MILS Initiatives Within The Open Group

MILS Workshop Amsterdam 20 January 2015

Rance J. DeLong

Topics

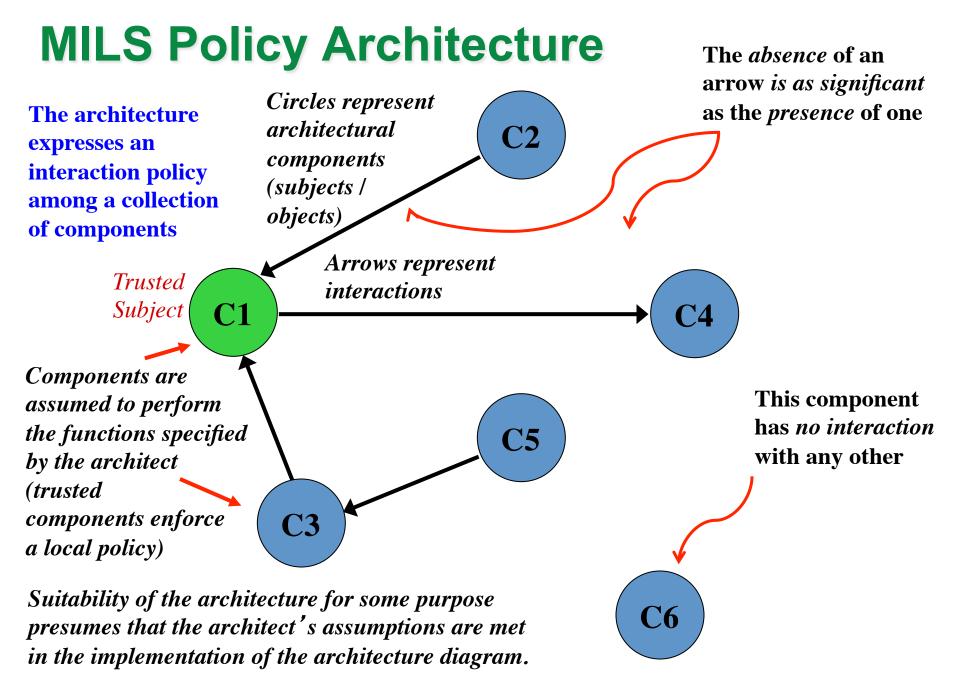
- MILS, MILS Initiative, and Mils[™]
- Abbreviated Overview of MILS concepts
- Mils[™] Corpus
- Mils[™] Evaluation and Certification Support Scheme
- Mils[™] API for Assured Subjects
- Mils[™] Development Environment

MILS, MILS Initiative, and Mils™*

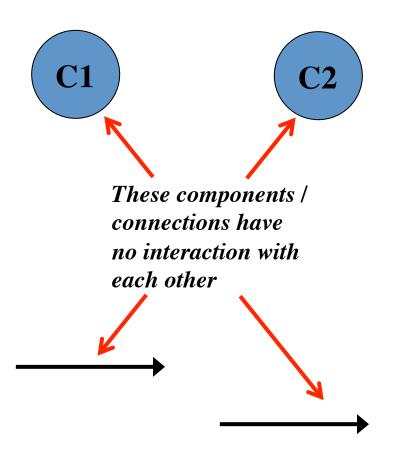
- "MILS" initially an acronym for "Multiple Independent Levels of Security". Its usage has referred primarily to the concept of strong partitioning on a single platform, such as that provided by a separation kernel.
- MILS Initiative" a community of vendors, system integrators, research sponsors, researchers, educators and customers pursuing the "MILS idea" for over a decade. This Initiative, having its nexus within The Open Group, has yielded a collection of concepts, notions, beliefs, products, research results, and documentation that comprise the *Reservoir of MILS*.
- To facilitate achievement of the long-standing MILS objectives The Open Group RTES Forum seeks to establish a coherent and unifying set of standards under the name "Mils".
- Image: "Mils™" Now used as a proper noun, rather than an acronym, Mils™ refers to a refined** set of standards for the concepts, terminology, architecture, doctrine, practices and support for the development, evaluation, certification and deployment of Mils™ components and systems, that will achieve the objectives long held for "MILS".

* Mils[™] is a trademark of The Open Group

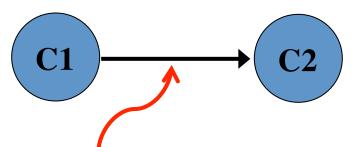
** and continuing to be refined


Abbreviated Overview of MILS and "Modern MILS" Concepts

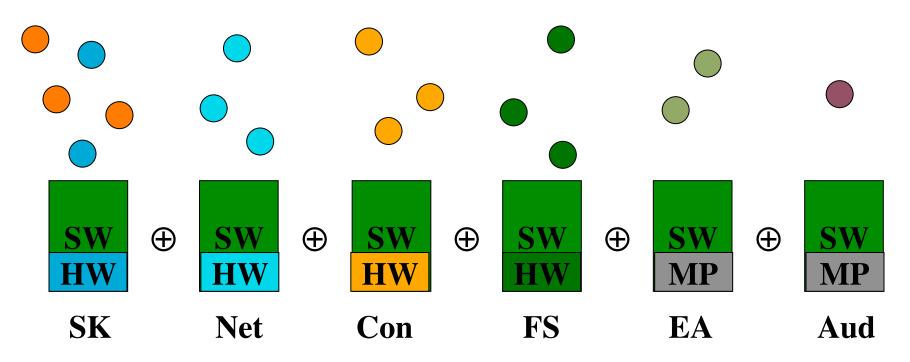
1981 - 2012

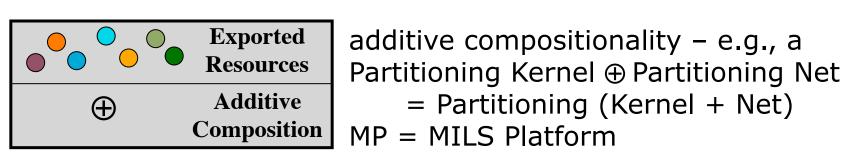

What is MILS?

