
Content-Dependent Security Policies in Avionics

Tomasz Maciążek
tomaciazek@gmail.com

Hanne Riis Nielson
hrni@dtu.dk

Flemming Nielson
fnie@dtu.dk

Department of Applied Mathematics and Computer Science
Technical University of Denmark

Richard Petersens Plads, Building 324
2800 Kongens Lyngby, Denmark

ABSTRACT
We describe a tool (CBIF) for Content-Based Information
Flow Control for a subset of the C programming language
and show how to use it on applications from the avionics in-
dustry. In particular, we consider the secure gateways used
in the separation kernels of operating systems designed ac-
cording to the principles of Multiple Independent Levels of
Security (MILS).

1. INTRODUCTION
We consider programming of Integrated Modular Avionics

Systems using the principles of Multiple Independent Lev-
els of Security (MILS) [11]. Here modularity is achieved
by means of enforcement of separation and of restriction
of communication, using separation kernels capable of se-
curely partitioning resources, and secure gateways that can
examine the content of the messages exchanged and filter
them. Müller et al. [5] introduced a detailed specification
and architecture of a secure gateway suited for the avionics
industry.
There are several requirements that the secure gateway

should meet. The most important one is that it should al-
low content-based flow control, that is, it should be possible
to examine the content of the messages and not only to
determine which partitions should be able to communicate
with each other. For parts of those gateways, such as fil-
ters, content-based policies and routers are external to the
well established and verified secure systems, and thus need
to be additionally verified. These parts may consist of rela-
tively small pieces of code that could be verified using static
program analysis.
Our examples are motivated by a problem from [4] of rout-

ing data to the appropriate transport layer. To be specific,
[4] provides the code for a demultiplexer module responsi-
ble for making the right choice based on the content of the
inbound messages and proposes to use the Decentralized La-
bel Model (DLM) [7] for devising policies; subsequently it
uses a static analysis to ensure that the program is correct
with respect to the information flow security which in this
case means that both TCP and UDP packets are correctly
forwarded to, respectively, the TCP and UDP modules.
In our view the policies need to be content-dependent in

order to provide the required guarantees. A first solution to
this is proposed in [10] for a language of concurrent processes
and set-based policies. The approach is later refined in [9],
featuring more DLM-like policies, and it is the basis of the
type system presented in [2], where the CBIF tool imple-
menting the type system is described in detail. An overview

1 struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4 }{
5 (self.det == 1 => self.data={Alice->Bob});
6 (self.det == 2 => self.data={Alice->Chuck})
7 };
8 struct s input;
9

10 int out_chan{
11 (self.index == 0 => self={Alice->Bob});
12 (self.index == 1 => self={Alice->Chuck})
13 } [2];
14 int counter = 0;
15 while(counter < 2)[counter >= 0] {
16 if(input.det == counter + 1) {
17 out_chan[counter] = input.(*data);
18 }
19 counter = counter + 1;
20 }

Listing 1: A program with policy annotation

of the system is described in [3]. This article heavily draws
on [3] but focuses on the amount of guidance provided by
the CBIF system to programmers of avionics systems.
To illustrate the capabilities of the CBIF tool consider

listing 1. It is an example of a C program with content-
dependent policies that our tool is capable of analysing. The
syntax and meaning of the policies will be explained in sec-
tion 3. The code implements a simple demultiplexer which
forwards the given data from the input structure to the ap-
propriate output channel, which is represented by an array.
Paired with the data is a determinant det that determines
the kind of information and the channel to which it belongs.
The input structure is not initialized – it is an example of
how a program can be modelled. The actual values present
in it can be abstracted away and it should be valid for any
input. This program is correct with respect to the infor-
mation flow specified by the policies, and the output of the
CBIF tool is:

Validation has been completed successfully. There
↪→ are no illegal flows in the program.

In the remainder of this paper we will explain the policies
and the validation rules underlying the analytical capabili-
ties of the CBIF tool.

