
Developing Assurance Cases for D-MILS Systems
Richard Hawkins, Tim Kelly, Ibrahim Habli

Department of Computer Science
The University of York

York, UK
{richard.hawkins, tim.kelly, ibrahim.habli}@york.ac.uk

ABSTRACT

When using a D-MILS approach for high-assurance systems it is
often necessary to develop an assurance case, containing an
argument supported by evidence, that demonstrates that the
system has the required assurance properties (such as security or
safety). In this paper, we describe our approach for developing a
D-MILS assurance case, which is based upon a set of modular
assurance case patterns that are automatically instantiated using a
model-based instantiation process. We illustrate the application of
our approach using a small cryptographic controller example and
explain the benefits brought by our approach in support of D-
MILS.

1. INTRODUCTION
The Distributed MILS (D-MILS) project [1] is extending the
MILS approach to distributed computer systems operating across
a network. When using a D-MILS approach for high-assurance
systems a justification must be provided. This justification can be
provided by an assurance case, containing an argument supported
by evidence, that demonstrates that the system has the required
assurance properties (such as security or safety).

Our approach to developing an assurance case for a D-MILS
system seeks to minimise the cost and effort associated with
assurance, whilst ensuring that when required, the highest levels
of assurance can be demonstrated. In addition we also seek to
support the objectives of a DMILS approach, such as
compositionality of independently developed components.

Our approach is based around three fundamental elements:
assurance argument patterns, modularity, automated instantiation
directly from system models.

1.1 D-MILS Assurance Case Patterns
Although each D-MILS system that is created will be unique in
terms of its requirements and functionality, there are many
features that will be common to all D-MILS systems. In particular
all D-MILS systems will share common architectural features,
particularly at the level of the D-MILS platform. In addition, D-
MILS systems will be assessed using a common verification
framework. Because of the large number of shared features of D-
MILS systems it is desirable that all D-MILS assurance cases
should adopt a common approach to arguing assurance. Assurance
case patterns are an established technique for the documentation
and reuse of argument structures [2]. Assurance case patterns
allow the general structure of the required argument and evidence
to be abstracted from the specific details of any particular
argument through the use of abstraction and choices. The patterns
can then be instantiated for the target system by using relevant
information. We have created patterns for D-MILS system
assurance case arguments. These are discussed in more detail in
Section 2. An important advantage of a pattern-based approach is

that it ensures a consistent argument approach is adopted for all
D-MILS systems.

1.2 Modular Assurance Case
The verification approach being adopted for D-MILS is a formal
approach that uses compositional verification techniques to prove
desired properties of the system are met through the integration of
independently assured components. It is desirable that the
assurance case aligns with this compositional approach as far as
possible. Modular assurance cases where originally introduced in
[3] as a way of breaking up large assurance cases into separate but
interconnected modules of argument and evidence, with each
assurance case module reasoning about one aspect of the overall
case. As described in Section 2, the patterns we have developed
for D-MILS systems are split into modules (concerning for
example each software or platform component) with dependencies
captured by inter-module references (“away goals”) to claims in
other modules. Adopting a modular approach also supports the
MILS philosophy of fostering a marketplace for MILS
components, developed by different organisations, since the
assurance case modules can be developed independently by each
organisation. To support this we deliberately avoid constraining
the assurance methods (or standard) adopted by third-party
providers. Our approach identifies specific assurance claims that
must be supported in third-party assurance case modules; it is the
responsibility of the supplier to provide sufficient assurance in the
truth of these identified claims (see Section 2 for more details).

1.3 Automated Instantiation
Instantiating an assurance case pattern involves identifying the
necessary information relating to the target system required to
choose and instantiate the assurance claims and to provide the
required evidence. In this sense the instantiable elements of the
patterns define requirements for information. It would be possible
to manually obtain this information and instantiate the argument
patterns; this is current practice. A manual approach however is
not considered to be an ideal solution for DMILS systems. Large
parts of the instantiation of the argument are based upon
information about the system design as captured in the design and
analysis models. The instantiation of such aspects are repetitive
and mechanistic in nature and prone to human error. With some
less rigid aspects of the assurance argument, the process of
argument instantiation itself can be beneficial for the human
engineer (who must analyse and develop a solution for an
assurance claim). With the mechanistic aspects of argument
instantiation, most value of human involvement instead comes
from the ability to review the resulting instantiated argument. Our
approach retains human review as a key element. Automated
instantiation of the assurance argument patterns brings the
following benefits over a manual approach:

• The argument is generated directly from, and is
therefore consistent with, the design and development
models themselves.

