ProvenCore: Towards a Verified Isolation Micro-Kernel

Stéphane Lescuyer
Prove & Run
77, avenue Niel
Paris, FRANCE
stephane.lescuyer@provenrun.com

ABSTRACT

We report on an ongoing project aiming at a fully secure
micro-kernel named ProvenCore. This operating system is
both developed and specified in a single specification lan-
guage called Smart. The Smart models are used to generate
efficient C code and express low- and high-level properties
of the implementation, and first among them guarantees of
integrity and confidentiality for the various processes run-
ning on the kernel. ProvenCore is designed to be used as
a secure world operating system in mobile devices, beneath
a professional application platform or a Trusted Execution
Environment.

Keywords

Separation Kernel, Isolation, Formal Proof, Certification Tool-

chain

1. INTRODUCTION

As formal methods for software verification gained in scal-
ability and maturity, they became ripe for use in industrial
applications as a complement or a replacement of other val-
idation techniques on critical pieces of software. Their use
is acknowledged by official standards, such as in the latest
version DO-178C of the norm for airborne systems [7], or
in evaluations at the highest levels of the Common Criteria

(CC) M.

Operating systems bear a central role in computing systems,
in that all software that runs on the system depends in one
way or another on the OS, as much as on the hardware be-
neath it. Also, operating systems typically run in privileged
modes in which there is no protection from some faults and
where bugs can have arbitrary effects on the system. There-
fore, formally verifying an operating system is a key step
in achieving a trustworthy software architecture, in particu-
lar in bringing full meaning to formal verifications of other
components that would run on said OS. In a similar way,
compilers are key components because they bridge the gap
between the sources and the actual executable binaries. This

issue has been addressed in different ways, by providing a
full-fledged certified C compiler such as CompCert [I1], or by
a case-by-case equivalence proof between source and binary
code, as in sel4 [14]. Much effort has been invested to ad-
dress the issue of operating systems as well, targeted specif-
ically at micro-kernel architectures (seL4 [10], PikeOS [3],
OLOS [13]) or hypervisors/virtualization plaforms (baby hy-
pervisor [0]).

Modern handsets and tablets have become ubiquitous and
their usage has evolved to encompass more and more sen-
sitive applications, like e-banking and digital rights man-
agement (DRM). Both users and service providers require
secure environments for that sort of applications, unfortu-
nately typical high-end operating systems for mobile devices
are way too large to be amenable for formal verifications.
The ARM TrustZone technology [5] adds specific hardware
support to ARM processors that separates the execution
platform in two worlds: the “rich” or “normal” world on one
side, and the “secure” world on the other side. A simple
ultra-privileged mode called “monitor” mode allows control
to switch from one world to the other. Rich operating sys-
tems like Android or iOS can run on the rich side without
modifications, along with their vast range of user applica-
tions on top, whereas security-critical services can run in the
protected secure world. This secure world requires its own
operating system, which need not be as versatile as the one
on the rich side. This architecture can for instance be used
to separate the personal and professional worlds on a sin-
gle handset, thus allowing a secure Bring Your Own Device
(BYOD) policy. Another possible application is to equip the
secure world with a Trusted Execution Environment (TEE),
as specified by Global Platform [4], which acts as a specific
kernel for secure services called Trusted Applications, such
as DRM management, cryptologic functions, etc.

This article presents ProvenCore, a micro-kernel currently in
development at Prove & Run which aims at being formally
proven and suitable for use on the secure side of a Trust-
Zone architecture, either as the basis of a BYOD stack (see
Fig.[M) or a TEE. In Section 2] we present the most salient
features of ProvenCore, as well as the security policies it can
implement, and its high-level properties. The development
of ProvenCore is performed in a specific language and tool-
chain also developed by Prove & Run, which we detail in
Section [3l Finally, in Section] we sketch the architecture
of the formal proof of the ProvenCore’s functional specifica-
tions and isolation properties.

