Security Type Checking for MILS-AADL Specifications’

Kevin van der Pol
Software Modelling and Verification Group
RWTH Aachen University
52056 Aachen, Germany

kvdpol@cs.rwth-aachen.de

ABSTRACT

Information flow policies are widely used for specifying con-
fidentiality and integrity requirements of security-critical
systems. In contrast to access control policies and security
protocols, they impose global constraints on the informa-
tion flow and thus provide end-to-end security guarantees.
The information flow policy that is usually adopted is non-
interference. It postulates that confidential data must not
affect the publicly visible behavior of a system. However,
this requirement is usually broken in the presence of crypto-
graphic operations.

In this paper, we provide an extended definition of non-
interference for systems that are specified in a MILS variant
of the Architecture Analysis and Design Language (AADL).
More concretely, we propose a type system for MILS-AADL
component definitions that distinguishes between breaking
non-interference because of legitimate use of sufficiently
strong encryption and breaking non-interference due to an
unintended information leak. To this aim, it tracks both
intra- and inter-component information flow and considers
both data- and event-flow security.

Keywords

Security, MILS components, information flow, type system

1. INTRODUCTION

Modern critical systems bear great responsibilities and face
escalating challenges that require the assurance of security,
safety, and other dependability attributes. With respect to
the verification of security properties, most existing tech-
niques concentrate on access control policies and security
protocols that are essential for ensuring data confidentiality

*The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme [FP 7/2007-2013] under grant agreement no. 318772
— Distributed MILS for Dependable Information and Commu-
nication Infrastructures (D-MILS)

Thomas Noll
Software Modelling and Verification Group
RWTH Aachen University
52056 Aachen, Germany

noll@cs.rwth-aachen.de

and integrity, but do not provide end-to-end security guar-
antees. Access control policies do not track information flow
through the entire system and do not cope with implicit
information flow. Similarly, cryptographic components are
used for secure communication and authentication but do
not guarantee any global security properties.

Information flow policies |3, 4, [8] are natural for specifying
end-to-end confidentiality and integrity requirements because
they impose global constraints on the information flow. For
example, an access control policy can require that only users
with the appropriate rights can read a file while an infor-
mation flow policy would require that only users with the
appropriate security level can get any information about
the content of a file, even indirectly. Verification of such
properties has to meet the following challenges:

e Information flow properties are more complex than
safety and liveness properties because they are defined
in terms of sets of possible system traces.

e The analysis has to take into account malicious agents
that try to corrupt the system.

e To scale, the verification has to be modular, i.e., the
implementation of each (benevolent) component should
be separately analyzable.

The information flow policy that is usually adopted is non-
interference. This notion has first been defined in (8] in order
to capture the presence of illegal flows from a group of users
to another. It requires that confidential data must not affect
the publicly visible behavior of the system. In other terms,
if the security levels are classified as being either low or high,
then a low-level user must not be able to detect the values of
the high-level data by observing the low-level data behavior.

This traditional notion of non-interference can be very non-
intuitive, and it is almost impossible to find real systems
without interfering data. For example, a classical password
verification communication is interferent, as the value of the
public data (server’s response) depends on the secret input
(password). In general, the requirement that public outputs
are unchanged as secret inputs are varied is usually broken in
the presence of cryptographic operations. Thus, the challenge
is to distinguish between breaking non-interference because
of legitimate use of sufficiently strong encryption (so-called
cryptographically-masked information flows) and breaking
non-interference due to an unintended information leak.

Case Grammar

Type T = int | bool | key | enc 7 | (7...,7T)
Expression ex=mnl|z|ede]|(e...,e) | e[n]
System S = system s(S* P* C* V* M* T%)
Port P ::= p:(in | out)(event | data 7 e)
Connection C ::= ([s.]p, [s.]p)

Variable Vi=zxz:Te

Mode M ::= m: [initial] mode

Transition T ::= m-[[p|] [when €] [then z :=¢e]]->m/

Table 1: MILS-AADL syntax

In this paper, we provide an extended definition of non-
interference for systems that are specified in a MILS variant
of the Architecture Analysis and Design Language (AADL;
[16]). This language has been developed within the D-MILS
project |1] and is entitled MILS-AADL [5]. We propose a
type system for MILS-AADL system definitions that prevents
dangerous system behaviour. To this aim, it tracks both
intra- and inter-component information flow and considers
both data- and event-flow security.

The remainder of this paper is organized as follows. Section[2]
gives a brief overview of the MILS-AADL language. Section 3]
describes the relevant security concepts. Section [introduces
the type system. Section [5| sketches a correctness proof of
the claim that well-typed specifications are non-interfering.
Finally, Section [f] draws some conclusions and points to
ongoing and future work.

2. THE MILS-AADL LANGUAGE

The specification language MILS-AADL [5] has been devel-
oped within the D-MILS project and is intended to serve as
the user-facing representation for model-based design of D-
MILS systems. Essential features are component definitions
in terms of interfaces and implementations, their architec-
ture and interaction through data and event ports, their
internal behavior, and security-related mechanisms such as
encryption and authentication.