• Snap-shot instantiations can be produced quickly and
easily to reflect the current state of development.

• Consistent, reusable instantiation rules are established,
ensuring consistent instantiations. This is particularly
important where complicated relationships between
multiple models are required.

• Human instantiation error is mitigated, it also becomes
easier to check and verify the resulting output.

• Automated instantiation as a means for design
assessment, i.e. highlighting claims and evidence
needed for assurance but not available in the system
information models.

• Automated support for change management.

• The generated argument is still in a format that is
amenable to human review.

Based on the current models of the system, the areas of the
argument requiring further development and support are
highlighted. This allows the human effort to be focused on
analysing and addressing those areas where most value is added.

Ultimately, the aim is to use automation where it is applicable to
make it as easy and quick as possible for the system developer to
create the assurance case, whilst ensuring that a rigorous and
consistent approach is adopted, and that aspects requiring further
human consideration and analysis are explicitly highlighted.
In Section 3 we describe in more detail the model-based approach
we have developed for automatically instantiating large parts of
the assurance argument patterns directly from system models.

2. D-MILS Assurance Case Patterns
The modular structure of the assurance case for D-MILS systems
is shown in Figure 1.

System
Properties
Argument

Composition
Argument Software

Component

Implementation
Argument

Software
Component
Software
Component

Software
Component
Argument

Software
Component
Software
Component
Software
Component

D-MILS Platform
Component
Argument

Figure 1. Modular structure of a D-MILS assurance case

Figure 1 shows the assurance case modules that contain the
argument and evidence for various aspects of the D-MILS system
assurance case. There is a system properties module that describes
the top-level structure that supports the overall assurance claim
for the D-MILS system; that the required safety and security
properties are satisfied. This is supported by a number of other
modules of argument. The composition module reasons (through
formal analysis) that the system AADL model satisfies these
properties. In making these guarantees, the compositional
verification places assumptions on both the constituent software
components, and also on the D-MILS platform components.
These assumptions become local properties of those components,
that must be assured. Separate assurance case modules are created
for each component, where the argument and evidence relating to

the satisfaction of these local properties is presented. The final
module shown in Figure 1 is the implementation module. This
must demonstrate that the AADL model (on which the required
system properties have been proved) is correctly implemented.
This involves consideration of the configuration of the platform
and the network.

We have created assurance case patterns for the structure of the
argument required in each of these modules. In the rest of this
section we present and briefly discuss the basic structure of these
patterns. The patterns are presented using the Goal Structuring
Notation (GSN) [4], which is the most widely used graphical
notation for representing assurance arguments. The main elements
of GSN are shown in Figure 2. These symbols can be used to
construct an argument by showing how claims (goals) are broken
down into sub-claims, until eventually they can be supported by
evidence (solutions). The strategies adopted, and the rationale
(assumptions and justifications) can be captured, along with the
context in which the goals are stated.

<Identifier>

<Summary>

<Identifier>

<Summary>

Goal Justification Context Assumption

In Context Of Solved By Solution Strategy

J A

Figure 2. Main elements of GSN

In order to make reference to argument elements in other
modules, it is necessary to use the concept of away references.
Figure 3 shows an away goal reference from one module to a goal
in another module. The use of away references allows inter-
module dependencies to be documented.

Goal:

Hazardous Contribution Module X

Module identifier
Figure 3. GSN away goal reference

In order to create patterns of argument, the basic GSN notation is
extended to allow abstraction, multiplicity, choices and
optionality. An argument is created for a system by instantiating
the argument pattern using information specific to the target
system. Abstract elements include explicitly defined “roles”.
Roles are instantiable entities within elements of the argument
pattern. They represent an abstract entity that needs to be replaced
with a concrete instance appropriate for the target system. For
example in Figure 4, the role within this assurance claim,
represented in curled braces is “Function”. This entity must be
replaced with the name of the relevant function of the system.