Normal World

o SN S N

\ |V| ¥ ~‘:. \ §§\
; Anplicati Applicati

Secure World

- — r—Software
Operatin,
P € ProvenCore
System
Monitor World ; TrustZone Monitor
R N A 3
—Hardware

Trusted
Computing Base

Figure 1: Overview of a possible BYOD architecture
based on TrustZone and ProvenCore

2. ProvenCore

Overview. ProvenCore is a micro-kernel that is largely in-
spired by Minix 3.1 [I5]. Unlike Minix 3.1 which was de-
signed for x86 processors and used segmentation, Proven-
Core is designed for ARM architectures and uses Memory
Management Unit (MMU) to manage virtual address spaces
for the various processes and ensure their isolation. We chose
Minix to start with because of its micro-kernel architecture,
the way it is relatively simple and well documented, yet ver-
satile and efficient enough for the applications we have in
mind.

The micro-kernel architecture is essential to make a formal
proof possible since by design it allows to reduce the Trusted
Computing Base (TCB) to a bare minimum, and therefore
the amount of code that must be formally specified as well.
Indeed, micro-kernels typically only have the critical services
running in privilege mode, the actual “kernel”, while other
secondary features, in particular file systems or drivers, run
as unprivileged services over said kernel. Note that the TCB
is not necessarily reduced to the privileged layer, because the
kernel may depend in one way or another on one of the un-
privileged services, in which case this service belongs to the
TCB as well. It is a difference between pure micro-kernel
design for software modularity, and micro-kernel design for
proof containment: that some feature may be moved to some
unprivileged service does not entail that it is not in the TCB,
the kernel should not depend on it or be sufficiently defen-
sive with respect to the values returned by this service. Fig-
ure [2] shows the typical architecture of Minix, with the low-
est layer being composed of three processes called the kernel
tasks, the intermediate layer of so-called system processes,
user-mode services such as the Process Manager (PM) or
the File System (FS), and the top layer of regular user pro-
cesses. System processes and kernel tasks communicate via
message-passing [PCs, and the PM in particular is in charge
of much work, e.g. telling the kernel where to allocate new
processes, where to copy data and code when on fork() and

INIT SHELL

<

PM FS

| pmaata
_ ICB

SYSTEM KERNEL CLOCK
Kernel data structures

Figure 2: Minix 3 architecture, with TCB outlined

exec() system calls. The kernel trusts the PM, in that it
does whatever is required of him by the PM, which indu-
bitably makes the PM part of the TCB, as we outlined on
Fig. the PM code does not need to use privileged in-
structions, yet it is critical for the separation that the kernel
must guarantee. On the contrary, we made sure the FS and
the various drivers needed not be trusted by the kernel, by
making the latter more defensive. In essence, the proofs we
perform make no distinction between system processes and
user processes, and a malicious system process cannot bring
the system down anymore than a user one.

Another issue with the Minix 3 TCB is that it therefore con-
sists in four different processes, communicating with each
other with the generic IPC mechanism, three of which (the
kernel tasks) run with interrupts disabled and the PM run-
ning with interrupts enabled. This means that the TCB is
everything but sequential code, and makes formal reasoning
about its behaviour on the source code level rather imprac-
tical. For instance, we identified that some invariants of the
system implicitly depended on the PM having higher priority
than other system processes, which in itself was not enforced
by the kernel since the PM could be subject to preemption
and priority penalties. For these reasons, we moved the PM
to the lowest layer and merged all four processes in a single
ondl. Doing so, we reach an architecture with a sequential
TCB suitable for program verification, as in Fig.

A sequential TCB means in particular that all the code in
the TCB runs with interrupts disabled, which is not an issue
in our setting since there are no real-time constraints for the
ProvenCore applications that we have described above.

Features.ProvenCore is a rather general-purpose micro-
kernel and provides the following features:

e creation, deletion of processes;

e execution of programs taken from a given set of codes
in the kernel image, that constraint arising from the

!The PM aside, the kernel tasks have been merged in a
similar way in the most recent versions of Minix.