2.1 Syntax

We analyze models described in a simplified version of MILS-
AADL, a modeling language based on the AADL language.
The full MILS-AADL language is described in detail in [5],
our simplified version can be found in Table[l} MILS-AADL
combines an architectural and behavioral description of a
system s, as follows: one describes a hierarchy of systems
(merging ‘component types’ and ‘component implementation’
in the full MILS-AADL language), each possibly contain-
ing subsystems, input ports, output ports and connections
between ports of different systems. The highest or out-
ermost system in this hierarchy is called the root system.
This describes the architecture. We distinguish event ports
and data ports. Event ports can trigger changes in behav-
ior. Data ports are used to communicate data values to or
from the environment. This is the behavior, described as
an automaton with ‘modes’ and ‘transitions’ between them.
Transitions are labeled with an event given by an event port
p (input/output events are consumed/produced when the
transition is taken, respectively), a guard expression (the
transition is enabled only when the guard evaluates to true)

crypto controller
bypass

- » split merge |—p

- p{CTypto

Figure 1: The architecture of the crypto controller system of
Ezample . The dashed lines indicate that confidential data
travels along these connections. This figure is only intended
to give an overview of the crypto controller architecture.

and a list of effects 1 :=e1;...;Tn := en (expressions are
evaluated in the source mode and assigned simultaneously
to these variables). In this paper, we assume there is only
one effect per transition. The event, guard and effects are
all optional. If the event is omitted, no port’s event will be
consumed or produced. If the guard is omitted, it equals
true. If the effect is omitted, the system’s variables remain
unchanged.

Specifically with respect to security, MILS-AADL provides
security primitives in its expression language. Most impor-
tantly for this paper, there is encrypt(m, k), taking a message
m of some type 7 and a public key k : key and producing
a ciphertext of type enc 7. The original message can be
decrypted from the ciphertext using the decrypt function:
decrypt(c, k') : T takes a ciphertext ¢ : enc T and a private
key k' : key to reproduce the message. If k' is the matching
private key to the public key k used for encryption, this
message is the original message m. Otherwise, decryption
fails and the statement containing the decryption expression
deadlocks.

Ezample 1. The running example of this paper is taken
from [12]. A cryptographic controller is placed between
a secure computer and an untrusted network, encrypting
all data going from the secure computer to the untrusted
network. However, only the payloads of the messages are
considered confidential, not their headers. We want to ensure
the confidentiality of the payload. A visual representation of
this system’s architecture is given in Figure

system cryptocontroller(
inframe: in data (int,int) (0,0)
outframe: out data (int,enc int) (0,encrypt(0,k0))
mO: initial mode
system split(
frame: in data (int,int) (0,0)
header: out data int O
payload: out data int O
mO: initial mode
mO0 -[then header:=frame[0];
payload:=frame[1]]-> m0

then o:=encrypt(i,k)

Figure 2: The crypto system.

system bypass (

iheader: in data int O

oheader: out data int O

mO: initial mode

m0 -[then outheader:=inheader]-> m0

)

system crypto(

inpayload: in data int O

outpayload: out data enc int encrypt(0,k0)
k: key kO

mO: initial mode

m0 -[then outpayload:=encrypt(inpayload,k)]-> mO
)

system merge(

header: in data int O

payload: in data enc int encrypt(0,k0)
frame: out data (int,enc int) (0,encrypt(0,k0))
mO: initial mode

m0 -[then frame:=(header, payload)]-> mO

)

connection (inframe, split.frame)

connection (split.header, bypass.inheader)
connection (split.payload, crypto.inpayload)
connection (bypass.outheader, merge.header)
connection (crypto.outpayload, merge.payload)
connection (merge.frame, outframe)

This illustrates how systems can be combined to larger sys-
tems. For the remainder of this paper, we consider the crypto
system in isolation, as it contains the relevant security prim-
itives we want to focus on, with inpayload abbreviated to i
and outpayload to o.

We visually represent modes with circles and mode transitions
with arrows between them. Modes and transitions with a high
confidentiality, which will be explained later, are drawn with
dashed lines. The crypto system’s behavior is illustrated in
Figure (End of example 1.)

Other security primitives included in full MILS-AADL are
signing and hashing, which are not discussed in this paper.
For signing, this is because integrity is fully dual to confiden-
tiality. The analysis laid out in this paper to secure systems
against data leaks, can be straightforwardly applied to secure
systems against breaches of integrity. For hashing, this is
because hashing provides only quantitative security and we
are interested in qualitative security. An attacker can guess
the contents of a hashed value and test if this guess is cor-
rect. The assumption that this guess will almost certainly be
incorrect is what makes the hash functions secure in a quan-
titative setting. In our qualitative setting, however, we have
to consider any information leak impermissible. Volpano [17|
notes that “[secure type rules for hashes] are certainly not
sound with respect to non-interference”.

2.2 Semantics

The semantics of full MILS-AADL are formally defined in
[6]. We present the semantics directly as a labeled transition
system (LTS). The states are given by the modes of all
(sub)systems and the values of the data ports and variables.
The transitions are given by the mode transitions and changes
in input data ports under the control of the environment. The
label is the event if it is present, an internal action otherwise.
We denote internal actions by omitting the label. In the case
of input data ports, it is the port and the new value. Not all
mode transitions lead to a corresponding transition in the
LTS. A mode transition is enabled in the LTS if and only if
the guard evaluates to true in the source mode, and

1. there is no event,

2. the event is an input event port and the system is the
root system, or

3. the event is an input event port and is connected to
another system’s output event port, taking a transition
on this event simultaneously,

and vice versa for output ports. Input data ports are con-
trolled by the environment and can change their value at
any time. Output data ports change their value in an effect.
Input event ports can provide an event to trigger a transition
with that port as event. Output event ports emit such an
event when a transition is taken with that port as event.