Figure 5 shows how (a) multiplicity, (b) choice and (c) optionality
can be indicated on the relationships in an argument. For
multiplicity relations, the number of required argument elements
(n) must be determined, again using information from the target
system (e.g. an entity created for each of the functions present in
the system design). Argument elements may be denoted as
optional in the pattern, or choices provided for different argument
approaches that may be adopted (in Figure 5, one source node has

three possible alternative sink nodes). At instantiation, the
assurance elements most appropriate for the target system must be
chosen from the options provided in the pattern.

Figure 4. GSN away goal reference

(a) multiplicity (b) choice (c) optional

Figure 5. GSN away goal reference

2.1 System Properties Module
Figure 6 shows the assurance case pattern for this module. The top
claim is that the defined assurance properties of the D-MILS
system are satisfied. We consider functional, relal-time, security
and safety properties, but any properties of interest could be
considered. There can be seen to be an additional claim, “Goal:
secPolicyComplete” that there is sufficient confidence that these

defined properties are complete and correct with respect to the
hazards and vulnerabilities of the D-MILS system. Although this
claim is very important to the rigour of the overall case, it was
outside of the scope of the D-MILS project, so we leave it here as
an away reference that must be discharged elsewhere (as part of
the system hazard and security analysis process).

The left hand side of the pattern claims that the properties are
satisfied by the MILS-AADL model. A separate claim is made for
each of the defined properties (the verification is conducted on a
per-property basis) and these claims are discharged in the
composition module. The right hand side of the pattern claims that
the properties remain satisfied once the MILS-AADL model is
implemented on the platform (the implementation is performed
correctly). This claim is discharged in the implementation module.

In the centre of the pattern, claims are made that the required
assertions are guaranteed by each of the trusted software
components and by each component of the D-MILS platform.
These assertions arise from the assumptions that are necessary for
the compositional verification, and are defined in the composition
module. The claims that the assertions are guaranteed are to be
discharged by the relevant component module. As mentioned
earlier, these components will often be provided by third-party
providers, and as such it is desirable to assumed that any
particular standard or approach has been adopted. We therefore
leave the discharging of the required assertion to the third-party,

Goal: sysSecurity

{D-MILS System} safety and
security properties are
satisfied

Con: sysPolicy

The required system
safety and security
properties are {system
properties}

Con: sysDescr
System defined by
{MILS-AADL
Model}

Strat: SysSecurity
Argument over the
required properties of the
components and the
platform

Goal: secPolicyComplete_Confidence

Sufficient confidence exists that the system
safety and security properties are complete and
correct w.r.t. System threats, vulnerabilities and
hazards

Confidence

Goal: propsSat

{system property} is
addressed through the
realisation of the MILS-AADL
system model

no. of safety or security
properties

Goal: propSat

{system property} is
satisfied in the MILS-
AADL system model

{property type}

Goal: PropSat_Composition

MILS-AADL model satisfies
{property type} {property}

Composition

Goal: DMILSplatform_D-MILS
platform component

D-MILS platform component
guarantees required properties

D-MILS platform component

Goal: sysModelImplement
_implementation

The implementation of the MILS-AADL
system model addresses the {system
property}

implementation

Goal: components_Software
component

Trusted component guarantees the
required assertions

Software component

Con: components
_Composition

{trusted components}

Composition

Con: localProps
_Composition

assumed {local properties}

Composition

Strat: compVerif

Argument over each
safety or security
property

Goal: propAdd

{system property} is satisfied
through the realisation of the
MILS-AADL system model

(functional | real-time | security | safety)

n n

Figure 6. System properties assurance case argument pattern

and instead focus on ensuring the assertion is correctly and
explicitly defined. This then in effect becomes an assurance
requirement upon the provider of the component.

In this argument pattern we expect to automatically instantiate all
of the elements except for the completeness and correctness of the
defined properties (for reasons discussed earlier). This includes
automatically defining the requirements for the third-party
component providers.

2.2 Composition Module
Figure 7 shows the assurance case pattern for this module. The top
claim of this module is instantiated for each property to be
verified. If we focus firstly on the left hand side of the pattern, a
claim is made that formal verification proves that the AADL
model satisfies that property. It is then required to provide the
results of the verification that proves this; the verification results
themselves are used as evidence for this. In addition it must be
shown that there is sufficient confidence in those formal
verification results. As can be seen in Figure 7, this requires three
claims to be supported: that the formal verification is undertaken
correctly, that the assumed local properties of the components are
computed correctly, and that the formal model used in the analysis
is a correct representation of the MILS-AADL model. Only if
these claims can be supported with sufficient assurance can the
formal analysis results themselves be trusted. It should be noted
that, since this aspect of the argument will generally be expected

to be the same for all properties of the same type, since the
approach used for verifying those properties is likely to be the
same.