- MILS is a component-based approach to secure systems design and implementation that encourages a marketplace of general-purpose COTS components
- MILS can be understood as a two phase approach:
 - Design a Policy Architecture
 - Abstract architecture diagram represented by "boxes and arrows"
 - Operational components and architecture achieve system purpose
 - Assumes architecture (components and connectors) strictly enforced
 - Implement on a robust resource-sharing platform
 - MILS foundational components share physical resources, creating strongly separated "exported resources"
 - Individually developed and assured according to standardized specifications
 - Compose "additively" to form a distributed trusted sharing substrate, the MILS Platform
- Provides compositional approach to construction, assurance, and system certification

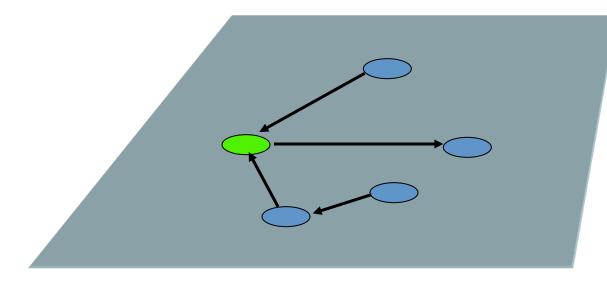

Assumptions Implicit in the Architecture Represent Two Primitive Policies

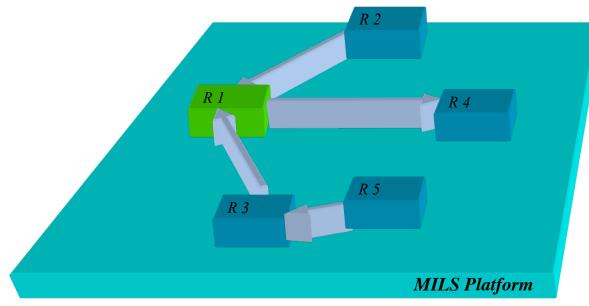
1. Isolation


2. Information Flow Control



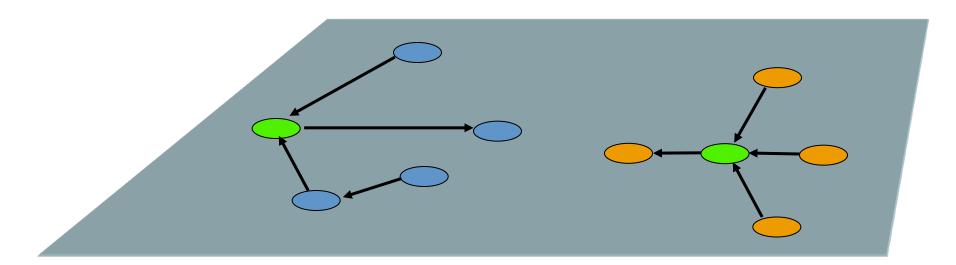
Only *explicitly permitted* causality, or *interference*, is permitted. The architecture *permits* this flow. Only C1 or C2 can *cause* the flow, not C3. The flow is directional and intransitive.