For data port connections, values at the source end (an
output port, or an input port going to a subsystem’s input
port) travel instantaneously to the corresponding target end.
This is included in the transition that changes the data value
at the source end. Similarly for event port connections: the
event travels along the connection instantaneously.

Ezample 2. The semantics of the crypto system of Ex-
ample [1] is an LTS, where the state space is the cartesian
product of the mode and the possible values for each input
and output data port and each variable. In the example, this
is the cartesian product of the singleton set of modes {m0},
the integers (for i), the ciphertexts with integer contents (for
o), and the keys (for k), which we denote by the set K:

S ={mo} X Z x {encrypt(z,k) | z € Z,k € K} xK
The initial mode is given by the mode marked ‘initial’ and

the default values in the declarations of the data ports and
variables:

so = (mo, 0, encrypt(0, ko), ko)

Finally, the transition relation — is the union of two cases:
first, input data ports can change their value at any time.
All other values remain equal. So, for any m,i,4’, 0, k, we
have a transition

(m,i,0,k) == (m,i’,0,k)

Second, the mode transition from mg to itself can be taken
spontaneously (as the triggering event is omitted), updating
the output port o. For any ¢, 0, k, we have:

(mo,i,0,k) — (mo, i, encrypt(s, k), k)
(End of example 2.)

3. SECURITY

This section introduces the relevant security concepts. First,
we make precise what we mean by confidentiality levels. This
allows us to further clarify non-interference and introduce
the concept of possibilistic non-interference. Then we explain
what attackers can observe, by defining the low equivalence
relation. Finally, we explain the problems of non-interference
in a context with non-determinism and pose restrictions on
our language to resolve these problems.

3.1 Confidentiality levels

A confidentiality level describes what data is confidential and
what is public.

W.l.o.g., we assume that there are two confidentiality levels,
H (high) and L (low). Intuitively, the high confidentiality level
means that information is to be kept secret and not made
visible to the outside world. No such restriction is placed
on data with a low confidentiality level. We occasionally say
some data is ‘secret’ to mean it has a high confidentiality
level. The data marked L may also be considered H (but
certainly not the other way round!), denoted H C L. We
assume the relation C is a preorder. This relation will be
used in Section to define subtyping.

For integrity, there is a dual integrity level. Where confi-
dentiality restricts the flow of high-confidentiality variables
to untrusted output channels, integrity restricts the flow of
untrusted input channels to high-integrity variables. Since
integrity is fully dual to confidentiality, we omit it for brevity.

3.2 Possibilistic non-interference

Standard non-interference states that low confidentiality out-
puts may not change when high confidentiality inputs are
changed. In a system such as the crypto controller example
of Section [1} this is violated. However, this system could be
considered safe because encryption masks the information
from any attackers. Thus, standard non-interference rejects
arguably secure and intended uses of encryption.

A different variant of non-interference aims to repair this
defect. In possibilistic non-interference [11], we look at the
possible values after encryption instead of the actual value.
We assume that the result of encryption is possibly any value
in the ciphertext domain. Varying the contents now does not
change the possible outcomes of encryption: any ciphertext
is still a possible public output. Encryption is an instance of
declassification [15], where an expression which depends on
secret values is not itself secret.

Care must be taken, however, that not all ciphertexts are
the same. Simply considering all ciphertexts as equivalent
observations to an attacker opens the door for a problem
known as occlusion |14]. Occlusion is when a declassification
mechanism is abused to ‘launder’ secret data not intended for
declassification. We consider a class of occlusion problems
called implicit data flow [13], where secret data becomes
observable through its influence on the control flow. This is
in contrast to explicit data flow, where secret data is directly
assigned to public variables.

We illustrate implicit data flow with the following specifica-
tion (adapted from [2]):

system implicitdataflow(
s: bool //secret
v: int //secret
k: key //secret
ol: out enc int //public
02: out enc int //public
mO: initial mode
ml: mode
m2: mode
mO -[then ol := encrypt(v,k)]-> ml
ml -[when s then 02 := encrypt(v,k)]-> m2
ml -[when not s then 02 := o01]-> m2

In this specification, inequality of ol and o2 reflects the
secret s. Even though in both occurrences of encrypt(v,k)
all ciphertexts are possible, the actual values could also differ,
which is not possible in the assignment 02 := ol.

To combat implicit flows, we must be more careful what
ciphertexts we declare to be indistinguishable to an attacker.
We re-use the result from [2], where they discuss this specific
issue. They assume an indistinguishability equivalence on
ciphertexts, =, such that for any v, k,v’, k’:

Yu € encrypt(v, k) . Ju' € encrypt(v', k') . v = ', and

Ju € encrypt(v, k),u’ € encrypt(v', k') . u # u'.

We refer to that paper for the following results on this indis-
tinguishability relation on ciphertexts:

e The first condition allows for safe usages in the sense
of possibilistic encryption. It excludes the existence of
a ciphertext u € encrypt(v, k) that is distinguishable
from any u’ € encrypt(v’, k).

e The second condition prevents implicit flow. It states
that not all ciphertexts are indistinguishable.

e Both conditions are realistic for encryption schemes
with the computational security properties Indistin-
guishability under Chosen Plaintext attack (IND-CPA)
and Integrity of Plaintexts (INT-PTXT) (by a previous
result from Laud [10]).