INIT SHELL
PM FS
e
SYSTEM :
——— KERNEL ;—— CLOCK
I Kernel data structures

— 5 IPCcall — @ Function call

Figure 3: Minix 3 TCB made sequential

need to not depend on a file system, and completely
reasonable in a “closed” setting like a TrustZone se-
cure world, where available codes will be checked and
authorized beforehand by the OEM for instance;

e synchronous message-passing inter-process communi-
cations with timeouts;

e asynchronous notifications, also used to notify user-
space drivers of hardware interrupts;

e process-to-process data copies, guarded by a precise
system of authorities managed by the processes them-
selves using dedicated system calls;

e a shared memory system a la System V to allow po-
tential zero-copy transfers, which can be essential when
dealing with DRM for instance.

The kernel also manages various authorities and privilege
structures that enable him to enforce a certain number of
security policies. Some of these are static and part of the
initial kernel configuration, but can be reconfigured for each
concrete architecture without invalidating the proofs from
Section @] while others are added and removed at run-time
by the processes themselves. The security policies that are
enforced by ProvenCore are as follow, using the classification
given in the MILS architecture document [2]:

Resource allocation policy There are two sides to re-
source allocation, one for time and one for space:

e time resource policy is rather limited: Proven-
Core’s scheduler uses round-robin with priority
queues and the static configuration can specify a
maximum priority for each process independently;
at run-time, a process can try and change its own
priority, but it won’t go beyond the maximum au-
thorized priority;

e the amount of physical pages that some code can
allocate can be limited at a process’ creation, to
allow for instance a TEE to limit how much phys-
ical memory each of its TA can pretend to.

Access control policy Access to the various system calls
is configured on a call-by-call, process-by-process basis
so that it is possible to reserve certain system calls
for some processes in the image, for instance to forbid
forking or IRQ registering to Trusted Applications.

Moreover, process-to-process copies are controlled by a
mechanism of authorities which specify where a copy
can read or write, who can ask for a copy, who can
manage the authority itself, etc. These authorities are
modified by the processes as they see fit, and managed
by the kernel to ensure that every process-to-process
data transfer has been agreed upon by both endpoints
beforehand.

A similar system protects the shared memory machin-
ery as well, albeit with slightly different constraints.
For instance, ProvenCore forbids that two processes
have write access to the same page at the same time,
which is necessary to preserve a strong isolation prop-
erty.

Information flow policy Information flow is controlled by
statically configurable data on a process-by-process ba-
sis, and can be used to allow or disallow IPCs in both
ways, or just one way, or just allow asynchronous noti-
fications, etc. This mechanism is used by Minix origi-
nally to enforce that synchronous IPCs go “downward”
in the architecture of Fig. 2] to prevent deadlocks alto-
gether and also to prevent system processes or kernel
tasks to be stuck waiting for a less privileged process.
ProvenCore keeps this mechanism, in particular the
TCB process can only perform asynchronous notifica-
tions, and can only receive a kind of ask-and-wait-for-
a-reply IPC so that it is ensured that processes asking
the kernel for something will politely wait for an an-
swer.

Isolation. To conclude this presentation of ProvenCore, we
explain what exactly are the high-level properties that it
should verify, and why these properties in particular. The
typical property of interest for such a system is non-inter-
ference [12]; unfortunately, it is typically not true as is be-
cause on one hand processes do interfere willingly via IPCs
and copies, and on the other hand the finiteness of phys-
ical resources makes the existence of processes potentially
observable by all. The main property of ProvenCore is the
isolation property, which can be divided into the two follow-
ing properties, each being a limited form of non-interference:

Integrity Integrity ensures that the resources of a process
(code, data, registers) cannot be tampered by other
processes, unless said process gave explicit authoriza-
tion therefor.

Confidentiality Confidentiality ensures that the resources
of a process (code, data, registers) cannot be observed
by other processes, unless said process gave explicit
authorization therefor.

Integrity ensures that a process will run as if it were alone on
the system, until it actually decides to interact with another

process. In particular, it can be preempted and rescheduled
and will see no difference in its state. Confidentiality on the
other hand ensures that provided that it does not send one
of its secrets to other processes, the process can change its
secrets without other processes being able to depend on this
actual change.