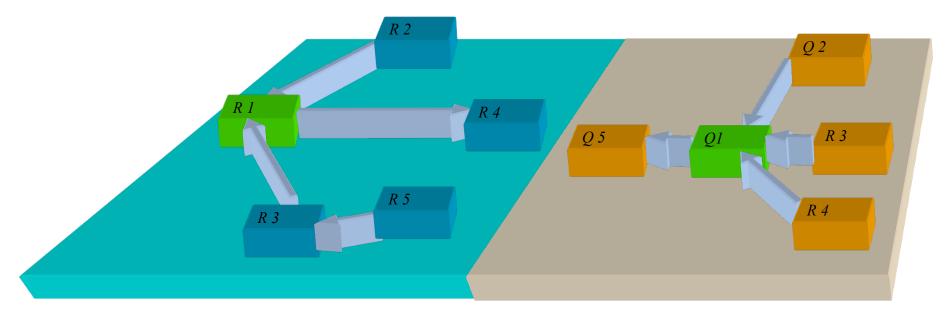

The MILS Platform: a Composition of Foundational (resource-sharing) Components

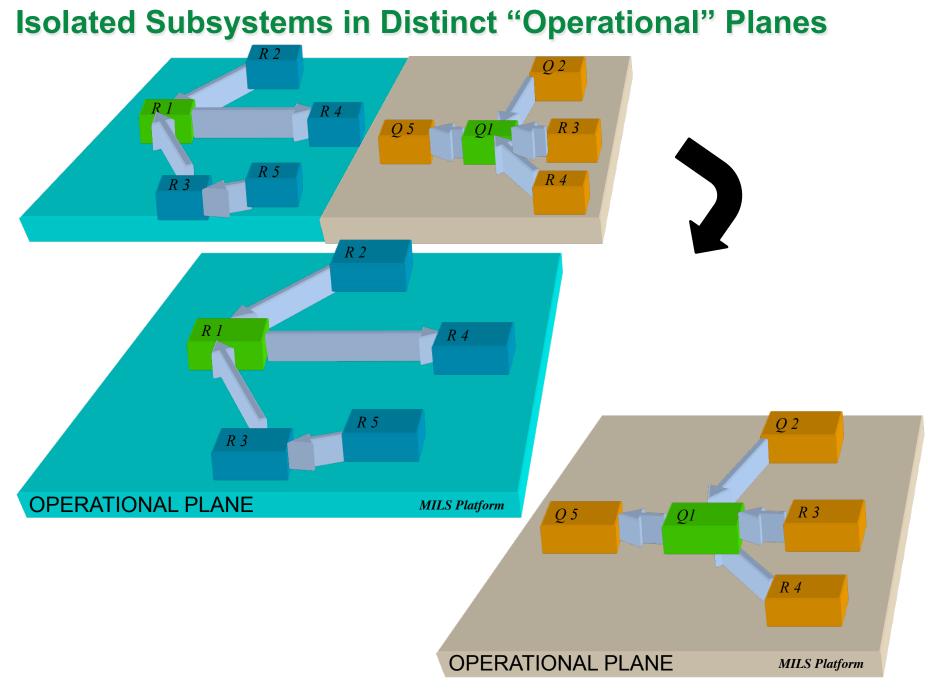


MP – MILS Platform

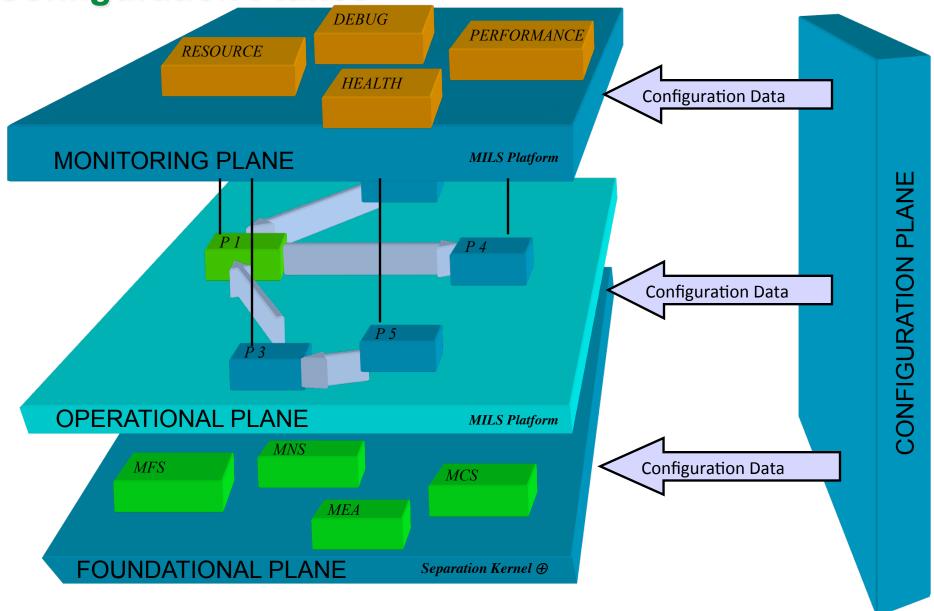
MILS Platform – Provides Straightforward Realization of Policy Architecture

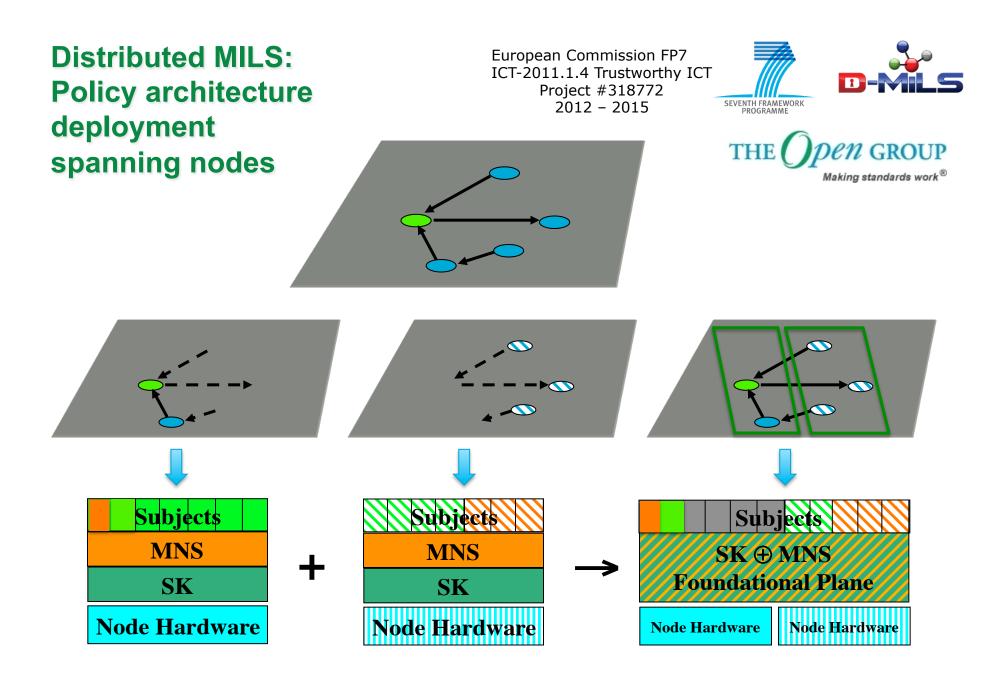

Architecture


Validity of the architecture assumes that the *only* interactions of the circles (operational components) is through the arrows depicted in the diagram