3.3 Low equivalence

We use the indistinguishability equivalence on ciphertexts
to define what attackers can observe under possibilistic non-
interference. The intuition is that attackers can see the
value of low variables, but cannot distinguish between high
variables. With possibilistic non-interference, we assume
that attackers can observe that ciphertexts change when
their contents change, but this still does not give them any
information on what the contents are: some ciphertexts ‘look
the same’ to the attacker. We formalize this by the low
equivalence relation ~, defined in Table

Two values are low equivalent iff. under the given confi-
dentiality level, the two values are indistinguishable to an
attacker.

Case Low equivalence
Integers N ~ipe L 1 N ~ien 1
S T 7
Booleans b "~bool L b b ~bool H b
/ /
U1 ~rp U1 Un ~7, Un
Tuple 7 7
(U17-~~7Un) N(T1,eTn) (U1,~“7Un)

Public keys kpublic "~key L kpublic

1 /
Private keys Kprivate ~xey i Khrivate
kl ~key H k?
Ju1, k1.v1 = decrypt(ui, k1) v1 ~r v2
Fug, ko.v2 = decrypt(usg, k2) u1 = u2
U1 ~enc 7 L U2

Ciphertext

Table 2: Low equivalence

3.4 Non-determinism

It has been shown that in a non-deterministic setting, non-
interference is not compositional [11]. In other words, the
composition of two non-interfering systems, is not necessarily
non-interfering. The counterexample to non-interference
compositionality given in that paper, are two communicating
systems which are secure individually because they can non-
deterministically choose between two alternatives, hiding
whether a change in output is due to this choice or a secret
input. When composed, however, this non-deterministic
choice becomes observable and non-interference is broken.
Put differently, the problem here is that the strategy to
resolve the non-determinism has to remain secret. This
problem is related to the so-called refinement paradoz |9|:
non-interference is not preserved under refinement.

Compositionality of non-interference is a useful property
to have, as our model is compositional. Preservation of
non-interference under refinement is useful for software en-
gineering. We avoid both of these problems by excluding
non-determinism emanating from high-confidentiality data,
except for the specific case of non-deterministic encryption
(discussed in Section . Since our expressions do not con-
tain non-deterministic choice, the unwanted non-determinism
we wish to exclude, can only come from interleaving or mul-
tiple transitions being enabled.

This non-determinism is only a problem for modes that deal
with confidential data, which we will mark as high confi-
dentiality modes, and we require that the transitions from
high confidentiality modes to other modes are not observable.
This is illustrated in Figure [3a] High and low confidentiality
modes will be explained later in Section Systems must
be deterministic in the following sense: we require that the
path of low confidentiality modes, i.e. observable parts of
the path, does not depend on non-determinism from inter-
leaving or multiple transitions being enabled. Specifically, at
most one transition may be enabled by an event, and if a
transition leaves a low mode using any high confidentiality
information, the next low confidentiality mode on the path is
fully determined by the initial low mode. Thus, a model in
which the event and transition guards overlap is not allowed

(cf. Figure 3b).

_'S
(a) Transitions from a confidential mode to another
mode, may not be observable. In this example, the
value of the boolean secret s can be inferred from ob-

serving transition e. This is verified by type checking
(cf. Section 4 4).

f@fé

) Non-determinism from overlapping events or guards
1s not allowed.

() €1 ()
S

7
é h
(¢) The next low confidentiality mode on a path must
be determined by the initial low mode. In this example,

the boolean secret s can be learned from observing
transition e; or es.

~ \

§ Ot

/

(d) Zenoness restriction. Performing high confidential-
ity actions indefinitely is not allowed. In this example,
entering the confidential self-loop is (eventually) observ-
able to an attacker, even without explicit observable
transitions.

Figure 3: Restrictions on the models. We verify through type
checking that the first restriction holds. The other restrictions
are assumed to hold, but we do not verify this.

A model in which two transitions with different secret events
(or non-overlapping guards dependent on secret variables)
are enabled, leading to different low confidentiality modes, is
not allowed, either (cf. Figure .

We will not verify these non-determinism restrictions our-
selves. Automatic verification of these restrictions is possible,
but outside of the scope of this paper. Rather, we assume the
model obeys these restrictions and the user has independently
verified this.

3.5 Restrictions

Similarly, non-interference can be broken by observing whe-
ther or not a program terminates. In our setting, models
run indefinitely except when there is a deadlock or when
decryption fails because the decryption key does not match
the encryption key. We therefore additionally require that
path segments using high information either always or never

Case Grammar Case Type rule
Level ocux=H|L Integer TFEn:int L
Basic type t::= int | bool | enc T
Security type 7= to |keyo | (1,...,7T) Boolean TFb:bool L
Expression ex=nl|z|ede]| (e...,e) | e[n]
System S = system s(S* P* C* V* M* T") Variable T(x)=r7
Port P::= p:(in | out)(event o | data T €) Trz:T
Connection C ::= ([s.]p,[s.]p) Tuol Tke:m Tren:Tn
Variable Vi=ua:Te pie TF(e1,...,en) : (T1,...,Tn)
Mode M ::= m: [initial] mode o)
1< < TF e €n) sy Th
Transition T ::= m-[[p] [when ¢] [then x :=¢]]->m’ Projection ='= nT - (1, e) (71 7n)
(Symbols with changed definitions appear in italics) T . (1, en)lil s 7
ey :1t1 01
TH it tt Xta =t
Table 3: MILS-AADL syntax with security types Operator C2il202 it Xt
TrHeir®@es:t (01 |_|(72)
. Threi:m Threx:key L
reach some transition with an observable action. Encryption T + encrypt(es, e2) : enc 7 L
Threi:encTto TFes:key H
Moreover, we employ a condition related to the Zeno phe- Decryption ! 2 Y

nomenon, where it must never be possible to do high confi-
dentiality actions indefinitely, leading to no observations for
an attacker. This restriction is taken from [7], who note that
“no realistic model of information flow could accept [high
users] making infinitely many actions without letting [low
users] observe this”. This is illustrated in Figure

Since termination checking is no small problem, we will not
attempt to verify these restrictions ourselves. As for the
non-determinism requirements, we assume the user has inde-
pendently verified that the model obeys these restrictions.