1 int {Alice->Bob; Bob<-_} x;
2 int {Alice->_; *<-*} y;

Listing 2: Example DLM labeling

2. DECENTRALIZED LABEL MODEL
In this section we review the basic ideas behind DLM –

a labelling system for ensuring information flow security. It
was originally developed for confidentiality [7] but was later
augmented with integrity in [8]. It offers means of declassify-
ing (downgrading confidentiality) and endorsing (downgrad-
ing integrity) data and handles implicit information flows in
a controlled manner.
DLM is based on a notion of principals, that is, entities

that can perform some actions in the system and they will
act as owners, readers and writers of data; we can think
of the principals as a perfect representation of the security
domains in avionics. The security policies in DLM take form
of labels, which consist of owners, as well as readers and/or
writers. Labels are associated with data and have the form:

{O1 → R1; ...;On → Rn;O1 ←W1; ...;On ←Wn}

Here Oi is a set representing owners, however, for simplicity
of policies defined later on, we are going to enforce that it
can be only either a singleton (one owner), or the set of all
principals (denoted PRIN), or an empty set. Then Ri is a
set of readers designated by the owners, and Wi is the set of
writers who the owners believe that might have influenced
the data.
The labels are partially ordered by the v relation, which

is defined as follows:

L1 v L2 iff ∀p : readers(L1, p) ⊇ readers(L2, p)
∧ writers(L1, p) ⊆ writers(L2, p)

where p is a principal, while readers(L, p) and writers(L, p)
are defined in the following manner:

readers(O → R, p) =
{
{p} ∪R if p ∈ O
PRIN otherwise

readers(L1;L2, p) = readers(L1, p) ∩ readers(L2, p)

writers(O ←W, p) =
{
{p} ∪W if p ∈ O
∅ otherwise

writers(L1;L2, p) = writers(L1, p) ∪ writers(L2, p)

In other words, readers(L, p) is the set of readers designated
by p in label L with p itself included; this means all the
readers that p allows to read the data. If p is not an owner
in the label it allows reading for all principals by default.
The writers(L, p) is the set of writers designated by p in
label L and p itself is included here as well; this means all
the writers that p believes may have influenced the data. If
p is not an owner in the label it believes by default that no
one has influenced the data.
An example of labelling is presented in listing 2. The part

of label with the right-arrow (->) concerns the confidential-
ity and the part with the left-arrow (<-) concerns integrity.
The * and _ signs are the syntax equivalent for the PRIN
and ∅ sets of principals, respectively. In the example, Bob
is allowed to read the variable x by Alice and Alice is also
an implicit reader. Bob also believes that no one (but him)

1 int {{Alice->Bob; Bob<-_}} x;
2 int {(self == 2 => {Alice->_; *<-*})} y;

Listing 3: Example content-dependent labelling

has influenced the variable. As for y, Alice does not allow
anyone (but herself) to read it, however, everyone believes
that anyone might have influenced the data.
A major advantage of DLM is that it has already been

implemented for Java programs as Jif: Java + information
flow. Jif has originated from JFlow [6] (an early imple-
mentation of DLM on a Java-like language), and has devel-
oped since – now it also incorporates integrity labelling and
many other features that facilitate secure programming and
strengthen security. Although it is C, not Java, that is used
as the programming language in avionics (due to numerous
challenges in assurance), both these languages are impera-
tive, and their principles are similar. Therefore, much of
the content-independent part of the solution for C could be
based on the Jif documentation [1] and then tested against
its implementation. This includes the logic behind the prin-
cipals, labelling, explicit and implicit flows and other fea-
tures not discussed in detail in this paper.

3. CONTENT-DEPENDENT POLICIES
In content-dependent policies, the policies are allowed to

specify conditions on the data and slots (identifiers of places
in program’s memory), and if these are met then some other
policy is applied, which might actually be a result that re-
solves to appropriate labelling (with a DLM label). If no
condition is specified then it is assumed to be equivalent
to true and the policy always holds. Note that the slot to
which the policy is applied restricts the scope of conditions
and results to that slot, and its components (if applicable);
actually the slot can be referred to in the condition and in
the result as self. There can be several results of a policy,
for example, concerning different slots. If no slot is specified
then by default it is the slot to which the policy is applied
that is concerned (i.e. self).
An example of a simple policy specification is shown in

listing 3. Here, we have an unconditional policy for x that
effectively is equivalent to the simple DLM label described
in section 2. The introduction of policies adds the outer
curly braces that delimit the policy specification, while the
inner braces remain delimiters of DLM labels. As for y, it
is governed by a policy that assigns the specified label to it
only if its value is equal to 2.
So far we have discussed the syntax of the policies that will

be used in the code. However, in order to make use of the
policies in the validation process, they need to be processed
and combined into a concrete (without self) global policy
defined as follows, using simplified BNF notation:

