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ABSTRACT 

When using a D-MILS approach for high-assurance systems it is 
often necessary to develop an assurance case, containing an 
argument supported by evidence, that demonstrates that the 
system has the required assurance properties (such as security or 
safety). In this paper, we describe our approach for developing a 
D-MILS assurance case, which is based upon a set of modular 
assurance case patterns that are automatically instantiated using a 
model-based instantiation process. We illustrate the application of 
our approach using a small cryptographic controller example and 
explain the benefits brought by our approach in support of D-
MILS. 

1. INTRODUCTION 
The Distributed MILS (D-MILS) project [1] is extending the 
MILS approach to distributed computer systems operating across 
a network. When using a D-MILS approach for high-assurance 
systems a justification must be provided. This justification can be 
provided by an assurance case, containing an argument supported 
by evidence, that demonstrates that the system has the required 
assurance properties (such as security or safety). 

Our approach to developing an assurance case for a D-MILS 
system seeks to minimise the cost and effort associated with 
assurance, whilst ensuring that when required, the highest levels 
of assurance can be demonstrated. In addition we also seek to 
support the objectives of a DMILS approach, such as 
compositionality of independently developed components.  

Our approach is based around three fundamental elements: 
assurance argument patterns, modularity, automated instantiation 
directly from system models. 

1.1 D-MILS Assurance Case Patterns 
Although each D-MILS system that is created will be unique in 
terms of its requirements and functionality, there are many 
features that will be common to all D-MILS systems. In particular 
all D-MILS systems will share common architectural features, 
particularly  at the level of the D-MILS platform. In addition, D-
MILS systems will be assessed using a common verification 
framework. Because of the large number of shared features of D-
MILS systems it is desirable that all D-MILS assurance cases 
should adopt a common approach to arguing assurance. Assurance 
case patterns are an established technique for the documentation 
and reuse of argument structures [2]. Assurance case patterns 
allow the general structure of the required argument and evidence 
to be abstracted from the specific details of any particular 
argument through the use of abstraction and choices. The patterns 
can then be instantiated for the target system by using relevant 
information. We have created patterns for D-MILS system 
assurance case arguments. These are discussed in more detail in 
Section 2. An important advantage of a pattern-based approach is 

that it ensures a consistent argument approach is adopted for all 
D-MILS systems. 

1.2 Modular Assurance Case 
The verification approach being adopted for D-MILS is a formal 
approach that uses compositional verification techniques to prove 
desired properties of the system are met through the integration of 
independently assured components. It is desirable that the 
assurance case aligns with this compositional approach as far as 
possible. Modular assurance cases where originally introduced in 
[3] as a way of breaking up large assurance cases into separate but 
interconnected modules of argument and evidence, with each 
assurance case module reasoning about one aspect of the overall 
case. As described in Section 2, the patterns we have developed 
for D-MILS systems are split into modules (concerning for 
example each software or platform component) with dependencies 
captured by inter-module references (“away goals”) to claims in 
other modules. Adopting a modular approach also supports the 
MILS philosophy of fostering a marketplace for MILS 
components, developed by different organisations, since the 
assurance case modules can be developed independently by each 
organisation. To support this we deliberately avoid constraining 
the assurance methods (or standard) adopted by third-party 
providers. Our approach identifies specific assurance claims that 
must be supported in third-party assurance case modules; it is the 
responsibility of the supplier to provide sufficient assurance in the 
truth of these identified claims (see Section 2 for more details). 

1.3 Automated Instantiation 
Instantiating an assurance case pattern involves identifying the 
necessary information relating to the target system required to 
choose and instantiate the assurance claims and to provide the 
required evidence. In this sense the instantiable elements of the 
patterns define requirements for information. It would be possible 
to manually obtain this information and instantiate the argument 
patterns; this is current practice. A manual approach however is 
not considered to be an ideal solution for DMILS systems. Large 
parts of the instantiation of the argument are based upon 
information about the system design as captured in the design and 
analysis models. The instantiation of such aspects are repetitive 
and mechanistic in nature and prone to human error. With some 
less rigid aspects of the assurance argument, the process of 
argument instantiation itself can be beneficial for the human 
engineer (who must analyse and develop a solution for an 
assurance claim). With the mechanistic aspects of argument 
instantiation, most value of human involvement instead comes 
from the ability to review the resulting instantiated argument. Our 
approach retains human review as a key element. Automated 
instantiation of the assurance argument patterns brings the 
following benefits over a manual approach: 

• The argument is generated directly from, and is 
therefore consistent with, the design and development 
models themselves. 