The right hand side of this pattern deals with the case where the
property to be verified is a “safety” property. On D-MILS, the
term safety property is used to consider properties required where
failures occur in the system. In these cases the MILS-AADL error
model must also be considered as part of the verification analysis,
so the completeness and correctness of this model must also be
demonstrated.

We also expect large parts of this pattern to be automatically
instantiated. The elements where manual instantiation will be
required are in the goals below “Goal: formalConf”. Where
reasoning is required about the rigour of the verification process
itself, and also about the rigour of the verification tools applied, it
is desirable that further reasoning based upon the knowledge of
the engineers themselves is utilised.

2.3 Implementation Module
Figure 8 shows the assurance case pattern for this module.

The properties are formally verified, but only on the MILS-AADL
model. The purpose of this argument module is to demonstrate
that that MILS-AADL model is correctly implemented. The
implementation process for D-MILS involves using a
configuration compiler to generate configuration files that
implement the model on the D-MILS platform. This process

Goal: PropSat

MILS-AADL model
satisfies {property type}
{property}

Con:
components
{trusted
components}

Con: localProps

assumed {local
properties} Goal: local properties

Local properties of
components and interactions
are correctly computed

Goal: formalModel

Formal model is a correct
representation of the MILS-
AADL model

Goal: verifCorrect

Formal verification is
undertaken correctly

Goal: verifResults

Results of formal verification
demonstrate {system
property} is satisfied

Goal: formalConf

There is sufficient
confidence in the formal
verification results

Sol: verifResults

{formal verification
results for {system

property}}

Goal: formalVerif

Formal verification proves that
the MILS- AADL model
satisfies {system property}

Goal: formalVerifError

Formal verification proves that
the extended MILS- AADL error
model satisfies {system property}

Goal: errorModel

MILS-AADL error model of
{system} is complete and
correct

Con: errorModel

{MILS-AADL error
model}

Con:
formalModel
{formal model of
{system}}

Strat: verifCorrect

Argument over formal
verification process

Where {property type} = safety

Figure 7. Composition assurance case argument pattern

involves translating the MILS-AADL model into an intermediate
representation, using the BIP (Behavior, Interaction, Priority)
language. The BIP model can then be used to generate the
configuration files through a process of constraint solving.

Essentially, this module presents an argument about model
transformations, and seeks to demonstrate that these
transformations are undertaken correctly. The argument firstly
considers the BIP model. It must firstly be demonstrated that the
structure of the MILS-AADL model is correctly captured. It must
then be demonstrated that the BIP model is correctly realised by
the generated configuration files. This requires assurance that the
configurations are correct with respect to that BIP model, but also
importantly that the configurations are compatible with the target
platform. Finally, the configuration files must be implemented on
the D-MILS platform. This claim is an away reference to the
platform component modules.

The nature of these arguments, being largely about confidence in
a translation process, are less amenable to automated instantiation

than the other modules discussed. However some of the claims,
particularly those relating to the validity of the configuration files,
may be automatable using information extracted from the
analysis.

3. Argument Instantiation Process
We have developed an approach that enables the instantiation of
the D-MILS assurance case patterns directly from the relevant
models of the system that are created (this will include design and
analysis models). This model-based approach is illustrated in
Figure 9, and described in detail in [5]. Here we illustrate how the
approach has been implemented using a simple example D-MILS
system. Firstly we briefly discuss some of the advantages of the
approach we have adopted.