P ::= X : L
| φ⇒ P

| P1; P2

φ ::= x = n

| φ1 ∧ φ2

| φ1 ∨ φ2

The first alternative of the first rule represents assignment
of a DLM label L to a set of slots X, initially containing

exactly one slot. The second alternative is a conditional
policy, where φ is a condition that has to be met for the
policy P to hold. Furthermore, x is a slot and n is a constant.
The use of a set of slots might seem excessive here, but it
is necessary for the formal type system that implements the
validation.
The translation from the policies appearing in the code

to the global policy P happens in a compilation phase. As
a result the policies are concretized with the slots to which
they actually apply. For example, the following global policy
is derived from the code presented in listing 1:

P = input.det : Alice→ Bob,Chuck;
(input.det = 1⇒ input.data : {Alice→ Bob});
(input.det = 2⇒ input.data : {Alice→ Chuck});
(out_chan.index = 0⇒ out_chan : {Alice→ Bob});
(out_chan.index = 1⇒ out_chan : {Alice→ Chuck})

4. A FRAGMENT OF C
The language that the CBIF tool is capable of processing

is based on a subset of the C language containing:

• Integer, decimal (float) and boolean variables

• Declarations, definitions and assignments

• Arithmetic and boolean operations

• Conditional statements (if conditionals)

• Simple iteration statements (while loops)

• Structures and structure initialization

• Static and dynamic arrays

• Pointers to simple data types and non-cyclic structures

• Assignments of addresses to pointers

• malloc and sizeof operations

The language defines two types of slots: variables – in-
stances of simple type data structures; and instances of
structures. Following the C standard, structure definitions
may contain both variables and structure instances, which
are declared with their short names. The fully qualified
names will be those used in all other program instructions
and within policies. For example, the structure s from list-
ing 1 has two components det and data. Once the structure
is instantiated in input these components can be referenced
using their fully qualified names input.det and input.data
respectively for this structure instance.
The language incorporates policies, which can be specified

for variables, structures and their instances. The policies are
declared inside curly braces when declaring a structure or a
variable, after the type specification. More than one policy
can be specified using semicolon as a separator. The scope
of the policies (the slots on which they are dependent and
which they influence) is limited by the point of attachment.
Hence, in case of a variable, the scope is that variable itself.
As for a structure, it is all its components, and subcompo-
nents if the structure contains nested structures. The pro-
grammer may attach the policy to both the structure and its
components, so that he has macro- and micro-control over
the policies.

Finally, the programmer may specify a loop invariant in-
side brackets before the loop body (as in line 15 of listing 1).
It has been introduced in order to avoid fixed-point analy-
sis, which would be otherwise necessary to reason about the
state inside loops.

5. PROGRAM VALIDATION
We now give an informal description of the basic content-

based program validation. We focus on effects of policies
on variables and structures, variable assignments and con-
trol statements, leaving out more complex topics, such as
structure initialization, structure assignments, pointers and
arrays; a discussion of these aspects can be found in [2].
Let us start from defining the context that is provided by

the if conditionals and while loops. These statements cre-
ate blocks through which not all execution paths are passing,
and thus, if an assignment occurs inside those statements,
then some information is passed to the assigned slot about
the slots that are present in the conditions (the boolean
expressions guarding both if and while statements). In or-
der to register that phenomenon, we will maintain a set
X of slots that implicitly influence the current program
statement; in other words, the set X will contain all those
variables about whose values we might learn something by
merely knowing that the given program point was reachable.
For both if and while statements the set X will include all
variables present in the condition and the similar sets of
variables for the enclosing blocks.
Another information that the context provided by the

