastructure implementation is described in
more detail afterwards.

We implemented our approach on a Xilinx VC709 FPGA
board [17] which supports the PCIe interface by Xilinx’s
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PCIe Integrated Gen3 Endpoint IP core [18]. The PCIe in-
terface offers the communication infrastructure for all trans-
fers of all SR-IOV virtual and physical functions. Our con-
nected infrastructure architecture allows coprocessors to main-
tain an interface independent of the PCIe endpoint, thereby
decoupling the coprocessor from the endpoint’s implemen-
tation and PCIe communication details.

Besides the Virtex-7 PCIe Endpoint, the modular design
of our developed infrastructure consists of four major parts
(see Fig. 6): An Adapter Control and Slave Access Han-
dling module for host initiated accesses, a Master Access
Handling module for coprocessor initiated accesses, an In-
terrupt Handling module and the shared coprocessors Co-
processors [0,...,N] with each of them providing the function
interfaces motivated by PCIe SR-IOV.

The Virtex-7 PCIe Endpoint block provides the PCIe link
to the host system and SR-IOV with up to 2 physical and 6
virtual functions. It provides two 128 bit wide AXI4-stream
based interfaces for host accesses and DMA request. Fur-
thermore it provides interrupt and configuration interfaces.

The generic interface model for the connected coproces-
sors is shown in green in Fig. 6 using the example of the
first virtual function (VF0). It consists of a set of registers
for control purpose as well as additional coprocessor local
memory for internal data and DMA descriptors. All inter-
face components are available through AXI interconnects
from two different sources each: the Slave Access Handling
and the Master Access Handling module. Therefore each
AXI crossbar contains two master inputs (AXI-M). Both
bus masters are able to access the virtual function control
module as well as virtual function local memory. For trigger-
ing interrupts or requesting DMA operations, every virtual
function of the interface has dedicated signals.

The whole interface is replicated N times for a coprocessor
shared between N virtual functions to provide segregation
in space (distinct address spaces of virtual functions) and
time (scheduling the accesses accordingly to the accessing
function). Incoming requests for coprocessors will be sched-
uled for execution on the coprocessor according to a defined
configuration by a hardware scheduler that is part of the
coprocessor. In an analogous manner DMA transfers are
scheduled by the DMA engine of our interface architecture
for shared coprocessors [19] to support bandwidth manage-
ment as required for safety-critical systems.

4.2 Software-based Virtualization Approach
To enhance the security of embedded systems, Hardware

Security Modules (HSMs) are used. These modules offer se-

Figure 7: Detailed Architecture

cure storage of keys, integrity checks of software, and imple-
mentations of cryptographic algorithms. This crypto func-
tions can be used to establish secure connections to OEMs
backend systems or to ensure the integrity of software run-
ning on ECUs. But today’s HSM designs lack the support of
separation and virtualization, though. Current approaches
to circumvent this issue are based on software emulation of
the full or parts of the HSM. In spite of having notable ad-
vantages, system virtualization imposes software complexity
and the necessity to virtualize the underlying Hardware Se-
curity Module (HSM) as well. In contrast to existing Trusted
Platform Module(TPM) solutions that internally only mul-
tiplex several physical TPMs, multiple contexts shall be han-
dled by a single TPM that is capable of securely swapping
contexts. The HSM is implemented on a FPGA platform
with a soft-core processor. The TPM context data for every
specific virtual machine is initialized and stored encrypted
in an off-chip embedded flash as the on-chip ROM of TPM
is limited and extremely costly. Additionally, a scheduler is
designed to reduce the number of context switches. In this
section we present the integration results of an FPGA based
HSM prototype with a real world embedded multicore sys-
tem from Freescale. Both systems are connected via an I2C
interface.

Integration Architecture
The complete architecture of a multi-context TPM demon-
strator is shown in Fig. 7. The HSM is implemented on a
XILINX Virtex5 FPGA platform with LEON3 open source
soft cores (SPARC V8 instruction set). The HSM in this
case is a TPM capable of handling multiple contexts. The
virtualized TPM firmware resides on the flash memory of
the LEON3 soft-core. The i.MX6 Quad application proces-
sor is used to implement the virtual machine environment.
The HSM and the virtualized application processor are con-
nected via I2C interface. The HSM acts as a I2C slave while
the multicore application processor acts as I2C master. The
TPM context data for every specific virtual machine is ini-
tialized and stored in the external embedded flash as the
on-chip TPM ROM is limited. The TPM context data is



highly sensitive and hence approaches are designed for the
secure storage of data in the off-chip memory.