Isolation is our main property because it is fundamentally
what the processes cannot guard against on their own. Of
course we expect the kernel to perform according to reason-
ably precise functional specifications. Nonetheless, theoret-
ically speaking, the kernel could send IPCs to the wrong
endpoints, or copy data from the wrong sources, and still
processes could come up with counter-measures such as en-
cryption, signatures, authentication protocols. What they
will always rely on, though, is some sort of safe (in the sense
of both integrous and confidential) sandbox to perform their
computations. This is why we single out the isolation prop-
erty, even if the proofs we will present in Section [also
establish functional specifications that ProvenCore verifies.

3. ProvenTools

Language.ProvenCore is implemented in a language called
Smart and developed by Prove & Run. Smart lets one write
both the implementation and the specifications, including
the various properties, axioms, auxiliary lemmas, and so on.
Smart is a strongly-typed polymorphic functional language
with algebraic datatypes (structures and variants). A de-
tailed presentation of the language is out of the scope of
this article, but the main specificity of the language is that it
helps separating data-flow and control-flow in programs. For
instance, each predicate (the name for a function in Smart)
can have an arbitrary number of outputs, associated to an
arbitrary number of labels, which act as exit codes. Labels
can be used in many ways, the two most frequent being in
stead of boolean return values or as exception values. Con-
trol is performed by catching and transforming labels, and
predicates may return some outputs only with some labels,
which for instance makes it impossible to use meaningless
outputs in exceptional cases.

Part of the language is reserved for logical specifications:
one can define pre- and postcondition contracts, local asser-
tions and loop invariants in predicates. One can also define
logical properties or inductive predicates to help in proofs,
the latter being the only part of the language that cannot
be transformed in executable code. Finally, one can assert
or prove logical properties by writing hypotheses or lem-
mas/theorems. As an example, here is a simple auxiliary
lemma on one of the abstract models of ProvenCore:

public lemma not_running_decrease_writable
(state s, prediction pi, event e,
state t, nat i, address p)

program {

istep(s, pi, e, t) =>
'is_running(e, i) =>
writable(t, i, p) =>

writable(s, i, p);

This lemma expresses that given a transition of the system
from a state s to a state ¢, summarized by a trace e, and

Code

Specs

Figure 4: ProvenTools tool-chain overview

provided that ¢ was not the index of a process running on
the system during that transition, then the set of addresses
in i’s address space that are writable by some other process
can only decrease. It is naturally a key piece of the integrity
property, and quite intuitive as well: access rights in ¢ should
not be created whilst 7 is blocked. It can decrease though,
typically if ¢ was synchronously waiting for a message and
got it during that very transition, which removed the access
rights for the sender on the same occasion.

Tool-chain. Prove & Run develops a complete tool-chain
around Smart, in the form of a set of Eclipse plugins. Al-
together, these plugins provide a complete IDE for editing
Smart models, browsing the proof obligations, proving them
and generating executable code. They include the many fea-
tures that people have come to expect from IDEs: content
assist, refactoring, quick browsing between references and
declarations, etc.

Figure @ shows what happens to Smart models once they
have been entered in the tool: Smart sources (containing
both code and specs) are compiled into Smil, the SMart In-
termediate Language, a simpler form of the language which
is used as a starting point for the two main components
exploiting Smart models: the prover and the C generator.

Prover. ProvenTools generates proof obligations for all log-
ical lemmas, theorems, preconditions, assertions, invariants
that appear in the Smart models. It also generates obliga-
tions for labels that remain unhandled in the code, forcing
one to handle all possible exit cases of all predicates, or to
prove that they are actually impossible. These proof obliga-
tions are presented to the user in a special Eclipse view next
to the Smart editors, and can be proved semi-interactively
by a combination of the following:

e a dedicated automated prover that uses already proved
obligations or assumed hypotheses to try and discharge
new obligations automatically;

e one of the many manual hints that can be applied in-
teractively in the IDE to the proof obligations;

e an oracle which tries to apply the manual hints au-
tomatically in the background, based on user-defined
strategies, and will propose a possible proof as soon
as it finds one; it differs from the automated prover in
that it is not trusted and the proofs it finds are retried
as if they had been done manually.