statement blocks yields are the constraints on the actual
values of the variables appearing in those blocks. These
constraints also result from the conditions and are useful
for determining which policy should apply. The constraints
holding at any given statement will be denoted by φpc, which
will encompass conditions from all enclosing blocks and re-
sults of assignments inside and outside them.
Now, given the knowledge about the context we can define

the rule for the assignment. An assignment of form xv = e
can only be valid if the policy of the variable, written xv, is
at least as restrictive as the policy of the expression e (i.e.
e v xv), where e is an aggregation of the policies of variables
appearing in the expression e. Furthermore, xv must also
be at least as restrictive as pc (i.e. pc v xv) – the label of
the program counter, which results from joining policies of
the slots in X indicating the implicit flow of information.
It is also possible that xv is actually a field of some struc-

ture, or such fields are present in e. Then, also the policies of
the ancestor structures need to be taken into consideration.
Let us assume that xv encompasses the policies attached
to the variable xv and the policies governing the ancestor
structures. The same applies to all variables in e so that e
is joining their policies.
Finally, the actual labels will be determined by the condi-

tions attached to the policies. The constraint environment
φpc holding before the assignment statement will determine
which labels should be applied to the expression e, while
the constraints ψpc holding after the assignment will do the
same for xv. We denote this kind of selection of policies by
writing the constraint environments in subscripts. The full
expression for validating the assignment will then be:

eφpc
t pcφpc

v xvψpc

The last validated aspect of code are loop invariants, if

1 Validation failed. Offending statement (line 17):
2 out_chan[counter] = input.data;
3
4 Reason:
5 LHS policy is more restrictive than RHS policy
6
7 LHS policy:
8 ((((((counter >= 0) && ((counter:5 == 0) && true)) && (counter < 2)) && (input.det == (counter + 1))) &&
9 (true && (false || (out_chan.index == counter)))) =>

10 input.det|out_chan={Alice->Bob,Chuck};
11 ((input.det == 2) => input.data|out_chan={Alice->Chuck});
12 ((input.det == 1) => input.data|out_chan={Alice->Bob});
13 ((out_chan.index == 1) => ={Alice->Bob});
14 ((out_chan.index == 0) => ={Alice->Bob}))
15
16 RHS policy:
17 input.det={Alice->Bob,Chuck};
18 ((input.det == 2) => input.data={Alice->Chuck});
19 ((input.det == 1) => input.data={Alice->Bob});
20 ((counter == 1) => out_chan={Alice->Bob});
21 ((counter == 0) => out_chan={Alice->Bob})
22
23 Model:
24 out_chan:{Alice} ->[input.det=2, out_chan.index=1, counter=1]

Listing 4: Output of the tool for flow validation failure

specified by the programmer. The provided invariant must
be true before each execution of the loop, and after it.
Formally, and in the actual implementation (as shown in

outputs in section 6), labels are not extracted in the man-
ner presented in this validation specification, which has been
given here in order to avoid introducing a complex type sys-
tem. Instead, the global policy is modified into two versions
to reflect the information flow, and these two versions are
compared for all possible states to determine whether the
flow is valid. The modification is limited to the sub-policies
regarding the assigned variable, so that the two resulting
policies are comparable against each other on that variable.
For example, if we would like to validate the assignment at
the end of this program:

1 int {{A->B}} x = 2;
2 int {(self == 1 => {A->B});
3 (self == 2 => {A->B,C})} y;
4 y = x;

Then the following two policies would be created for com-
parison:

Pleft = (true⇒ x, y : {A→ B});
(y = 1⇒ ∅ : {A→ B});
(y = 2⇒ ∅ : {A→ B,C})

Pright = (true⇒ x : {A→ B});
(2 = 1⇒ y : {A→ B});
(2 = 2⇒ y : {A→ B,C})

The Pleft policy represents the fact that something with
label {A→ B} is assigned to y, while Pright indicates which
policy will be applying to y after the assignment. These two
policies are compared on the effective labels assigned to y.
In this case the validation would fail since in Pright the y
variable gets a less restrictive {A→ B,C} label.