• Snap-shot instantiations can be produced quickly and 
easily to reflect the current state of development. 

• Consistent, reusable instantiation rules are established, 
ensuring consistent instantiations. This is particularly 
important where complicated relationships between 
multiple models are required. 

• Human instantiation error is mitigated, it also becomes 
easier to check and verify the resulting output. 

• Automated instantiation as a means for design 
assessment, i.e. highlighting claims and evidence 
needed for assurance but not available in the system 
information models. 

• Automated support for change management. 

• The generated argument is still in a format that is 
amenable to human review. 

Based on the current models of the system, the areas of the 
argument requiring further development and support are 
highlighted. This allows the human effort to be focused on 
analysing and addressing those areas where most value is added.  

Ultimately, the aim is to use automation where it is applicable to 
make it as easy and quick as possible for the system developer to 
create the assurance case, whilst ensuring that a rigorous and 
consistent approach is adopted, and that aspects requiring further 
human consideration and analysis are explicitly highlighted. 
In Section 3 we describe in more detail the model-based approach 
we have developed for automatically instantiating large parts of 
the assurance argument patterns directly from system models. 

2. D-MILS Assurance Case Patterns 
The modular structure of the assurance case for D-MILS systems 
is shown in Figure 1.  
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Figure 1. Modular structure of a D-MILS assurance case 

Figure 1 shows the assurance case modules that contain the 
argument and evidence for various aspects of the D-MILS system 
assurance case. There is a system properties module that describes 
the top-level structure that supports the overall assurance claim 
for the D-MILS system; that the required safety and security 
properties are satisfied. This is supported by a number of other 
modules of argument. The composition module reasons (through 
formal analysis) that the system AADL model satisfies these 
properties. In making these guarantees, the compositional 
verification places assumptions on both the constituent software 
components, and also on the D-MILS platform components. 
These assumptions become local properties of those components, 
that must be assured. Separate assurance case modules are created 
for each component, where the argument and evidence relating to 

the satisfaction of these local properties is presented. The final 
module shown in Figure 1 is the implementation module. This 
must demonstrate that the AADL model (on which the required 
system properties have been proved) is correctly implemented. 
This involves consideration of the configuration of the platform 
and the network. 

We have created assurance case patterns for the structure of the 
argument required in each of these modules. In the rest of this 
section we present and briefly discuss the basic structure of these 
patterns. The patterns are presented using the Goal Structuring 
Notation (GSN) [4], which is the most widely used graphical 
notation for representing assurance arguments. The main elements 
of GSN are shown in Figure 2. These symbols can be used to 
construct an argument by showing how claims (goals) are broken 
down into sub-claims, until eventually they can be supported by 
evidence (solutions). The strategies adopted, and the rationale 
(assumptions and justifications) can be captured, along with the 
context in which the goals are stated. 
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Figure 2. Main elements of GSN 

In order to make reference to argument elements in other 
modules, it is necessary to use the concept of away references. 
Figure 3 shows an away goal reference from one module to a goal 
in another module. The use of away references allows inter-
module dependencies to be documented. 

Goal: 

   
Hazardous Contribution Module X

Module identifier  
Figure 3. GSN away goal reference 

In order to create patterns of argument, the basic GSN notation is 
extended to allow abstraction, multiplicity, choices and 
optionality. An argument is created for a system by instantiating 
the argument pattern using information specific to the target 
system. Abstract elements include explicitly defined “roles”. 
Roles are instantiable entities within elements of the argument 
pattern. They represent an abstract entity that needs to be replaced 
with a concrete instance appropriate for the target system. For 
example in Figure 4, the role within this assurance claim, 
represented in curled braces is “Function”. This entity must be 
replaced with the name of the relevant function of the system.  