Realization

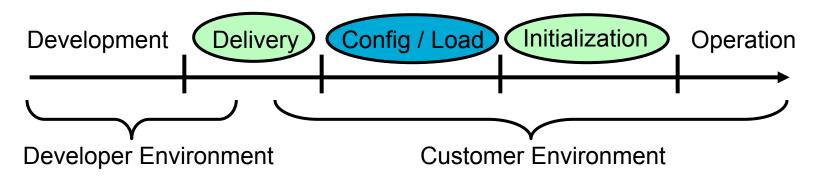
SK, with other MILS foundational components, form the *MILS Platform* allowing operational components to share physical resources while enforcing Isolation and Information Flow Control


Policy Architecture with Isolated Subsystems

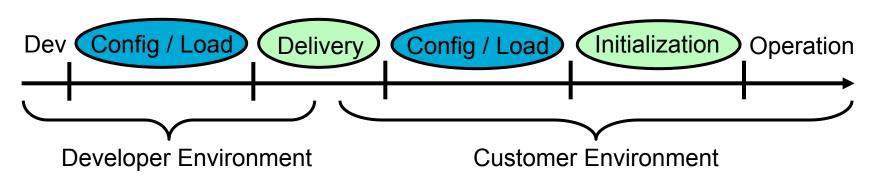


MILS Foundational, Operational, Monitoring, and Configuration Planes

MILS Platform Objectives

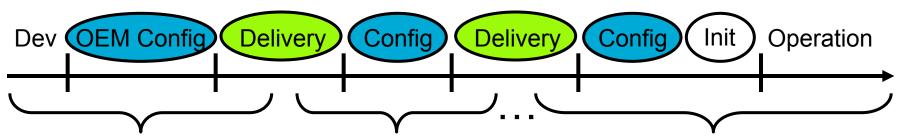

- MILS Platform a standardized, component-based high-assurance platform
- □ Predictable behavior, security, safety and performance
- Improved dependability at reduced cost
- Maintainable assurance at reduced cost
- **Firm guarantees** provided to the application-level policy architecture
- Compositional assurance of systems based on component assurance and composition analysis
- Framework for construction and certification of critical systems built on the MILS platform supported by automated tools and processes
- Distributed and Dynamic MILS
- Interoperable foundational components
- Supported by trusted Delivery, Configuration, and Initialization

Security functions and security-relevant functions


- MILS foundational component security functions at execution time
 - Resource sharing
 - Isolation and information flow control
- Pre-execution time security-relevant functions
 - Delivery
 - Configuration
 - (Load)
 - Initialization
- May be pre-execution and execution-time
 - Configuration (dynamic reconfiguration)
 - (Load)
 - Initialization (dynamic reconfiguration)
- **Trusted Delivery, Configuration, and Initialization "DCI"**

Simple DCI

- The TOE developer employs trusted delivery to get the product from the developer (vendor) to the customer
- The developer and/or the customer performs the configuration/load in their respective environments
- Initialization occurs in the customer environment
- E.g., sequential delivery, config/load, initialization



Shortcomings of simple DCI

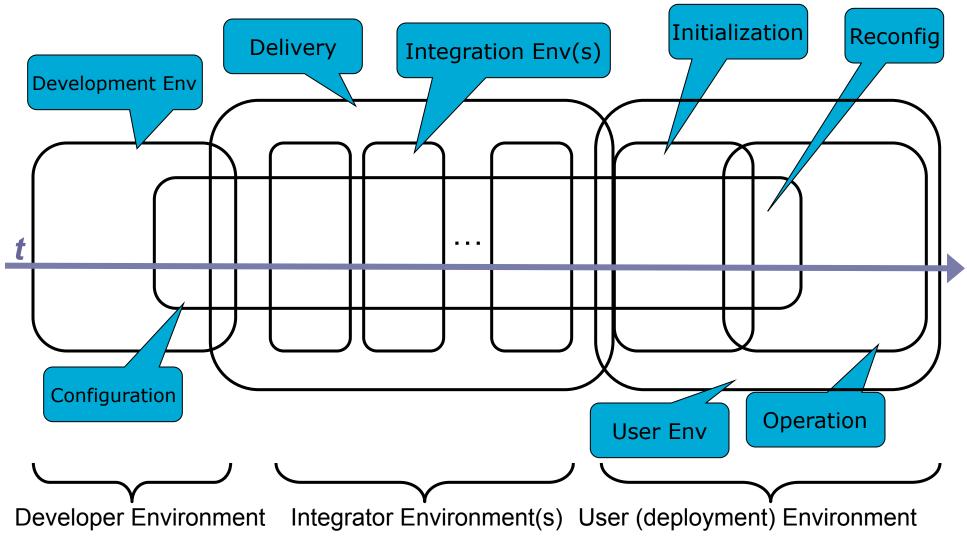
- Developer may need to do some configuration
 - Configuration in developer environment and is protected by delivery
 - Other configuration occurs in customer environment
 - Therefore, configuration is incremental
- "Customer" may not be the "end user"
 - System integrator combines components and provides applications
 - Performs configuration of integrated components and applications
- End user environment different from integrator environment
 - Requires trusted delivery (again, or *still*)
 - Final configuration, initialization, and operation
- Does not account for component configuration composition

Generalized DCI

Developer Environment Integrator Environment(s) User (deployment) Environment

- Appears to be interleaved configuration and delivery
- Configuration and integration is *incremental* due to separation of concerns and separation of duty
- OEM TOE developer is responsible for providing trusted delivery and for trusted initialization
- Trusted delivery should protect TOE to the deployment environment, providing basis for establishment of secure initial state
- There can be multiple intermediate integrator environments!