6. THE CBIF TOOL
There are three key technologies that constitute the CBIF

solution. First of all, it has been programmed in C# using
the .NET 4.5 framework. The ANTLR parser generator has
been used to generate code that parses the input and in-
stantiates it as an Abstract Syntax Tree (AST) for further
processing. Last but not least, we have taken advantage of
a Satisfaction Modulo Theories (SMT) solver, namely Mi-
crosoft’s Z3, in order to solve the complex, conditional policy
comparisons that result from the validation rules.
The validation process starts from parsing the input code

and generating AST. Then the resulting tree is compiled
in order to extract the concrete global policy. Then, the
program is validated, one statement at a time, according
to the validation rules. The constraint environments and
policy comparison expressions are built deterministically in
C#, and then translated to the Z3 domain using its API. In
this step, bit vectors are used for purpose of set operations
on the domains of slots and principals, while all arithmetic,
boolean and comparison operations resulting from the code
are directly converted to the respective Z3 types. Finally,
the resulting comparison is negated, and then verified by
Z3. The negation ensures that if the original comparison
is unsatisfiable, then a model revealing the problem will be
output.
We have already seen the output of the CBIF tool for

the listing 1. In order to show how the tool performs for a
program containing information flow problems, we are going
to break the example in various ways.
Let us first change the policy in line 12, so that it looks

as follows:

(self.index == 1 => self={Alice->Bob})

This should invalidate the flow, as for input.det == 2 the
label of input.data is {Alice→ Chuck}, while now for the
index equal to counter (which is equal to 1), paired with
input.det by the if conditional, the label of out_chan is
{Alice→ Bob}.

1 Validation failed. Offending statement (line 15):
2 while ((counter < 2))[(counter >= 0)] {
3 if ((input.det == (counter + 1))) {
4 out_chan[counter] = input.data;
5 }
6 counter = (counter + 1);
7 }
8
9 Reason:

10 Precondition does not match the postcondition
11
12 Expression:
13 ((counter == (0 - 1)) && true)
14
15 ...does not imply:
16 ((counter >= 0) && ((counter:5 == (0 - 1)) &&

↪→ true))
17
18 Model:
19 n/a:{n/a} ->[counter=-1]

Listing 5: Output of the tool for invariant validation failure

The output of the tool is presented in listing 4, where the
policies have been reformatted for better legibility. The first
two lines identify the statement which causes the problem.
Line 5 gives the reason for which the validation has failed,
and the lines that follow provide details. Lines 8 and 9 are
the (modified) precondition, where line 9 informs about con-
straints imposed by usage of subscripts. What follows is the
rest of the policy representing the old state and the influ-
encing variables, the LHS policy, while the RHS policy rep-
resents the new state and the assigned variable. The most
interesting information, however, comes at line 24, where we
have the model for which the policy comparison validation
fails. First is the slot, followed by the principal and then the
state in the form of mapping from variables to their values.
This information allows us to pinpoint the problem in the
policy comparison. In line 11 we have that Alice designates
Chuck for out_chan, while in line 20 with the matching
counter it is Bob that is designated.
As a second example we shall modify the original exam-

ple so that the counter is initialized with −1, instead of 0.
Then we get a validation error presented in listing 5, which
indicates that the invariant is not met. Here, again the first
lines of the output identify the source of the problem. The
most useful information for identifying what is the problem,
is provided by the two expressions in lines 13 and 16, as well
as the model, which this time does not specify any partic-
ular slot nor principal. The expression from line 13 does
not imply the one from line 16, because the latter rules out
the possibility of counter being equal to −1 (counter:5 is
a fresh variable).
One might wonder why do we need the invariant at all.