Figure 5 shows how (a) multiplicity, (b) choice and (c) optionality 
can be indicated on the relationships in an argument. For 
multiplicity relations, the number of required argument elements 
(n) must be determined, again using information from the target 
system (e.g. an entity created for each of the functions present in 
the system design). Argument elements may be denoted as 
optional in the pattern, or choices provided for different argument 
approaches that may be adopted (in Figure 5, one source node has 



three possible alternative sink nodes). At instantiation, the 
assurance elements most appropriate for the target system must be 
chosen from the options provided in the pattern. 

 
Figure 4. GSN away goal reference 
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Figure 5. GSN away goal reference 

2.1 System Properties Module 
Figure 6 shows the assurance case pattern for this module. The top 
claim is that the defined assurance properties of the D-MILS 
system are satisfied. We consider functional, relal-time, security 
and safety properties, but any properties of interest could be 
considered. There can be seen to be an additional claim, “Goal: 
secPolicyComplete” that there is sufficient confidence that these 

defined properties are complete and correct with respect to the 
hazards and vulnerabilities of the D-MILS system. Although this 
claim is very important to the rigour of the overall case, it was 
outside of the scope of the D-MILS project, so we leave it here as 
an away reference that must be discharged elsewhere (as part of 
the system hazard and security analysis process). 

The left hand side of the pattern claims that the properties are 
satisfied by the MILS-AADL model. A separate claim is made for 
each of the defined properties (the verification is conducted on a 
per-property basis) and these claims are discharged in the 
composition module. The right hand side of the pattern claims that 
the properties remain satisfied once the MILS-AADL model is 
implemented on the platform (the implementation is performed 
correctly). This claim is discharged in the implementation module. 

In the centre of the pattern, claims are made that the required 
assertions are guaranteed by each of the trusted software 
components and by each component of the D-MILS platform. 
These assertions arise from the assumptions that are necessary for 
the compositional verification, and are defined in the composition 
module. The claims that the assertions are guaranteed are to be 
discharged by the relevant component module. As mentioned 
earlier, these components will often be provided by third-party 
providers, and as such it is desirable to assumed that any 
particular standard or approach has been adopted. We therefore 
leave the discharging of the required assertion to the third-party, 
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Figure 6. System properties assurance case argument pattern 



and instead focus on ensuring the assertion is correctly and 
explicitly defined. This then in effect becomes an assurance 
requirement upon the provider of the component. 

In this argument pattern we expect to automatically instantiate all 
of the elements except for the completeness and correctness of the 
defined properties (for reasons discussed earlier). This includes 
automatically defining the requirements for the third-party 
component providers. 

2.2 Composition Module 
Figure 7 shows the assurance case pattern for this module. The top 
claim of this module is instantiated for each property to be 
verified. If we focus firstly on the left hand side of the pattern, a 
claim is made that formal verification proves that the AADL 
model satisfies that property. It is then required to provide the 
results of the verification that proves this; the verification results 
themselves are used as evidence for this. In addition it must be 
shown that there is sufficient confidence in those formal 
verification results. As can be seen in Figure 7, this requires three 
claims to be supported: that the formal verification is undertaken 
correctly, that the assumed local properties of the components are 
computed correctly, and that the formal model used in the analysis 
is a correct representation of the MILS-AADL model. Only if 
these  claims can be supported with sufficient assurance can the 
formal analysis results themselves be trusted. It should be noted 
that, since this aspect of the argument will generally be expected 

to be the same for all properties of the same type, since the 
approach used for verifying those properties is likely to be the 
same. 

The right hand side of this pattern deals with the case where the 
property to be verified is a “safety” property. On D-MILS, the 
term safety property is used to consider properties required where 
failures occur in the system. In these cases the MILS-AADL error 
model must also be considered as part of the verification analysis, 
so the completeness and correctness of this model must also be 
demonstrated. 

We also expect large parts of this pattern to be automatically 
instantiated. The elements where manual instantiation will be 
required are in the goals below “Goal: formalConf”. Where 
reasoning is required about the rigour of the verification process 
itself, and also about the rigour of the verification tools applied, it 
is desirable that further reasoning based upon the knowledge of 
the engineers themselves is utilised. 