Composition of DCI Functions


Component A \otimes \otimes D_A I_A ⊕∟ $\oplus_{\mathbf{C}}$ (+)DB \otimes Component B \otimes IB (H) (+)(+)Component C \otimes \otimes **Delivery** Configuration Initialization

\oplus_{f} Composition of like functions

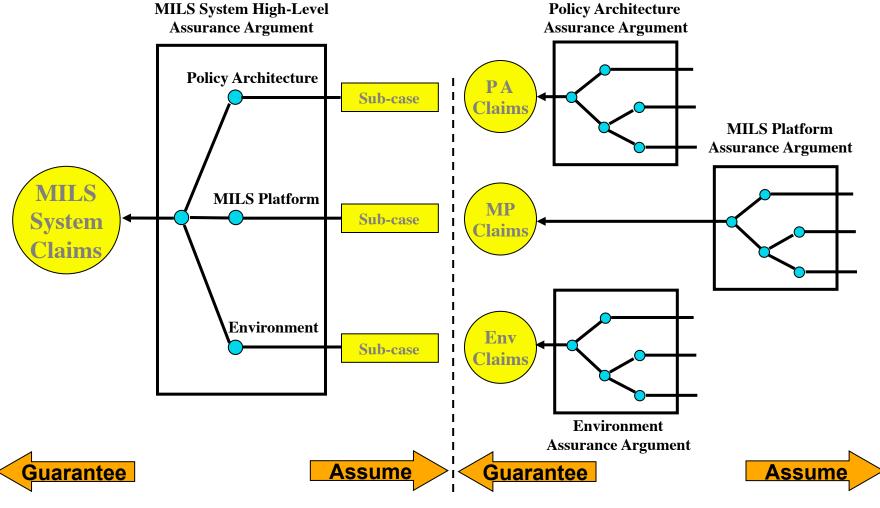
⊗ Composition of diverse functions

The big picture, scope of phases

Temporal overlap and location spanning

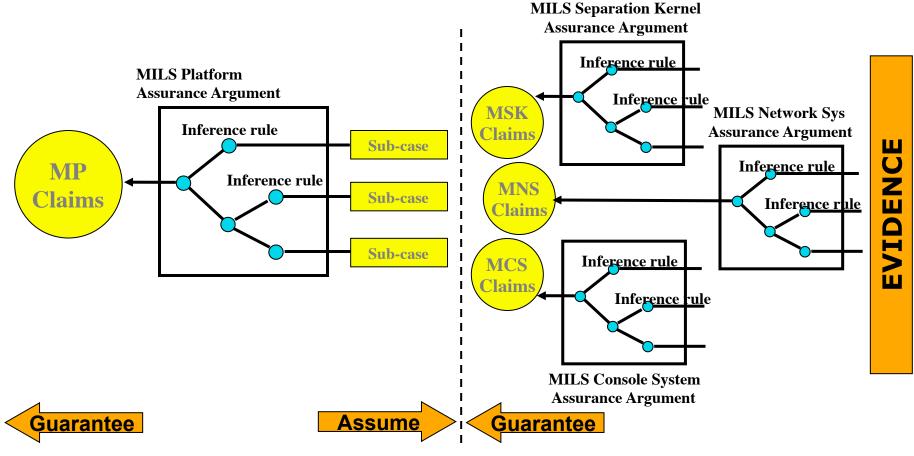
Dynamic Reconfiguration

- Changes to system configuration after transition from initialization to operational state
- May leave a portion of the system configuration unaffected by the configuration change
- Can be a natural development from one-time static configuration
- Requires some of the state construction to be moved from offline to online
- Requires application of constraints to changes

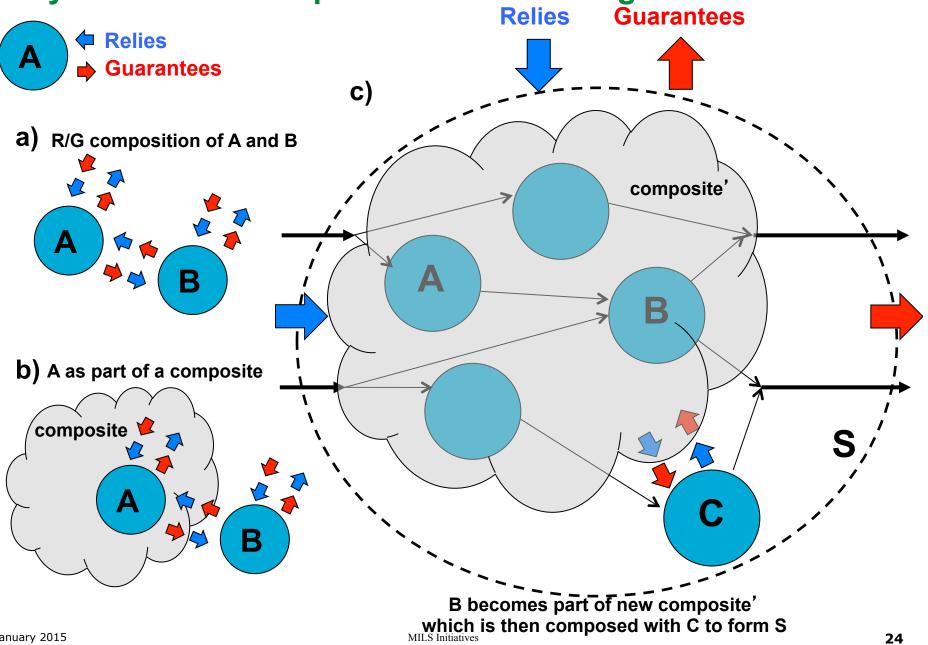

→ Dynamic MILS !