Firstly, the approach is tool and notation independent. So long as
the tools used for the input models provide models that conform
to their own defined metamodels they are compatible with this

Goal: sysModelImplement

The implementation of the
MILS-AADL system model
addresses the {system
property}

Con: BIPmodel

{BIP model of {D-
MILS system}}

Strat:
sysModelImplement
Argument over the BIP
model of the system

Goal: BIPstructure

The structure of the MILS-AADL
model is correctly preserved
throught the realisation of the BIP
model

Goal: BIPtoAADL

The BIP model correctly
captures the structure of the
MILS-AADL model

Goal: BIPgeneration

Generation of the BIP model
ensures structure of MILS-
AADL model is correctly
captured

Strat:
BIPgeneration
Argument over AADL
to BIP mapping

Goal: LLDtoBIP

The BIP model is correctly
realised by the low level
system design

Con: configFiles

{configuration
files}

Strat: LLD
Argument over the
MILS configuration
files

Goal: configCorrect

Generated configurations
are correct w.r.t. the BIP
model

Goal: BIPvalid

Validation of MILS
configuration files
demonstrates correctness

Goal: configCompat

The generated configuration
is compatible with the target
platform

Strat: configCompat
Argument over
constraint solving
approach

Goal: compsCorrect

All components defined in
the model are present and
correct in the configuration

Goal: linksCorrect

All links defined in the
model are present and
correct in the configuration

Goal: noAddLinks

No additional links are
present in the configuration

Goal: configImp_D-MILS platform
component

The config files are realised through the
implementation of the D-MILS platform
components

D-MILS platform component

Figure 8. Implementation assurance case argument pattern

approach. The notation in which the models are constructed is
also unimportant so long as an XML representation of the model
can be provided.

Secondly, a weaving model is at the heart of our approach. It is
the weaving model that links the reference information
metamodels to the patterns. The weaving model captures the
dependencies between the role in the GSN patterns and individual
reference information metamodels and also between the multiple
reference information metamodels. It is the dependency
information captured in the weaving metamodel that enables the
argument instantiations to be performed. It is always necessary to
identify these dependencies when instantiating an assurance
argument pattern. Normally, however, such as when manually
instantiating argument patterns, these dependencies are implicit.
Our utilisation of a weaving model makes this dependency
information both explicit and precisely defined. The weaving
model is also a useful mechanism for capturing the more complex
dependencies between models that are often required for an
assurance argument.

Figure 9. Overview of the Model-Based Assurance Case

Approach
Thirdly, using a model-based approach allows us to take
advantage of the existing extensive set of general model-based
engineering tools that are available. This brings the opportunity to
harness the tools in order to quickly and easily add extra
functionality and features. In particular we make use of the
Epsilon [6] family of languages and tools for model management.

Finally, as a result of the explicit weaving metamodel discussed
above, it becomes possible to partially automate analysis and
validation of the assurance case. Most automated analysis of
assurance cases focusses on the verification of the argument, i.e.
identifying logical doubts in the argument itself. Our approach
helps with the assessment of epistemic doubts in the argument
(i.e. with respect to the external information models for the
system). It is of course possible to identify epistemic and validity
challenges through a traditional approach, however this relies
solely on the judgement and experience of the engineer to, for
example, identify all relevant contextual links correctly. Our
approach helps in providing a consistent and systematic
identification of such issues.

3.1 Example Automated Instantiation
Here we illustrate our approach using the example of a simple D-
MILS system. The example we present is a software
cryptographic controller system taken from [7]. The architecture
for the system is shown in Figure 10.

Figure 10. Software architecture of crypto controller system

The system is a controller for end-to-end encryption. It takes
inputs as clear text from the ‘red’ network, encrypts the content of
the message, and sends the encrypted message out on the ‘black’
network. Inputs comprise both a header, which contains
destination and other routing information, and the message
content itself. Only the message content is encrypted since the
black network has to read and process the headers so the message
can be correctly routed to its destination.

For this cryptographic controller system, the overall security
property to be assured is that no unencrypted message content

Figure 11. Graphical editor for creating GSN argument pattern models

information shall be passed to the black network. The local
properties required of each of the components for compositional
verification are:

• crypto shall encrypt everything that leaves on its
outgoing channel

• bypass shall ensure that only valid protocol headers are
passed from red to black

In this system the software in the red and black components can
be completely untrusted (i.e. no assurance is required in these
components in order to prove the overall security property). Using
our approach, assurance case modules would therefore only be
required for the crypto and bypass components.

Figure 12. Assurance Argument Pattern Model in GSNML

(Partial)

We now briefly describe how our approach would be used to
create an assurance case for this system. Firstly we must create
models of the assurance argument patterns that are conformant to
the GSN metamodel [5]. To enable graphical-based model
generation we have developed from the GSN metamodel a
graphical editor using GMF (Graphical Modelling Framework).
Figure 11 shows a screen shot of our graphical editor, and Figure
12 shows an extract from one of the resulting models in XML
form, (which we call GSNML files). This GSNML file is taken as
input by the instantiation program.