2.3 Implementation Module 
Figure 8 shows the assurance case pattern for this module. 

The properties are formally verified, but only on the MILS-AADL 
model. The purpose of this argument module is to demonstrate 
that that MILS-AADL model is correctly implemented. The 
implementation process for D-MILS involves using a 
configuration compiler to generate configuration files that 
implement the model on the D-MILS platform. This process 
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Sol: verifResults

{formal verification
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{MILS-AADL error
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Strat: verifCorrect
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Where {property type} = safety

 
Figure 7. Composition assurance case argument pattern 



involves translating the MILS-AADL model into an intermediate 
representation, using the BIP (Behavior, Interaction, Priority) 
language. The BIP model can then be used to generate the 
configuration files through a process of constraint solving. 

Essentially, this module presents an argument about model 
transformations, and seeks to demonstrate that these 
transformations are undertaken correctly. The argument firstly 
considers the BIP model. It must firstly be demonstrated that the 
structure of the MILS-AADL model is correctly captured. It must 
then be demonstrated that the BIP model is correctly realised by 
the generated configuration files. This requires assurance that the 
configurations are correct with respect to that BIP model, but also 
importantly that the configurations are compatible with the target 
platform. Finally, the configuration files must be implemented on 
the D-MILS platform. This claim is an away reference to the 
platform component modules. 

The nature of these arguments, being largely about confidence in 
a translation process, are less amenable to automated instantiation 

than the other modules discussed. However some of the claims, 
particularly those relating to the validity of the configuration files, 
may be automatable using information extracted from the 
analysis. 

3. Argument Instantiation Process 
We have developed an approach that enables the instantiation of 
the D-MILS assurance case patterns directly from the relevant 
models of the system that are created (this will include design and 
analysis models). This model-based approach is illustrated in 
Figure 9, and described in detail in [5]. Here we illustrate how the 
approach has been implemented using a simple example D-MILS 
system. Firstly we briefly discuss some of the advantages of the 
approach we have adopted. 

Firstly, the approach is tool and notation independent. So long as 
the tools used for the input models provide models that conform 
to their own defined metamodels they are compatible with this 
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Figure 8. Implementation assurance case argument pattern 



approach. The notation in which the models are constructed is 
also unimportant so long as an XML representation of the model 
can be provided. 

Secondly, a weaving model is at the heart of our approach. It is 
the weaving model that links the reference information 
metamodels to the patterns. The weaving model captures the 
dependencies between the role in the GSN patterns and individual 
reference information metamodels and also between the multiple 
reference information metamodels. It is the dependency 
information captured in the weaving metamodel that enables the 
argument instantiations to be performed. It is always necessary to 
identify these dependencies when instantiating an assurance 
argument pattern. Normally, however, such as when manually 
instantiating argument patterns, these dependencies are implicit. 
Our utilisation of a weaving model makes this dependency 
information both explicit and precisely defined. The weaving 
model is also a useful mechanism for capturing the more complex 
dependencies between models that are often required for an 
assurance argument. 

 
Figure 9. Overview of the Model-Based Assurance Case 

Approach 
Thirdly, using a model-based approach allows us to take 
advantage of the existing extensive set of general model-based 
engineering tools that are available. This brings the opportunity to 
harness the tools in order to quickly and easily add extra 
functionality and features. In particular we make use of the 
Epsilon [6] family of languages and tools for model management.  

Finally, as a result of the explicit weaving metamodel discussed 
above, it becomes possible to partially automate analysis and 
validation of the assurance case. Most automated analysis of 
assurance cases focusses on the verification of the argument, i.e. 
identifying logical doubts in the argument itself. Our approach 
helps with the assessment of epistemic doubts in the argument 
(i.e. with respect to the external information models for the 
system). It is of course possible to identify epistemic and validity 
challenges through a traditional approach, however this relies 
solely on the judgement and experience of the engineer to, for 
example, identify all relevant contextual links correctly. Our 
approach helps in providing a consistent and systematic 
identification of such issues. 

3.1 Example Automated Instantiation 
Here we illustrate our approach using the example of a simple D-
MILS system. The example we present is a software 
cryptographic controller system taken from [7]. The architecture 
for the system is shown in Figure 10. 