MILS System Assurance Case

□ Compose assurance cases using Assume-Guarantee Reasoning


MILS System assurance requires the validity of three sub-cases

Assumptions from MILS System assurance case become obligations on the sub-cases

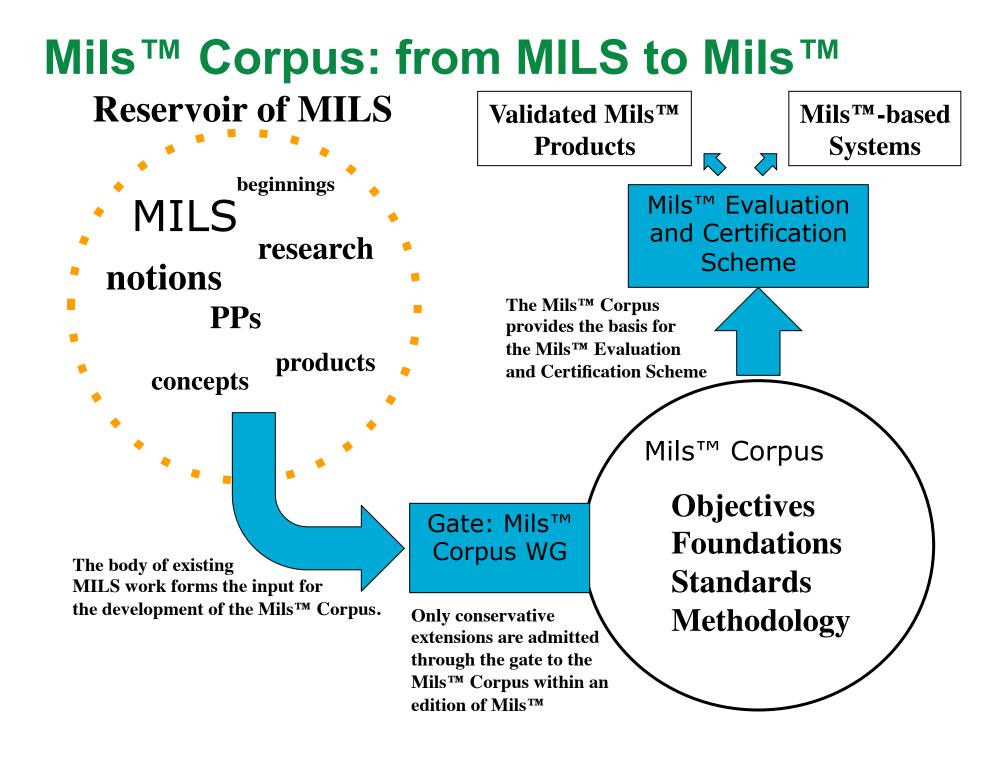


MILS Platform Assurance Case

The MILS Platform is composed of the MILS foundational components (only 3 shown here)
 Assumptions from MILS Platform assurance case become obligations on the components
 Assured Claims from component assurance cases become evidence for MIPP sub-cases
 Evidence provides the ultimate justification for the assurance case

Policy Architecture Assurance – Incremental Rely/Guarantee Compositional Reasoning

Mils[™] Corpus



Why Mils[™] ?

- To enable achievement the earliest goals of MILS Initiative (vendors, integrators, system owners), viz.,
 - "A marketplace of interoperable and substitutable commercial (COTS) high-assurance MILS components"
- Can't be achieved without strict standards
- And a means of demonstrating compliance

Mils[™] Corpus

- Several years ago, the RTES forum moved to trademark the name Mils[™]
- At the 2012 SF meeting of the RTES Forum, the attendees provisionally approved the formation of a Mils[™] governance working group
- The working group would have the responsibility of constructing the set of Mils[™] standards
 - Consistency would be affirmatively maintained
 - The Mils™API Standard to be the first
 - Others would include protection profiles adopted from the community and strictly harmonized
- □ The Mils[™] Standards would serve as the basis for the Mils[™] Evaluation/Certification Scheme
- □ The standards are referred to as the *Mils*[™] *Corpus*

Open Group Mils[™] Standards Documents (1)

- □ The Open Group Mils[™] Corpus
 - Constructed and qualified by the Mils[™] working group
 - Includes Open Group Mils[™] Standards
 - OG Community reviewed, published by The Open Group

□ The Open Group Mils[™] Protection Profiles

- Adapted from "MILS" community and research PPs
 - Mils[™] Platform Protection Profile (MPPP)
 - Mils[™] Network System Protection Profile (MNSPP)
 - Mils[™] Console System Protection Profile (MCSPP)
- Adapted from Separation Kernel Protection Profile v1.03
 - Mils[™] Separation Kernel Protection Profile (MSKPP)
- Other Mils[™] protection profiles to be developed
 - Mils[™] File System Protection Profile (MFSPP)
 - Mils[™] Extended Attributes Protection Profile (MEAPP)
 - Mils[™] Audit System Protection Profile (MASPP)

Open Group Mils™ Standards Documents (2)

□ The Open Group Mils[™] Standards

- Mils[™] Application Programming Interface (API) Standard
- Mils[™] Interoperability Standards
- Mils[™] Product Evaluation Methodology
- Mils[™] Compositional Certification Methodology
- Mils[™] Evaluation Laboratory Proficiency Standard

□ The Open Group Mils[™] Development Standards

- Mils[™] Assurance Cases
- Mils[™] Development Environment and Support Tools

Mils[™] Evaluation and Certification Support Scheme

What is Mils[™] Evaluation and Certification?