Whether manual or automatic, all proof steps can be browsed
in detail in the tool, which makes a possible review of the
proofs possible, unlike what happens when using black boxes
as back-end solvers. When code maintenance or evolution
breaks some proofs, a helpful system assists the user into
adapting former proofs to the new changes to make it as
easy as possible to iteratively maintain a piece of code and
its specifications, which may otherwise (and still is in some
cases) a very time-consuming task.

C Generator.The other key component that interprets
Smil programs is the generator of actual C code. It is in-
deed convenient to write the code and the specs in the uni-
fied Smart language, but the executable part of the Smart
models must then be transformed to executable code.

As explained above, Smart is a purely functional language,
which helps the formal reasoning in many ways, but the
functional computation model is not adequate for the actual
code, especially for kernel code as in the case of ProvenCore.
To that end, the C generation plug-in in ProvenTools try and
replace functional modifications of structures in the models
by in-place updates, thus effectively transforming the func-
tional implementation to an imperative one. Of course this
is only correct if the Smart code handles its different values
linearly, i.e. without never trying to read a “former” value
after applying a functional update on it. These constraints
are actually quite natural once a certain coding discipline is
acquired, and they do not apply to Smart predicates that are
only used logically, in particular in the abstract models used
in the refinement proofs (cf. SectionH). A typical example
of potentially dangerous code is that of a loop which modi-
fies various cells in an array (e.g. by following a linked list
from one cell to another), keeping a reference to some cell
(e.g. the head of the list), and reusing this cell after the loop
without first re-reading it. Stronger but similar constraints
are enforced by the typing mechanism in the memory model
used in VCC and presented in [8]. Instead, the C generation
plug-in performs various global static analyses to make sure
that it is safe to transform the code to imperative style, and
reports errors (or introduces copies, depending on whether
the user said copies were acceptable) when it cannot make
sure it would be safe. Extra analyses also allow to globalize
objects if there are at most one live instance at any time,
and remove ghost parts from the generated code. In earlier
experiments, we were able, with this method, to generate C
code for a complete model of Minix 3.1 that did not require
any dynamic allocation, and ran at a speed comparable to
the original C code.

The program transformations detailed above are not triv-
ial by any means and it is legitimate to wonder about their
correctness. First of all, we plan on targeting CompCert’s
input subset of C in our generator so as to be able to use the
certified compiler to reduce the gap between the generated
C code and the corresponding binaries. Also, CompCert’s
input semantics is formally specified and we are currently
engaged in a project with the CompCert team that involves
formally studying the gap between Smil and their input lan-
guage, aiming at proving our C generator with respect to
CompCert’s semantics. The good thing about this approach
is that we keep models effect- and pointer-free to ease the
reasoning, and push the burden of bridging the gap between
the functional and imperative worlds on a set of transfor-
mations and static analyses, which could be proved correct
once and for all.

Documentation.One of the goals of the ProvenCore project
is to achieve EALT certification of the kernel, and therefore
one of the objectives for the ProvenTools is to help achieve
high-level certifications. As explained above, all proof steps
are kept and presented explicitely in the tool, to help re-
viewing the various arguments used in proofs if necessary.
Documentation of the code and its specifications is also fun-
damental in a certification effort, and Smart has a way to
attach structured documentation to all declarations in the
languages, which the tool can use to display information
about declarations. Documentation is especially important
on all hypotheses, to the point that there is a special view
to browse all the various assumptions made in a workspace
and report those that are undocumented. Assumptions take
two forms in Smart:

e hypotheses, which are actual logical results that are
assumed;

e some Smart predicates and types are called implicit
because they have no actual Smart implementation,
but are just declarations of external implementations,
typically axiomatized in Smart and realized in C or
assembly.