4. THE TYPE SYSTEM

To describe what data is confidential and what is public, we
enhance the type system described in Section 2] by attaching
a security type to the relevant syntactic constructs. We
then type check the annotated model to verify that it is
non-interfering.

4.1 Syntax

The user annotates each mode, port and variable with a
confidentiality level. For port and variable values, this confi-
dentiality level can be lowered by encrypting. The new type
syntax is described in Table These annotations yield a
function T" mapping data ports and variables to their de-
clared type, and mapping modes and event ports to their
declared confidentiality level.

For keys, we fix the confidentiality level as follows: private
keys are always H, public keys are L. A generalized confi-
dentiality level for keys is possible, but does not add any
interesting cases.

We use the function lvl to give the confidentiality level of a
type. Formally, lvl is defined as follows:
Wwl(to) =0
lul(key o) i =0
Wi((11,...,m)) = Wl(m) U - Ulvl(m)
We lift the definition of lvl to expressions in the obvious

way. Moreover, for a mode m, let lvl(m) be its declared
confidentiality level, and similarly for an event port p.

T I decrypt(er, e2) : 7°

Table 4: Type rules for expressions

Ezample 3. We annotate the crypto system of Example []]
with confidentiality levels. The incoming payload i is con-
fidential, i.e. of type int H. The outgoing payload is the
incoming payload encrypted with k. The ciphertext’s con-
tents are of type int H, but the ciphertext itself has a low
confidentiality. So, the outgoing payload o is of type enc
int H L. The encryption key is public, i.e. key L. The mode
is also annotated. We will explore confidentiality levels of
modes later. The annotated example is as follows:

system crypto(

i: in data int H O

o: out data enc int H L encrypt(0,k0)
k: key L kO

mO: initial mode L

m0 -[then o := encrypt(i,k)]-> m0

)

The corresponding function T is as follows:

T(i) = int H

T(o) = enc int HL

T(k) =key L
T(mo0) =L

(End of example 3.)

For a system annotated with confidentiality levels, we verify
non-interference by type checking.

4.2 Expressions

We first consider type checking for expressions. The type
rules for expressions can be found in Table @ For obvious
reasons, the type rules are considered in the context of T
Integers and booleans are of a low confidentiality by de-
fault. They can be considered secret through subtyping, as

Case Subtype rule
I: !
Integer L,
int o <:int o
|: /
Boolean 79=9 -
bool o <:bool o
Keys key o <:key o
T <:Ti Tn <: T},
Tuple ! ! ,n -
(71, mn) <t (T4,...,Th)
i Co
Encryption T<T o%o

’ /
enc To<:encT O

Table 5: Subtyping

discussed below. Tuples and projection are standard. For
operators, we consider total binary operators where the basic
types are standard and the confidentiality level is the highest
of the operands’ confidentiality levels. Encryption lowers the
confidentiality level to L, i.e., ciphertexts can be made public.
Decryption expressions are of the type of the contents tainted
with the confidentiality level of the ciphertext, where tainting
a type T with a security level o, denoted 77, is defined as:

(t o)gl =t (cUo’)
(T1y)’ = (10, ., 70)
(key L)* := key L
(key H)? :=key H

Note that tainting keys with higher levels of confidentiality is
not allowed. This is due to fixing the confidentiality levels of
private and public keys: public keys cannot become private
through tainting.

We denote that a type 7 is a subtype of type 7/ as 7 <: 7'.
The subtyping rules are fairly standard and can be found in
Table Subtyping allows us to succinctly describe that high
confidentiality data may not be assigned to low confidentiality
variables, i.e., restrict explicit data flows.

Ezample 4. Consider the crypto system of Example
The expression encrypt (i,k) is of type enc int H L, shown
with the following derivation:

T(i)=4intH T(k) =keyL
ThHi:intH TFk:keyL
T+ encrypt(i,k) :enc int HL

(End of example 4.)

4.3 Connections

We need to restrict physical connections so that confidential
ports are not physically connected to a public port. This is an
instance of restricting explicit data flow. The corresponding
type rule infers a confidentiality level for the connection only
if it is properly connected. The corresponding type rule is:

TrEsipi:mm Thrlsape:me 11<iT2

(data connection)
T l_ (Sl.pl, Sz.pg) i T1

For event ports, the type rule is similar:
Tksipr:0o1 TESsap2:oa o1 C o2
Tt (s1.p1,52.p2) : 01

(event connection)

4.4 Modes and transitions

We now turn to type rules for modes and transitions. The
aim is to reject systems with unwanted implicit data flows
(cf. Section [3.2). We therefore attach a security level to
the modes and transitions. For modes, we require that the
user supplies this information. For transitions, we infer the
confidentiality level from the source mode and the ports and
variables it references.