What if we remove it? Then we get another information flow
validation error, this time stating the following (full output
not included for brevity):

1 Validation failed. Offending statement (line 17):
2 out_chan[counter] = input.data;
3 (...)
4 input.det|out_chan={Alice->Bob,Chuck};
5 (...)
6 Model:
7 out_chan:{Alice} ->[input.det=0,

↪→ out_chan.index=-1, counter=-1]

1 policy GatewayHandler =
2 {(self.protocol==6 =>self.func={TCP->_;TCP<-_});
3 (self.protocol==11 =>self.func={UDP->_;UDP<-_})};
4 policy Gateway =
5 {(self.u.protocol==6 =>self={TCP->_;TCP<-_});
6 (self.u.protocol==11 =>self={UDP->_;UDP<-_})};
7 struct DeMuxType {
8 int protocol;
9 int* func;

10 };
11 struct DeMuxType handler {GatewayHandler}[3];
12 struct inputType {
13 struct info {
14 int protocol;
15 } u;
16 int buf[65535];
17 } {Gateway} INPUT;
18 int counter = 0;
19 while(counter < 3) {
20 struct DeMuxType {GatewayHandler} DeMux =

↪→ handler[counter];
21 if(DeMux.protocol==INPUT.u.protocol) {
22 DeMux.func=INPUT.buf;
23 }
24 }

Listing 6: The use case scenario code

As we can see, the states for which the policies are com-
pared include one where counter is equal to −1. This
is because as counter is assigned in the loop, and no in-
variant is provided, the pre-existing information about the
counter is weakened out on entering the loop. The prob-
lem here again is the policy of out_chan, which receives
label {Alice → Bob,Chuck} of input.det, as this variable
is present in the if condition.

7. AVIONICS EXAMPLES
We have also analysed a use case scenario based on the

code of the Receiver Component in Enhanced DLM provided
in [4], which is shown in listing 6. The code has been adapted
to the policy syntax and language discussed in this work.
The adaptation process, among other things, excluded the
configuration part, where the handler was initialized, which
is not necessary for the validation – enough information is
provided by the policies. Moreover, the function pointer has
been replaced by an integer pointer and the function call by
an assignment. From the information flow security point of
view the code is equivalent and models the original.
The code performs a similar functionality and envisions

similar validation problems as the code from listing 1. The
difference is that it concerns both confidentiality and in-
tegrity, and re-uses policies declared by name. The verifica-
tion process for this code completes successfully.
An interesting part here is that we need the assignment to

a local slot DeMux in line 20, and then use that slot, instead
of the handler array directly, in the if conditional that fol-
lows. This is because the type system implemented in the
validation tool does not reason about the values of elements
of arrays. If the handler array was to be used directly in
the condition, then such reasoning would be unavoidable.
Furthermore, as the policy of the handler array does not
depend on the index, unlike in listing 1, no loop constraint
is necessary here.
It is also possible to model a reverse scenario – a multi-

1 policy GatewayHandler =
2 {(self.u.prot==6 =>self.buf={TCP->_;TCP<-_});
3 (self.u.prot==11 =>self.buf={UDP->_;UDP<-_})};
4 policy Gateway =
5 {(self.prot==6 =>self.dataBuf={TCP->_;TCP<-_});
6 (self.prot==11 =>self.dataBuf={UDP->_;UDP<-_})};
7 struct MuxType {
8 struct info {
9 int prot;

10 } u;
11 int buf[65535];
12 };
13 struct MuxType {GatewayHandler} handler;
14 struct inputType {
15 int prot;
16 int dataBuf[65535];
17 } {Gateway};
18 struct inputType INPUT[3];
19 int counter = 0;
20 while(counter < 3) {
21 struct inputType {Gateway} in = INPUT[counter];
22 struct MuxType {GatewayHandler} Mux =

↪→ {{in.prot}};
23 Mux.buf = in.dataBuf;
24 handler = Mux;
25 }

Listing 7: The multiplexer – the reversed use case scenario
code

plexer that receives some data from multiple input channels
and modulates them into one output channel. A valid code
for that scenario is presented in listing 7. The input channels
are modelled as an array, and the output channel handler
function is represented as a structure, same as the one be-
ing the input for the demultiplexer. Also in this use case
scenario the CBIF tool validation succeeds indicating that
there are no information flow problems.
The most important part of this code is the translation

from the input data structure to the output data structure.
This translation needs to be done using structure initializa-
tion list – atomically with creation of the structure. How-
ever, what is interesting here is that in.dataBuf is not part
of that initialization. It can be assigned afterwards causing
no invalid information flow, because Mux.buf has a compat-
ible policy, which does not change due to that assignment.
Nevertheless, we would not be able to change the value of
the Mux.prot that way, as this change would have a side
effect of changing the policy of the dependent slot, which is
Mux.buf. That is why such atomic structure initialization is
needed.