For instance, the following shows an excerpt of a polymor-
phic axiomatization of a type set<A> of finite sets of elements
of type A:

public mem(set<A> s, A e) -> [true, falsel
implicit program

public add(set<A> s, A e, set<A> t+)
implicit program

public hypothesis add_mem_1(set<A> s, A e)
program {{ set<A> t }} {

add(s, e, t+) => mem(t, e);
}

It shows two implicits mem and add for testing membership in
a finite set and adding an element to a set, and one axiom
add_mem_1 specifying that after being inserted, an element
should belong to the new set. Implicit predicates are as-
sumptions because they create constraints on the explicit

SPM

FSP

TDS

Figure 5: The refinement chain

implementation provided in C, and the external implemen-
tations must be reviewed as such. In the finite set exemple
for instance, an actual implementation would require mem-
bership to be decidable, and insertion to be a total oper-
ation. To that end, the tools can help by forwarding the
documentation associated to the implicits in Smart to their
external implementations. More generally, we are working
on enhancing the tools to provide more help to automati-
cally create some of the documents required for a high-level
certification.

4. PROOFS

In the former sections, we have presented ProvenCore and
its required properties, as well as the context in which we are
developing it. This section gives a short description of the
way in which the properties are proved and how the proofs
are organized.

RefinementsThe proof proceeds by establishing refine-
ments between successive models, from the most abstract
to the most concrete, the latter corresponding to the ac-
tual model used for code generation, and the former the
one where the high-level priority, in our case the isolation
property described in Section] is defined and proved. The
different models in our refinement chain are shown in Fig.
This use of various abstract models, each more abstract than
the previous one, has several advantages:

e the different layers provide some separation of con-
cern in the overall proof, with the lower-level proofs
cluttered with low-level properties and invariants, and
devoid of functional properties, and the higher-level
centered on functional specifications;

e cach layer of abstraction makes it possible to remove
details that do not make sense anymore and would
only artificially complicate the models and the proofs
if they were kept;

e cach layer of abstraction makes it possible to change
the representation of the states of the transition system

e having a simple top-level abstract model leads to high-
level properties that are easier to express, and more
importantly easier to read.

Incidentally, a high-level CC evaluation will require differ-
ent levels of description of the system being evaluated, and
we have given our own abstract models the names based
on the different CC levels of description which reflect their
respective roles:

e the Security Policy Model (SPM) is the most abstract
level and the one at which we express and prove the
isolation property, it models the kernel as an abstract
controller and the various processes as abstract ma-
chines each enjoying their own independant physical
resources (see Fig. [1);

e the Refined Security Model (RSM) is not present in
the CC, and acts as an intermediate step in our proofs
to split the rather impractical gap between FSP and
SPM; in contrast to the SPM, the RSM machines all
share the same physical ressources, managed by the
controller (see Fig. [0);

e the Functional SPecifications (FSP) is a model roughly
equivalent to the TDS in functionality but using data
structures and algorithms that are much easier to rea-
son with; its main functional difference with the TDS
is that it uses a linear view of the RAM similar to the
RSM, i.e. MMU address translation has disappeared;

e the Target of evaluation DeSign (TDS) is the model
that is used to generate the actual C code, and there-
fore it contains the sequential Smart code of the kernel,
as well as models for hardware components (such as in-
terrupts or MMU) which are not turned into C code
but are necessary to complete the TDS specifications.

For each refinement, we proceed by defining an abstraction
view, i.e. a function from the concrete model state to the
abstract model state (represented by the upward arrows in
Fig.), and then show a correspondence or commutation
lemma that establishes that transitions from c to ¢’ in the
concrete model entail transitions from the view of ¢ to the
view of ¢ in the abstract model. It can be summarized by
the following commutation diagram:

concrete transition

C c
view fview
Y abstract transition v,
a a

This involves showing that the views actually exist, since
the view is typically not a total function. That way, as
we climb towards the higher levels, we reach models that
are simpler and more flexible than the TDS but that still
simulate all its possible behaviours. For instance, here is
the signature of the partial view from RSM to SPM, along
with the corresponding commutation lemma:

public view(rsm rsm, spm spm+) -> [true, failed]
// Exit with failed if the view couldn’t be built
program { ... }

in order to internalize in the structure of the state some
invariants of the lower layer;