Modes

The user declares modes as high or low confidentiality. Even
though we pose no direct requirements on this declaration,
the type rule for transitions indirectly restricts what modes
may be declared to be of high or low confidentiality (cf. the
remark at the end of this section). Intuitively, modes should
be declared as high confidentiality if an attacker can gain
knowledge about secret data from observing that the control
flow is in this mode. For example, when a transition to mode
m is triggered by a secret event, m is typically high.

Effects

We require that effects are properly typed. The effect is an
assignment x := e, and we require that the type of x is a
subtype of that of e. This enforces traditional type safety, e.g.
one may not assign an integer value to a boolean variable. In
our setting, by extending the type system with confidentiality
levels, it also enforces explicit data flow security, e.g. one
may not assign a confidential value to a public variable.

Ezample 5. For the crypto system of Example[3] we have
shown in Example 4| that the expression encrypt(i,k) is of
type enc int H L, which we temporarily abbreviate as 7 in
the derivation. We can use this to derive the type of the
effect o:=encrypt(i,k):

HCH
intH<:intH LCL
TIT

T)=rT (Example [)
Tro:7 Tk encrypt(i,k): 7
T F o:=encrypt(i,k) : 7

(End of example 5.)

Transitions

Finally, we infer a confidentiality level of the transition itself
which reflects the confidentiality level of its triggering event
and guard expression. We require that transitions going from
a high mode to any other mode do not assign any value to
a low confidentiality variable or emit a low confidentiality
event. The intuition is that observable behavior only occurs
in the transitions from a low confidentiality mode to any
other mode. First taking a transition from a high to a
low confidentiality mode is allowed, keeping in mind the
requirements of Section [3.5] This is somewhat similar to
exiting a scope in imperative programming languages.

Moreover, we disallow assigning any value to a low confiden-
tiality variable in a transition with a high confidentiality, as
this makes the occurrence of the secret event or the value of

Case Type rule
TkEp:1p
Thg:1g To<:Te Wwl(rz) Co
Transition ZF z:7e Wwl(m)C Wwil(r) o C Wl
Tke:7e Wl(m)LC lwl(re) o Clwl(ryg
Tr+m-[p when g then z:=cl->m': 0o

Table 6: Type rule for transitions

the confidential guard expression observable. This enforces
implicit data flow security.

This is expressed in the type rule in Table [6]

In conclusion, we pose the following requirements on transi-
tions:

1. The effect must be properly typed, i.e., the type of x
is a subtype of that of e: 7, <: 7e,

2. a transition from a high mode to another mode may
not be triggered by a low confidentiality event, i.e., the
source mode has a higher confidential level than the
event: lwl(m) C lvl(mp),

3. a transition from a high mode to another mode may
not assign any value to a low confidentiality variable,
i.e., the source mode has a higher confidentiality level
than the effect’s variable: lvl(m) C lvl(72),

4. a high transition may not assign any value to a low
confidentiality variable, i.e., the variable x has a higher
confidential level than the transition: lvl(7;) C o,

5. a transition is high if it is triggered by a high confiden-
tiality event, i.e., the transition has a higher confidential
level than the event: o C [vl(7y), and

6. a transition is high if its guard expression has a high
confidentiality, i.e., the transition has a higher confi-
dential level than the guard: o C lvl(7y).

Ezample 6. Finally, we show that the transition in Exam-
ple [3]is typeable. This is shown by a derivation tree using
the transition type rule. Because this tree would be rather
large, we show the requirements individually:

e In Example [5| we have shown that the effect is properly
typed.

e In the absence of a trigger event p, the requirements
with lvl(7,) trivially hold: the requirement lvl(m) C
lvl(7p) prohibits breaching confidential control flow in-
formation by emitting a public event; the requirement
o C lvl(7p) prohibits breaching a secret event’s confi-
dentiality.

e The confidentiality level of the source mode m0 and
the effect’s variable o are both declared to be L, so
lvl(m) C lvl(7z) holds.

e As the confidentiality level of the effect’s variable o is
L, the requirement lvl(7;) C o implies that ¢ must also
be L.

e There is an implicit guard true. Its type is bool L, so
the requirement o C [vl(74) holds for any o.

This is consistent with a confidentiality level of o = L for the
transition. This means the transition is typeable.

The system crypto does not contain any connections or
subsystems, so they are trivially correctly typed. Had the
system contained subsystems, we would recursively type
check these.

In conclusion, since we have shown that all connections,
subsystems and transitions are typeable, we conclude that
the system crypto is non-interfering.

(End of example 6.)

Remark

Remember that we do not impose any restrictions on the
confidentiality of modes directly. The user is free to declare
any mode as high or low confidentiality, as long as the re-
strictions in Sections [3.4] and are met and all transitions
are typeable. Intuitively, all modes are of low confidential-
ity except when they deal with confidential information. If
one were to make too many modes of a low confidentiality,
the restrictions of Section [3.4] will reject any branching on
confidential data. On the other hand, if one were to make
too many modes of a high confidentiality, transitions which
update public data will not be typeable. When the system is
typeable, the confidential data cannot spill over into public
outputs, which is exactly what we aim for.

5. CORRECTNESS

This section shows the soundness of our approach. Since this
paper presents work in progress, we formulate our lemmas
and theorems as conjectures, accompanied by a proof sketch.

5.1 Overview

We want to show that systems for which all subsystems, con-
nections and transitions are typeable, are non-interfering. A
system is non-interfering iff. a given sequence of public inputs
will always produce the same public outputs, regardless of
the secret inputs. The typical proof method is straightfor-
ward: fix a sequence of public inputs. Show that changing
the secret inputs does not change the public outputs.