8. CONCLUSION
The CBIF tool is capable of processing a large subset of

the C language including most common control statements,
complex data structures, pointers and arrays. Moreover, if
some information flow problems are discovered during anal-
ysis the tool is capable of producing a human-readable out-
put that precisely identifies the fault. Finally, thanks to
statement-wise analysis separation and use of Z3 the tool
has very good performance – for most of the simple pro-
grams provided here in listings and used in unit tests the
answers were delivered in milliseconds.
One might consider introducing policy inference in the

tool – a feature that could increase automation of verifica-
tion in a way that only minimal modifications to the code

are needed. However, it would require creating dependen-
cies between all policy comparisons resulting from the code
and checking them all at once. As an effect, the tool would
not be able to provide a fine grained information about
the problems detected in the input. In fact, this approach
might make the analysis infeasible for all but very small
programs. Another means of automating the verification
process could be introduction of polymorphism, which al-
lows defining methods without specifying the return policy,
nor the policies of the arguments. The concept is quite sim-
ple, yet powerful, as polymorphic methods can be used in
different contexts with different policies.
The final step for automation of verification of safety-

critical software could be pushing the policy specification
outside of the code. In a MILS-based architecture this could
be done by declaring the interfaces of the components against
which the software inside those components would be val-
idated. Of course, the input and output of the programs
would also have to be well-defined and annotated with poli-
cies, and possibly restricted to the IPC channels only. On
the security gateway level, the policies of interconnecting
components should be checked and only communication that
is a restriction should be allowed. The gateway could exam-
ine the content of the messages to decide what policy applies
on both ends. This way we would ensure that there are no
illegal flows due to interface incompatibility, which might
happen if the components disagreed about the policy.

Acknowledgements.
We should like to thank Michael Paulitsch and Kevin

Müller from Airbus for discussions.

9. REFERENCES
[1] Jif: Java + information flow.

http://www.cs.cornell.edu/jif/.
[2] Tomasz Maciazek. Content-Based Information Flow

Verification for C. MSc thesis, Technical University of
Denmark, 2015.

[3] Tomasz Maciazek, Hanne Riis Nielson, and Flemming
Nielson. Content-Dependent Security Policies for C.
(To be submitted for publication), 2015.

[4] Kevin Müller, Ximeng Li, Flemming Nielson,
Hanne Riis Nielson, and Georg Sigl. Secure
Information Flow Control in Safety-Critical Systems.
Unpublished manuscript, 2014.

[5] Kevin Müller, Michael Paulitsch, Sergey Tverdyshev,
and Holger Blasum. MILS-related information flow
control in the avionic domain: A view on
security-enhancing software architectures. In
Proceedings of the International Conference on
Dependable Systems and Networks. IEEE, 2012.

[6] Andrew C. Myers. JFlow: Practical Mostly-Static
Information Flow Control. In Proceedings of the 26th
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages - POPL ’99, pages 228–241,
1999.

[7] Andrew C. Myers and Barbara Liskov. A
Decentralized Model for Information Flow Control. In
Proceedings of the Sixteenth ACM Symposium on
Operating Systems Principles, number October, pages
129—-142. ACM, 1997.

[8] Andrew C. Myers and Barbara Liskov. Protecting

privacy using the decentralized label model. ACM
Transactions on Software Engineering and
Methodology, 9, 2000.

[9] Hanne Riis Nielson and Flemming Nielson. Content
Dependent Information Flow Control. (Submitted for
publication), 2015.

[10] Hanne Riis Nielson, Flemming Nielson, and Ximeng
Li. Hoare Logic for Disjunctive Information Flow. To
appear in Programming languages with applications
to biology and security. Essays dedicated to Pierpaolo
Degano for his 65th birthday. In Lecture Notes in
Computer Science, volume 9465. Springer, 2015.

[11] John Rushby. Separation and Integration in MILS
(The MILS Constitution). 2008.