Machine 1||Machine 2| |Machine 3 Machine n

ds ds ds ds
os Regs cs Regs cs Regs cs Regs

I I I I

"~ CONTROLLER
[User-accessible RAM |

Figure 6: Refined Security Model

public lemma view_step(rsm rsm, rsm_pred pi)
// The commutation lemma between RSM and
// SPM transitions
program {{ event e, spm_pred vpi,
rsm rsm2, spm spm, spm spm2 }}

{
wf (rsm) =>
?rsm.sts.step(rsm, pi, e+, rsm2+) =>
[failed error] view(rsm2, spm2+) =>
view_prediction(rsm, e, pi, vpi+) =>
[failed error] view(rsm, spm+) =>
[failed error]

spm.sts.step(spm, vpi, _, spm+) =>

spm = spm2;

}

In this lemma, rsm.sts.step represents a concrete transition,
and rsm and rsm2 play the respective roles of ¢ and ¢’ in the
above diagram, whereas spm.sts.step is an abstract transi-
tion and spm and spm2 correspond to a and a’. This com-
mutation lemma only holds for well-formed RSM states, as
indicated by the premise wf (rsm), and also expresses that the
views will not fail, by transforming their failed labels into
error labels, which is one way of asserting that something
cannot happen and must be proved. Note that the SPM
transition function is not total either, and that this lemma
proves that the transition between the views exists as well.

Model ReuseThe refinement chain presented above can
be very handy to reuse part of one proof effort in another.
There are mainly two ways that they can be used:

1. When designing an abstract model like the SPM, it is
normal to consider the high-level property for which
the SPM is being designed and simplify the model
accordingly. This may mean for instance that func-
tionalities that are irrelevant for the properties envi-
sioned may be discarded. Nonetheless, these function-
alities may be of interest in other setting, for another
high-level property, in which case it is possible to just
“branch” another SPM from the last level where the
functionality is still present. For instance, in Proven-

Machine 1| |Machine 2| [Machine 3 Machine n
i _un_ un_ _
= == Regs == Regs == Regs
[T11] mn mn mm
Data Data Data Data
Code Code Code Code

]] i i
CONTROLLER

Figure 7: Security Policy Model

Core, the scheduling disappears between the FSP and
the RSM, and if we wanted to certify properties about
the scheduler, we could write another dedicated SPM
and prove its refinement to the FSP.

2. It is also possible that a security policy model or func-
tional specifications are flexible enough that they may
account for different implementations. For instance,
ProvenCore’s SPM is very general and could be a suit-
able SPM for many separation kernels. Of course, the
lower one can “graft” in the refinement chain, the more
proofs can be reused.

We actually have experienced the second kind of proof fac-
torization possibilities above. In an earlier proof of concept,
we performed an isolation proof on Minix 3.1 on x86 with
segmentation from the SPM down to the FSP. When start-
ing work on ProvenCore, we noticed that by making the
FSP slightly less architecture-dependent, it could be flexible
enough to refine both to the original Minix for Intel with
segmentation and to ProvenCore’s TDS. This means that
by taking sufficient care in the initial design of the FSP, one
can share most of the proofs for the certification of an OS
and to a port to another architecture. The lower-level re-
finements are the harder to prove of course, but still this
may spare a lot of extra work. For instance, we spent about
3 person-years for the initial SPM-to-FSP proof of Minix
3.1, and we estimate the TDS-to-FSP refinement in Proven-
Core to roughly the same amount. This is a reasonable time
overall: sel.4 is reported to have required 11 person-years,
to which 1.5 person-year were recently added [9] in order to
achieve a proof of isolation of user processes.