In our setting, let an environment be the mapping of variables
to their values. We show that a transition from a given
mode and environment will lead to a deterministic next
observable mode (Conjecture (1)) and a deterministic next
environment (Conjecture . It remains to be shown that
this observations of this next environment are independent
from any confidential data. We show that confidential data
has no influence on the value of low confidentiality expressions
(Conjecture [3). Finally, we show that confidential data has
no influence on observations from transitions (Conjecture [4]).

5.2 Determinism

First, we show that we have sufficiently restricted non-deter-
minism to avoid the problems described in Section [3:4] Note
that not all our expressions are deterministic, because we

Case Possibilistic determinism
Integers {n}:int o
Booleans {b} :: bool o
Integers {k]; itkey o R

U 71 .. Up it Th
Tuples U X -+ X Un 2 (T1,y .00y Th)

{v | w € encrypt(v,k),u € G} :: 7

Ciphertext U:encT O
{E(z) | E€E}:T(z)o

FE :: environment

Environment

Table 7: Possibilistic determinism

are dealing with possibilistic non-interference: encrypting a
value (non-deterministically) yields any value in the cipher-
text domain. Therefore, we must first formalize what we
mean by deterministic. Intuitively, a system is deterministic
if the outcome of a transition from one state to another is
determined by the input. On LTSs, this ‘outcome’ is the tran-
sition label and the resulting state. The state is determined
by the mode and the value of all variables and data ports.
Let an environment EE map variables and data ports to their
values. A state in the LTS is then given by (m, E), where m
is the current mode and E is the current environment. We
first show that the target mode is unique:

CONJECTURE 1. Let E be an arbitrary environment and
m an arbitrary mode. For every pair of transitions (m, E) h,

(m1, E1) and (m, E) L2, (ma, E2), either m1 = ma, orli and
l2 are distinct input event ports of the root component.

Proof sketch: follows from the restriction that events and
guards do not overlap.

We then show that the target environments only possibly dif-
fer in their ciphertexts. Importantly, when such a ciphertext
is again successfully decrypted, the value obtained is again
deterministic. We define possibilistic determinism on sets of
values of a given type as in Table[7]] We also define when a
set of environments is possibilistically deterministic, which
is when for each variable and each possible value for that
variable, there is an environment that maps that variable to
that value. We now show the possibilistic determinism of
our models. Determinism for modes had already been shown.
What is left to show is the possibilistic determinism of the
environments:

CONJECTURE 2. Let m be a mode and E be a possibilis-
tically deterministic set of environments. The set of target
environments E' = {E' | (m, E) EN (m,E"),E € E} is possi-
bilistically deterministic.

Proof sketch: the value of a variable or port can only be
changed through the transition’s effect, which is an assign-
ment of the form x := e. We prove that possibilistic determin-
ism is maintained, by structural induction on the expression
e. The most interesting cases are encryption and decryption.

For e = encrypt(v, k), the set of possible values for z is
trivially the set of ciphertexts generated by v and k, which is
exactly the set @ in the case for ciphertext in the definition of
possibilistic determinism. For e = decrypt(u, k), we use that
decryption is deterministic: for any ciphertext u generated
by encrypting a value v, we re-obtain that value v.

5.3 Expressions

Lifting the definition of low equivalence to sets is straight-
forward: let © and 9’ be two sets of values. These two sets
are low equivalent iff. for each v € 9 there exists a v’ € ?
that is low equivalent, i.e. v ~, v’, and vice versa; for each
v’ € ¥’ there exists a v € ¥ s.t. v ~, v’. Similarly, two sets
of environments E and E’ are low equivalent iff. for each z
and each FE € E, there exists an environment in E' € B’
such that E(z) ~7) E'(x), and vice versa.

Possibilistic non-interference on expressions can now be ex-
pressed as follows: if an expression is evaluated in low-equi-
valent sets of environments, yielding sets of possible values,
then these sets are again low-equivalent.

CONJECTURE 3. Let T b e : 7 and let E, E' be two low
equivalent possibilistically deterministic environments. Let
0 be the set of possible evaluations of expression e in each
environment E € E, and 9’ be the set of possible evaluations
of e in each environment E' € E'. Then © ~, .

Proof sketch: to show is that for each v € ¥ there exists a
low equivalent v' € 9/, and vice versa. Because of symmetry,
one direction suffices. The proof is by induction on the
derivation of T'F e : 7. The interesting cases are encryption
and decryption, where we use the properties of encryption
and decryption at the end of Section [3:2]

5.4 Specification

Finally, we show that a typeable specification is non-interfe-
ring. This follows from possibilistic determinism on the trace
and possibilistic non-interference of typeable expressions.

It has already been shown that up to possibilistic determin-
ism, there is only one trace of modes and transitions through
the model, for a sequence of input events: for a mode m,
at most one transition m -[p when g then z:=el->m’ is
enabled per input event port p, or, if p is an output event port
or omitted altogether, it is the only enabled transition from
m. It is important to note that transitions which provide
an observable event or data change in a low confidentiality
variable or port, are only enabled from low confidentiality
modes. Thus, the observable part of this one trace consists
of the transitions from a low mode to some other mode.