 
Figure 10. Software architecture of crypto controller system 

The system is a controller for end-to-end encryption. It takes 
inputs as clear text from the ‘red’ network, encrypts the content of 
the message, and sends the encrypted message out on the ‘black’ 
network. Inputs comprise both a header, which contains 
destination and other routing information, and the message 
content itself. Only the message content is encrypted since the 
black network has to read and process the headers so the message 
can be correctly routed to its destination.  

For this cryptographic controller system, the overall security 
property to be assured is that no unencrypted message content 

 

Figure 11. Graphical editor for creating GSN argument pattern models 



information shall be passed to the black network. The local 
properties required of each of the components for compositional 
verification are: 

• crypto shall encrypt everything that leaves on its 
outgoing channel 

• bypass shall ensure that only valid protocol headers are 
passed from red to black 

In this system the software in the red and black components can 
be completely untrusted (i.e. no assurance is required in these 
components in order to prove the overall security property). Using 
our approach, assurance case modules would therefore only be 
required for the crypto and bypass components. 

 
Figure 12. Assurance Argument Pattern Model in GSNML 

(Partial) 

We now briefly describe how our approach would be used to 
create an assurance case for this system. Firstly we must create 
models of the assurance argument patterns that are conformant to 
the GSN metamodel [5]. To enable graphical-based model 
generation we have developed from the GSN metamodel a 
graphical editor using GMF (Graphical Modelling Framework). 
Figure 11 shows a screen shot of our graphical editor, and Figure 
12 shows an extract from one of the resulting models in XML 
form, (which we call GSNML files). This GSNML file is taken as 
input by the instantiation program.  

If we consider just the system properties pattern presented in 
figure 6, the instantiation information for this can all be obtained 
from the AADL specification that has been created for the system, 
as seen in Figure 13. In the general case, multiple models will be 
required to instantiate a pattern. Each model is taken as input. 

A weaving model is created to capture the dependencies between 
the roles of the argument pattern model and the elements of the 
AADL meta-model (the AADL meta-model is defined in [8]). 
Figure 14 shows a graphical representation of this weaving model. 
The left hand side shows the roles from the argument pattern, the 
right hand side represents the AADL meta-model, the horizontal 
arrows represent the mappings in the weaving model between 
roles in the argument pattern and elements of the AADL meta-
model. The model weaving can be performed either manually, i.e. 
by linking the related elements by hand as we do here, or 
automatically, i.e. through a model transformation. We aim to 
exploit automated model weaving approaches, such as those 
described in [9] to facilitate this step. 

 

 
Figure 13. Extract of the AADL specification for the crypto 

controller system 

The models described above (pattern models, AADL model and 
weaving model) were used as input to our instantiation program, 
which is an Epsilon Object Language (EOL) [6] program that runs 
on the Eclipse platform. The instantiation program generated a 
complete model of the instantiated argument. This is provided as a 
GSNML file that includes the information for all the required 
argument elements and the relationships between the elements. 
From this file the instantiated argument can be represented 
graphically using a graphical tool (e.g. our Eclipse based editor) 
or inputted to an existing GSN argument editor. 

 

 
Figure 14. Representation of the example weaving model 

4. Conclusions and Future Work 
In this paper we have described our approach for generating 
assurance cases for D-MILS systems. The approach is based upon 
a set of modular assurance case patterns and a model-based 
instantiation process. We have described how our approach brings 



particular benefits in support of D-MILS. This includes ensuring a 
consistent approach is adopted for all D-MILS systems through 
the use of patterns and automated instantiation. We also support 
compositionality and the use of independently developed 
components through the use of modularity.  

The work described in this paper is still under development and 
will be developed further. In particular the approach will be 
applied to full-scale industrial case studies to evaluate the 
effectiveness and ease of application. The prototype tools that we 
have developed require further development and validation, 
particularly the tool support for creating the weaving models 
(there are existing tools in this area that we will look to harness). 
The D-MILS patterns themselves are also being developed 
further. We would also like to explore the opportunities our 
approach provides for automated verification and validation of the 
assurance case. 
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