How terms are being used:

- Mils[™] Component a foundational or operational component, potentially consisting of software, firmware, and hardware, conforming to a Mils[™] component PP.
- Mils[™] Evaluation technical assessment of Mils[™] components to ISO 15408 and Mils[™] standards
- Mils[™] System a composition of Mils[™] components and other components, constructed according to Mils[™] principles, created to serve an intended purpose within an intended environment
- Mils[™] Certification Support technical assessment of Mils[™]-based composites according to Mils[™] compositional certification methodology
- System Certification & Accreditation (C&A) a technical and riskbased assessment used to reach a decision to deny or approve a system to operate in an environment (NOT within the scope of the Mils[™] Evaluation and Certification Support Scheme)

Need for a Mils[™] Evaluation and Certification Support Scheme

ISO 15408 evaluation alone is not adequate for Mils[™]

- No consistent elevated assurance among National Schemes
- No way for The Open Group to bring unity
- Lack of proficiency in Mils[™] technology or standards
- Mils[™] Scheme can bring constructive and cooperative relationship among developers and evaluators to facilitate Mils[™] success
 - Evaluation activities span product development process
 - Certification activities span system development process
 - Avoids costly backtracking during evaluation
 - Avoids tendency to accept something that's "too late to fix"

Mils[™] Evaluation and Certification

- □ Establish an *independent Scheme for Mils™ product* evaluation and Mils™ system certification support
 - Product evaluation and system certification are distinct activities
 - In Mils[™] these share common foundations
 - Mils[™] objectives span both of these activities
 - Mils[™] components are intended to achieve composable systems and compositional system certification

□ Mils[™] component evaluation

- Mils[™] foundational component PPs and the Mils[™] Platform PP
- Mils[™] operational component PPs
- Vendor's PP-conformant STs and TOEs evaluated by the Scheme
- Based on ISO 15408 with MILS augmentation
- □ Mils[™] compositional system certification *support*
 - Not intended to supplant existing C&A regimes
 - Provide assessment of Mils[™]-specific aspects of a system *effectively*
 - C&A regimes decide the weight to be given Mils[™] certification

Mils[™] Scheme Approach – Validation

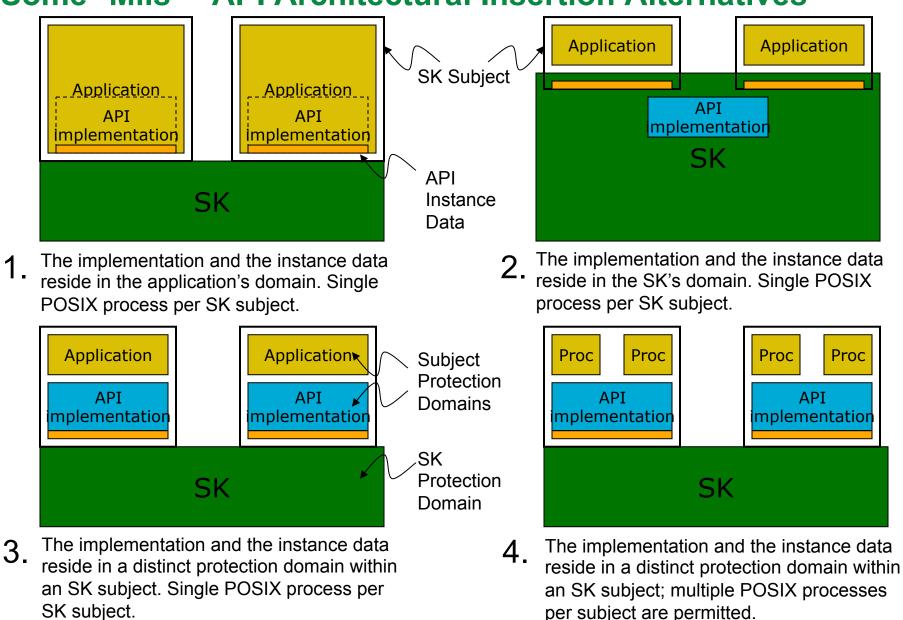
- □ Components validated to The Open Group Mils[™] Standards
 - Mils[™] Protection Profiles
 - Mils[™] API standards
 - Mils[™] Evaluation methodology and standards
 - Mils[™] Development standards
 - The Open Group issues a component validation certificate
- □ Composites validated to The Open Group Mils™ Compositional Certification guidelines
 - Mils[™] compositional assurance theory
 - Confirmation of composition requirements
 - The Open Group issues a Mils[™] composite validation report
- The Open Group maintains evaluation and certification evidence and results in escrow
 - Three-way contractual relationship The Open Group-Applicant-Lab
 - The Open Group's reputation sufficient in ordinary cases
 - Escrow can be opened under extraordinary circumstances
 MILS Initiatives

Evaluation and Certification Support Scheme Summary (1)

- The Open Group would be the Mils[™] Certifying Body
 - Publish Mils[™] Standards
 - Run accreditation program for Mils[™] evaluation laboratories
 - Enter 3-Party Contract with product vendor and evaluation lab
 - Provide escrow of evaluation / certification artifacts
- Evaluate products for Mils[™] conformance according to
 - Mils[™] Protection Profiles
 - Mils[™] Application Programming Interface Standard
 - Mils[™] Product Evaluation Methodology
- Certify compositions of Mils[™] components
 - Using Mils[™] component evaluation results
 - Mils[™] Compositional Certification Methodology
 - Results may support national system Certification and Accreditation