We show that low equivalence is preserved under transitions:

CONJECTURE 4. Let m be a mode, F1 and B> be two
possibilistically deterministic sets of environments, and let
m -[p when g then x :=e]->m’ be a typeable transition.
Let B = {E} | (m,E1) & (m/,E}), E1 € E1} be the set of
reachable environments via this transition, and similarly for
EY. Then E) ~ Eb.

Proof sketch: we make a case distinction based on the cases
for the transition type rule outlined in Section[£:2] The inter-
esting cases are the ones with an observable effect. The other
cases are obviously low equivalent. Moreover, traces along
high modes necessarily reach a unique low mode because of
the restrictions of Section m and possibilistic determinism.
The cases with an observable effect are where the transition
either has a low confidentiality event or makes an assign-
ment to a low confidentiality port or variable. The cases are
similar and we sketch the proof for the latter. As z is of
low confidentiality, and the type of x is a subtype of that of
e, the expression e must also be of low confidentiality. As
shown in Conjecture [3] this implies that for two low equiv-
alent environments F; and FEs, the possible evaluations of
the expression e are also low equivalent. A similar argu-
ment applies to the guard expression: for two low equivalent
environments F; and FEs, the possible evaluations of a low
confidentiality guard g are also low equivalent, so the fact
that the guard is true (as the transition had been taken) does
not distinguish between E; and Ejs: either the transition
is enabled in both, or in neither. This means the sets of
possible reachable environments are low equivalent.

6. CONCLUSIONS

In this paper we have investigated an approach to tracking
the global information flow in security-critical systems in
the presence of cryptographic operations. The analysis is
based on an extended notion of non-interference, called pos-
sibilistic non-interference, which postulates that the result
of encryption is possibly any ciphertext. A corresponding
analysis has been developed for a MILS variant of the AADL
architecture description language. It is given as a type sys-
tem that ensures possibilistic non-interference properties of a
system specification by distinguishing between breaking stan-
dard non-interference because of legitimate use of sufficiently
strong encryption, or due to an unintended information leak.

As future work, we are planning to elaborate the correctness
proof of the type system as sketched in Section [5] and to
implement it as part of the D-MILS toolset. We also plan
to investigate type inference methods in addition to type
checking.

7. REFERENCES

[1] The D-MILS project web site.
http://www.d-mils.org/.

[2] A. Askarov, D. Hedin, and A. Sabelfeld.
Cryptographically-masked flows. Theor. Comput. Sci.,
402(2-3):82-101, 2008.

[3] D. E. Bell and L. J. LaPadula. Secure computer system:
Unified exposition and multics interpretation. Technical
report, ESD-TR-75-306, MITRE Corp. MTR~2997,
Bedford, MA, 1975.

[4] K. J. Biba. Integrity considerations for secure computer
systems. Technical report, USAF Electronic Systems
Division, Bedford, MA,, 1977.

Specification of MILS-AADL. Technical Report D2.1,

Version 2.0, D-MILS Project, July 2014.

Intermediate languages and semantics transformations

for distributed mils — part 1. Technical Report D3.2,

Version 1.2, D-MILS Project, Feb. 2014.

[7] C. Dima, C. Enea, and R. Gramatovici.
Nondeterministic nointerference and deducible
information flow. Technical report, 2006.

[8] J. A. Goguen and J. Meseguer. Security policies and

security models. In IEEE Symposium on Security and

Privacy, pages 11-20, 1982.

J. Jacob. Security specifications. In Proceedings of the

1988 IEEE Symposium on Security and Privacy,

Oakland, California, USA, April 18-21, 1988, pages

14-23, 1988.

[10] P. Laud. On the computational soundness of
cryptographically masked flows. In Proceedings of the
85th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2008,
San Francisco, California, USA, January 7-12, 2008,
pages 337-348, 2008.

[11] D. McCullough. Noninterference and the composability
of security properties. In Proceedings of the 1988 IEEE
conference on Security and privacy, SP’88, pages
177-186. IEEE Computer Society, 1988.

[12] J. Rushby. Noninterference, transitivity, and
channel-control security policies. Technical Report
SRI-CSL-92-2, Computer Science Laboratory, SRI
International, Menlo Park, CA, Dec. 1992.

[13] A. Sabelfeld and A. C. Myers. Language-based
information-flow security. IEEE Journal on selected
areas in communications, 21(1), 2003.

[14] A. Sabelfeld and D. Sands. Dimensions and principles
of declassification. In 18th IEEE Computer Security
Foundations Workshop, (CSFW-18 2005), 20-22 June
2005, Aiz-en-Provence, France, pages 255-269, 2005.

[15] A. Sabelfeld and D. Sands. Declassification:
Dimensions and principles. Journal of Computer
Security, 17(5):517-548, 2009.

[16] Architecture Analysis & Design Language (AADL)
(rev. B). SAE Standard AS5506B, International Society
of Automotive Engineers, Sept. 2012.

[17] D. M. Volpano. Secure introduction of one-way
functions. In Proceedings of the 13th IEEE Computer
Security Foundations Workshop, CSFW 00,
Cambridge, England, UK, July 3-5, 2000, pages
246-254, 2000.

5

6

9

http://www.d-mils.org/

	Introduction
	The MILS-AADL Language
	Syntax
	Semantics

	Security
	Confidentiality levels
	Possibilistic non-interference
	Low equivalence
	Non-determinism
	Restrictions

	The Type System
	Syntax
	Expressions
	Connections
	Modes and transitions

	Correctness
	Overview
	Determinism
	Expressions
	Specification

	Conclusions
	References