5. CONCLUSION

We have presented ProvenCore, a micro-kernel being devel-
oped in a dedicated specification language Smart along with
its functional specifications. The fundamental properties en-
joyed by ProvenCore are the integrity and confidentiality of
processes. Its features would make it an ideal candidate
for a secure operating system on a TrustZone aware mobile
device.

6. REFERENCES

[1] Common criteria certification. http://www.ssi.gouv.
fr/en/certification/
common-criteria-certification/.

http://www.ssi.gouv.fr/en/certification/common-criteria-certification/
http://www.ssi.gouv.fr/en/certification/common-criteria-certification/
http://www.ssi.gouv.fr/en/certification/common-criteria-certification/

2]

[10]

[15]

Euro-mils: Secure european virtualization for
trustworthy applications in critical domains. http://
euromils.eu/downloads/
2014-EURO-MILS-MILS-Architecture-white-paper.
pdf.

PikeOS. http://www.sysgo.com/products/
pikeos-rtos-and-virtualization-concept/.
Trusted execution environment. http://www.
globalplatform.org/specificationsdevice.asp.
TrustZone. http://www.arm.com/products/
processors/technologies/trustzone/index.php.
E. Alkassar, M. A. Hillebrand, W. J. Paul, and

E. Petrova. Automated verification of a small
hypervisor. In G. T. Leavens, P. W. O’Hearn, and

S. K. Rajamani, editors, Verified Software: Theories,
Tools, Experiments, Third International Conference,
VSTTE 2010, Edinburgh, UK, August 16-19, 2010.
Proceedings, volume 6217 of Lecture Notes in
Computer Science, pages 40-54. Springer, 2010.

C. C. Ben Brosgol. Do-178c: A new standard for
software safety certification. http://www.ieee-stc.
org/proceedings/2010/pdfs/bmb2623.pdf, 2010.

E. Cohen, M. Moskal, S. Tobies, and W. Schulte. A
precise yet efficient memory model for c. Electron.
Notes Theor. Comput. Sci., 254:85-103, Oct. 2009.
M. Daum, N. Billing, and G. Klein. Concerned with
the unprivileged: User programs in kernel refinement.
Formal Aspects of Computing, 26(6):1205-1229, oct
2014.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,

R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and

S. Winwood. sel4: Formal verification of an os kernel.
In Proceedings of the ACM SIGOPS 22Nd Symposium
on Operating Systems Principles, SOSP 09, pages
207-220, New York, NY, USA, 2009. ACM.

X. Leroy. A formally verified compiler back-end.
Journal of Automated Reasoning, 43(4):363-446, 2009.
J. Rushby. Noninterference, transitivity, and
channel-control security policies, dec 1992.

M. Schmidt. Formal Verification of a Small Real-Time
Operating System. PhD thesis, Saarland University,
Saarbriicken, 2011.

T. A. L. Sewell, M. O. Myreen, and G. Klein.
Translation validation for a verified OS kernel. In

H. Boehm and C. Flanagan, editors, ACM SIGPLAN
Conference on Programming Language Design and
Implementation, PLDI ’13, Seattle, WA, USA, June
16-19, 20183, pages 471-482. ACM, 2013.

A. S. Tanenbaum and A. S. Woodhull. Operating
systems: design and implementation. Pearson, third
edition, 2006.

http://euromils.eu/downloads/2014-EURO-MILS-MILS-Architecture-white-paper.pdf
http://euromils.eu/downloads/2014-EURO-MILS-MILS-Architecture-white-paper.pdf
http://euromils.eu/downloads/2014-EURO-MILS-MILS-Architecture-white-paper.pdf
http://euromils.eu/downloads/2014-EURO-MILS-MILS-Architecture-white-paper.pdf
http://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept/
http://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept/
http://www.globalplatform.org/specificationsdevice.asp
http://www.globalplatform.org/specificationsdevice.asp
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.ieee-stc.org/proceedings/2010/pdfs/bmb2623.pdf
http://www.ieee-stc.org/proceedings/2010/pdfs/bmb2623.pdf

	Introduction
	ProvenCore
	ProvenTools
	Proofs
	Conclusion
	References