An additional layer would be needed to incorporate the
multi-context capability into TPM 1.2 specification. The
Virtual Machine Manager (VMM), an additional layer which
performs the secure context switching and scheduling is there-
fore implemented in firmware, which resides on the LEON3
soft-core processor. The off-chip embedded flash holds the
permanent data of every context and the data is encrypted
using an AES software module before leaving the TPM. A
scheduler is implemented which minimized the number of
context switches to improve the performance. In addition
to VMM, the general purpose timer modules are configured
to accurately measure the time taken for context switching
and for encrypting/decrypting context data. The debug en-
gine is used for connecting the board to the GRMON debug-
ger with the help of JTAG connector. The TPM emulator
code resides on the flash memory of the LEON3 soft-core
and makes use of the hardware accelerators for True Ran-
dom Number Generation(TRNG). Except the TRNG, all
the other cryptographic modules and the VMM is imple-
mented in the firmware.

The application processor in our system is a virtualized
embedded system with PikeOS [20] Operating System. PikeOS
is a microkernel-based real-time operating system which is
targeted at safety and security critical embedded systems.
It provides a partitioned environment for multiple operat-
ing systems with different design goals and security require-
ments to coexist in a single machine. The architecture of
PikeOS [20], which implements the hypervisor and the vir-
tual machines on the i.MX6 board.

Apart from the service partition and the application par-
titions, we need to have a dedicated partition which acts
as the multi-context TPM driver. This partition holds the
VM ID table, which maps the virtual machine with a four
byte unique identifier. The other partitions are application
partitions, which might either run a secure application or
an Operating System such as embedded linux [21]. Usu-
ally, the hypervisor will implement the VM ID mapping as
the VM ID table needs to be highly secure. As the hyper-
visor is a part of the PikeOS kernel [22] which cannot be
modified, the functionality is included in a separate parti-
tion. It is the only partition which directly communicates
with the multi-context TPM and is responsible for framing
the multi-context commands. It communicates with all the
other application partitions using the inter-process commu-
nication and shared memory concept described in [23]. It
collects the TPM commands from the shared memory of a
specific partition and attaches the VM ID as defined in the
VM ID table. After framing the multi-context TPM com-
mand, it is stored in a buffer, which is then transmitted to
the multi-context TPM module for execution.

Hardware Security Module
The TPM 1.2 standard from 2003 does not include any capa-
bilities to store and load contexts, which would be required
for context switching. In contrast to existing TPM solu-
tions that internally only multiplex several physical TPMs,
multiple contexts shall be handled by a single TPM that is
capable of securely swapping contexts. All the limitations
of the existing multi-context TPM architectures need to be
taken into consideration as well. One of the central issued is
to investigate the best strategies to reduce the extra time for

Figure 8: TPM Firmware Architecture

fetching and storing the data during each switching event.
Furthermore, a scheduler will be implemented to avoid unin-
tentional switching activity. The multi-context TPM func-
tionality is implemented using a softcore processor, which
communicates to a multicore application processor.

The implemented multi-context firmware architecture and
the different layers of the software are illustrated in Fig. 8.
Immediately above the LEON3 processor hardware, we have
the Hardware Abstraction Layer which contains a set of soft-
ware routines which emulate some platform-specific details,
giving programs direct access to the hardware resources.
The hardware peripherals can be controlled and accessed
by a set of Special Function Registers (SFR) which include
control register, status register, interrupt control registers
and data registers. The peripheral configurations such as
general purpose timers and external memory controller, the
PROM and I2C drivers are implemented in this layer.

The TPM firmware is implemented using the Application
Peripheral Interfaces (API) provided by Hardware Abstrac-
tion Layer. It is based on the software based TPM em-
ulator code from [24], which is ported to LEON3 proces-
sor. The TPM firmware implements execution engine and
cryptographic modules. A hardware block for True Ran-
dom Number Generation (TRNG) was already implemented
at AISEC and integrated into the design. In the initial
prototype implementation, it was decided to use the TPM
firmware as such and not to modify the TPM firmware to
avoid complexities.