Evaluation and Certification Support Scheme Summary (2)

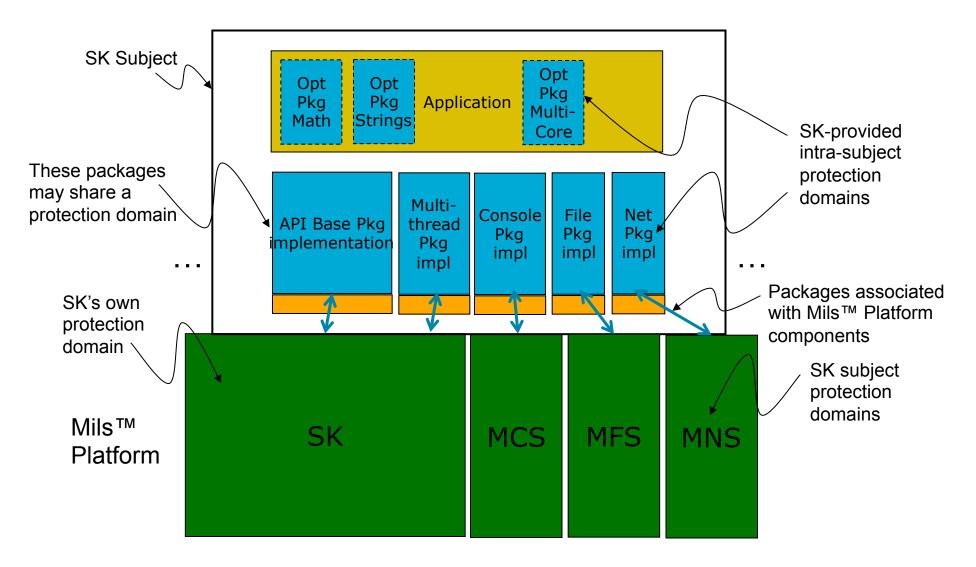
- Leverage "MILS" research and development, e.g. research sponsored by US and the EC, and MILS product development by vendors, e.g.
 - "Separation Kernel Protection Profile"
 - "MILS Compositional Certification"
 - "MILS" Protection Profiles and Supporting Documents
 - "MILS" Assurance and Toolchain
 - Distributed MILS (D-MILS)
 - EURO-MILS
- Leverage worldwide ISO 15408/18045 (Common Criteria) evaluation laboratory infrastructure
 - Currently accredited CC evaluation labs are candidates
 - Incremental Mils[™] Evaluation Lab accreditation requirements


Mils[™] API for Assured Subjects

API for development of Mils™ high-assurance subjects Mils™ API Working Group

Mils[™] API Goals and Objectives

- Provide a standard API for Mils[™].
- □ The Mils[™] API is intended to provide a common API for the development of assured subjects, including the Mils[™] foundational components and trusted operational components in a Mils[™] environment.
- □ The Mils[™] API is intended to catalyze the commercial marketplace for assured software products for Mils[™] platforms provided by multiple vendors.
- □ The Mils[™] API Standard should identify the interfaces that must be provided by implementations. If there optional APIs or packages of APIs those should be identified by the Standard
- □ The Mils[™] API Standard should precisely specify the semantics of the interfaces provided to facilitate analysis of using programs.
- □ The Mils[™] API Standard should provide sufficient information to enable implementations of the Standard to conform to the specified semantics regardless of the underlying hardware architecture or the chosen Mils[™] Platform.



Some* Mils[™] API Architectural Insertion Alternatives

* Other variations are possible

Mils[™] API packages

Using #3 from Architectural Insertion Alternatives:

Mils[™] Platform: Interface Summary

MILS foundational component	Primitive resources managed	Interface abstraction provided by	Low-level mechanisms utilized by implementation
Mils™ Separation Kernel (MSK)	Processor, Memory, Intrinsic Devices (e.g. clock)	Application programming language	ISA, MMU, IOMMU, timers, clocks
Mils™ File Subsystem (MFS)	Mass Storage Devices	File Package APIs (Mils™ API standard)	Mem structs, SK-calls, msgs
Mils™ Console Subsystem (MCS)	Human Interface Devices	Console Package (Mils™ API standard)	Mem structs, SK-calls, msgs
Mils™ Network Subsystem (MNS)	Network Interface Devices	Network Package (Mils™ API standard)	Mem structs, SK-calls, msgs
Mils™ Extended Attributes Subsystem (MEA)	Memory and File Storage exported resources	MILS Attribute Package(extended Mils™ API Standard)	Mem structs, SK-calls, msgs, file system API, resource identifiers
Mils™ Audit Subsystem (MAS)	SK audit record buffer, File Storage	Mils™ Audit Package (extended Mils™ API Standard), inter-subsystem query	Mem structs, files, SK-calls, msgs, file system API, resource ids, SK audit primitives

Mils™ Development Environment

Standards for tools and techniques

Mils[™] Development Environment

- □ A recently formed activity within The Open Group Real Time and Embedded Systems Forum – The Mils[™] Development Environment Working Group
- Identify categories of automation support to make MILS[™] development more cost efficient, e.g.
 - Declarative languages (e.g. AADL)
 - Verification framework
 - Assurance case
- Develop standards for Mils[™] Development Environment tools to encourage development of tool products that are consistent with a common approach (still allows specialisation and innovation)

Thank You

Rance J. DeLong r.delong@opengroup.org