If we consider just the system properties pattern presented in
figure 6, the instantiation information for this can all be obtained
from the AADL specification that has been created for the system,
as seen in Figure 13. In the general case, multiple models will be
required to instantiate a pattern. Each model is taken as input.

A weaving model is created to capture the dependencies between
the roles of the argument pattern model and the elements of the
AADL meta-model (the AADL meta-model is defined in [8]).
Figure 14 shows a graphical representation of this weaving model.
The left hand side shows the roles from the argument pattern, the
right hand side represents the AADL meta-model, the horizontal
arrows represent the mappings in the weaving model between
roles in the argument pattern and elements of the AADL meta-
model. The model weaving can be performed either manually, i.e.
by linking the related elements by hand as we do here, or
automatically, i.e. through a model transformation. We aim to
exploit automated model weaving approaches, such as those
described in [9] to facilitate this step.

Figure 13. Extract of the AADL specification for the crypto

controller system

The models described above (pattern models, AADL model and
weaving model) were used as input to our instantiation program,
which is an Epsilon Object Language (EOL) [6] program that runs
on the Eclipse platform. The instantiation program generated a
complete model of the instantiated argument. This is provided as a
GSNML file that includes the information for all the required
argument elements and the relationships between the elements.
From this file the instantiated argument can be represented
graphically using a graphical tool (e.g. our Eclipse based editor)
or inputted to an existing GSN argument editor.

Figure 14. Representation of the example weaving model

4. Conclusions and Future Work
In this paper we have described our approach for generating
assurance cases for D-MILS systems. The approach is based upon
a set of modular assurance case patterns and a model-based
instantiation process. We have described how our approach brings

particular benefits in support of D-MILS. This includes ensuring a
consistent approach is adopted for all D-MILS systems through
the use of patterns and automated instantiation. We also support
compositionality and the use of independently developed
components through the use of modularity.

The work described in this paper is still under development and
will be developed further. In particular the approach will be
applied to full-scale industrial case studies to evaluate the
effectiveness and ease of application. The prototype tools that we
have developed require further development and validation,
particularly the tool support for creating the weaving models
(there are existing tools in this area that we will look to harness).
The D-MILS patterns themselves are also being developed
further. We would also like to explore the opportunities our
approach provides for automated verification and validation of the
assurance case.

5. Acknowledgements
This work was funded by the European Union FP7 D-MILS
project (www.d-mils.org)

6. References
[1] http://www.d-mils.org/

[2] Hawkins, R., Clegg, K., Alexander, R., and Kelly, T., 2011.
Using a Software Safety Argument Pattern Catalogue: Two
Case Studies. In Proceedings of the 30th International
Conference on Computer Safety, Reliability and Security
(SAFECOMP '11), (Naples, Italy, 2011).

[3] Kelly, T., 2001. Concepts and Principles of Compositional
Safety Case Construction. Technical Report
COMSA/2001/1/1, The University of York.

[4] GSN Committee, 2011. GSN Community Standard Version
1. http://www.goalstructuringnotation.info/.

[5] Hawkins, R., Habli, I., Kolovos, D., Paige, R., Kelly, T.
2015. Weaving an Assurance Case from Design: A Model-
Based Approach. To appear in Proceedings of the16th IEEE
International Symposium on High Assurance Systems
Engineering (HASE) (Daytona Beach, Florida, USA, January
2015).

[6] Kolovos, D., Rose, L., Garcia-Dominguez, A., and Paige, R.,
2013. The Epsilon Book. available at
http://www.eclipse.org/epsilon/doc/book/, October 2013.

[7] Rushby, J., 2008. Separation and integration in MILS (The
MILS constitution). Technical Report SRI-CSL-08-XX, SRI
International.

[8] SAE, Architecture analysis & design language (AADL),
Annex C AADL Meta Model and Interchange Formats, SAE
International, 2006.

[9] Didonet Del Fabro, M., Bézivin, J., Jouault, F., Erwan, B.,
and Gueltas, G., AMW: A generic model weaver. In proc.
1ères Journées sur l’Ingénierie Dirigée par les Modèles,
2005.