The Virtual Machine Manager (VMM) is the topmost
layer in abstraction, which implements the features to sup-
port multiple contexts. This layer uses the underlying TPM
firmware and the APIs provided by the Hardware Abstrac-
tion Layer (HAL). The static context initialization approach
is adopted in the implementation and testing of the proto-
type would be less complex. Provisions has been made to
store six different contexts and each context is assigned a
specific VM ID. The VMM layer consists of sub-modules
such as VM ID manager and address mapper, data split-
ter/combiner, multi-context TPM command handler and a
dynamic scheduler.

Multicore Platform i.MX6
The implementation of the virtualized application system is
shown in Fig. 9. A physical I2C bus connects the i.MX board
which acts as the I2C master and the multi-context TPM



Figure 9: Block Diagram of a Virtualised TPM Sys-
tem

which acts as the I2C slave. The multi-context TPM driver
is implemented on one partition (Partition 0) of the virtu-
alized system. It also implements routines for sending and
receiving multi-context TPM commands. As the PikeOS
hypervisor is a part of the kernel which cannot be modi-
fied, the VM ID table is maintained in a separate dedicated
partition. The TPM driver partition make use of the under-
lying I2C driver functions on the kernel level. The partition
consists of the VM ID table, which provides a unique ID to
every VM which needs an access to the TPM. The driver
partition is the only partition which is interacting with the
TPM. All the other partitions interact with this main driver
partition, exploiting the shared-memory and Inter-Process
Communication concepts.

5. DISCUSSION

Requirement Platform A Platform B
Latency low medium

Bandwidth high low
Predictability available available

Flexibility low medium
Development cost medium low

Interface high speed low speed,
(PCIe) robust (I2C, SPI)

Legacy code supported not supported

Table 1: Comparison of two Implementations

Comparing the two virtualization approaches for shared
resources (coprocessors on platform A and a hardware secu-
rity module on platform B), different requirements lead to
different approaches. The requirements and key features of
both implementations are compared in Table 1.

For the hardware-based virtualization approach for copro-
cessors, the key requirements are a low latency and high
bandwidth coupling of the coprocessor with support for DMA
operations as well as deterministic access times even in the
case of a concurrent usage on a multicore architecture. There-
fore out implementation provides an access latency of about
530 ns and a total DMA data transfer bandwidth of 2.6 GiB/s
which can be deterministically allocated to different parti-
tions as presented in [19] at the cost of additional hardware

resources. Furthermore this approach is based on the PCIe
SR-IOV standard [13] and therefore independent of the oper-
ating system and base software stacks running on the system
to provide flexibility and independence from the platform
and software architecture. In this way (legacy) applications
and software stacks using the coprocessor resources don’t
need any modification when integrated on a virtualized mul-
ticore platform. However the host system architecture has to
support the PCIe SR-IOV standard. Additionally our hard-
ware scheduling and DMA bandwidth monitoring allows a
predictable behavior independent from the CPU utilization
of the host system.

The implementation of platform B: PikeOS was mainly
driven by the limited resources of low cost embedded systems
used in many of the electronic control units inside a car.
The development cost must be very low and the lifetime is
high compared to consumer products. On the other hand
the use of well established interfaces, that are robust have
a low wire count, is intended. Therefor, the bandwidth and
the latency of the interface is not that important. But the
limited bandwidth of existing bus structures like I2C, SPI,
and LPC will become a problem, if more and more data
needs to be encrypted or hashed.

6. FUTURE WORK AND RESEARCH
One of the future work is to involve hardware manufac-

tures to provide better knobs to separate information flows.
This will allow separation kernel to provide tuneable control
(e.g. side effects via common hardware infrastructure) and
increase performance (e.g. virtual functions in hardware).

One of the interesting issues is how to security certify
the presented systems in a modular way, e.g. we are look-
ing on how to build up system level assurance leveraging
guarantees provided by the MILS platform. Another big
open questions is how much hardware manufactures can con-
tribute and how much is needed from them to provide strong
guarantees for the MILS platform. Here we are looking for
MILS eco-system (e.g. for the beginning consisting of ba-
sic elements such as hardware, separation kernel, and some
critical services for applications) which will provide guide-
lines how that composite assurance can be derived from the
MILS architecture.

The hardware-based virtualization approach is currently
being ported to the ARM-based Zynq architecture from Xil-
inx using an AXI bus interfaces instead of PCIe used on the
Intel platform. This enables the support of our hardware
virtualization concept for coprocessors with a low latency in-
terconnect on a typical embedded system architecture. The
software based approach can also benefit from the onchip
interconnect when integrating of the cryptographic module
directly onto the application processor.
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