

© Copyright 2016 Wind River. All rights reserved. 1

Applying MILS to multicore avionics systems

Paul J. Parkinson

Principal Systems Architect

Wind River

Swindon, United Kingdom

Paul.Parkinson@windriver.com

Abstract— The implementation of the Multiple Independent

Levels of Security (MILS) software architecture on modern

microprocessor architectures has become technically feasible in

recent years. This allows MILS-based systems to host

applications and data of multiple security classifications

concurrently on a uniprocessor platform at affordable cost. In

this paper, the potential requirements for the implementation of

a separation kernel to support MILS systems on multicore

processor architectures will be considered, and the design

challenges associated with its potential implementation on the

NXP (formerly Freescale) QorIQ™ P4080 multicore processor

will be discussed. Finally, the potential use of a MILS Multicore

separation kernel in two use cases will be presented - a Cross-

Domain System (CDS) network gateway, and a Multi-Level

Secure (MLS) Integrated Modular Avionics (IMA) platform.

Keywords—MILS; multicore; security; MLS; CDS; ADN

I. ADOPTION OF MULTIPLE INDEPENDENT LEVELS OF

SECURITY

Historically, commercial organizations and governments
have categorized information at different security
classifications, based on varying criteria including information
value, sensitivity, and the impact of disclosure.

Information at different security classifications was
traditionally physically isolated in separate domains. The
methods used to enable authorized information flows between
security domains have varied, but have often involved manual
transformation of information which has fundamentally limited
the speed of analysis of information and decision-making.

More recently, there has been a drive towards automation
of the information flow process between different security
domains. This enables decision-making to be accelerated, in
order to provide benefits to applications as diverse as
commercial business and banking operations, through to
sharing information with coalition forces in theatre operations.

Initially, these multilevel secure computer systems were
built using multiple, physically separated computers, networks,
and displays. This technique, known as “air gap” security,
required expensive equipment and occupied a large footprint in
terms of Size, Weight and Power (SWaP). Whilst there have
been efforts to address the multi-level security requirement
through the development of monolithic, secure operating
systems running on a single computing platform, their
development and security certification would have taken ten or

more years and at unaffordable cost due to the large size and
complexity of the trusted computing base (TCB) [1].

In 1984, John Rushby proposed an alternative approach for
secure embedded systems, utilizing a small trusted computing
base as part of a layered software architecture, providing
separation between different domains on a single processor [2].
This provided the foundation for the Multiple Independent
Levels of Security (MILS) software architecture which was
presented by Mark Vanfleet at the Open Group Security Forum
in 2002. The MILS architecture provides a means of
overcoming the development time and certification cost issues
associated with large monolithic operating systems, through the
use of a separation kernel (SK) built on four fundamental
security policies:

• Information Flow. This defines the permitted
information flows between partitions.

• Data Isolation. This ensures that a partition cannot
access resources in other partitions.

• Periods Processing. This ensures that applications
within partitions execute for the specified duration in the
system schedule.

• Fault Isolation. This defines that a failure in one
partition does not impact any other partition within the system.

Fig. 1. Multiple Independent Levels of Security (MILS) architecture

These four policies create an architecture where the
separation kernel is Non-Bypassable, Evaluatable, Always
Invoked and Tamper Proof, which is known as NEAT. This
means that the size of the trusted computing base implemented
by the separation kernel, shown as “RTOS Micro Kernel
(MILS)” in Fig. 1, has the potential to be very small, as all

© Copyright 2016 Wind River. All rights reserved. 2

other functionality can be migrated either to middleware or
applications running in partitions. This layered assurance
approach means that the amount of code which needs to
undergo rigorous scrutiny as part of a high assurance security
evaluation can be very small when compared to a traditional
monolithic operating system.

In 1984, the microprocessors available on the commercial
market did not provide sufficient performance to host multiple
applications concurrently or the ability to separate them in a
robust manner. However, recent advances in some commercial
microprocessors have included hardware virtualization support
which can be utilized by the implementation of a separation
kernel using a Type 1 (or native, bare metal) Hypervisor [3].
This has enabled the development and deployment of MILS
systems on uniprocessor architectures [4].

II. ADVENT OF MULTICORE PROCESSORS

A. Disruptive Technology

There has been a long-term trend in processor development,
described by Moore’s Law [5], whereby the transistor count
that can be placed on an integrated circuit increases at an
exponential rate, doubling every two years. This trend is
expected to continue for a number of years yet, although there
is disagreement about when the limit for miniaturization of
transistors will be reached. However, this approach has
approached the limit of viability because as processor clock
frequencies have climbed, power consumption has soared.

The result has been a disruptive change to the processor
evolutionary development trend through the introduction of
multicore processor devices. Multicore processors combine
two or more independent processor cores into a single
integrated circuit (IC) which can each be run at lower clock
frequencies, resulting in lower overall power consumption
whilst still achieving increased overall performance.

B. Multicore Software Paradigms

The parallelism of different types of applications can vary
enormously. For example, some numerically-intensive
applications are inherently sequential, whereas other
applications such as radar, sonar or image processing are often
inherently parallel. This variation has led to the development of
a range of multicore software configurations (Fig. 2).

Symmetric Multiprocessing (SMP) involves the use of a
single instance of an operating system running across multiple
processor cores. This has traditionally involved the operating
system (OS) running across multiple single-core processors,
but the advent of multicore processors has resulted in a trend to
consolidate a systems architecture comprising multiple, single-
core processors into a single, multicore processor-based
architecture, thereby reducing SWaP footprint.

Asymmetric Multiprocessing (AMP, or sometimes referred
to as ASMP) uses a different approach to SMP, by treating
each core as a separate processing element. This enables
multiple instances of the same application to be replicated
across multiple cores and to operate on separate sets of data. In

addition, it is also possible to run different operating systems
on different cores if required. A typical, multicore, embedded
system may run a real-time operating system (RTOS) on one
core for real-time sensors or control, and a general-purpose
operating system such as Linux on another core to provide a
graphical user interface. Multicore AMP systems can be
extremely complex, especially in consolidated systems where
multiple operating systems are used. This means that additional
effort needs to be expended on ensuring that the system
configuration allocation of hardware resources to individual
guest operating systems is correct. However, the effectiveness
of this approach without use of a supervisor is debatable, as it
is reliant on the co-operation of the individual guest operating
systems.

Fig. 2. Primary multicore software configurations

Virtualization extends the concept of supervision further,
through the use of a hypervisor running across the cores. The
hypervisor is responsible for creating a virtualized environment
for each core, configuring the memory protection required for
each OS, and loading and booting the relevant operating
systems. This provides strong separation between the operating
environments on each core, and typically could be used to
enable the consolidation of applications, which previously ran
on separate processors, onto a multicore architecture; for
example, this could involve a general purpose OS such as
Windows or Linux, and an RTOS such as VxWorks.

These primary multicore software configurations can each
be applied to different types of computing problems, and are
becoming widely deployed due to the widespread commercial
availability of multicore processors. For a technical discussion
of the respective architectures and challenges for their
deployment, refer to [6].

III. MILS & MULTICORE CONVERGENCE

The increasing deployment of the MILS-based systems on
single-core processors, and the increasing commercial
availability of multicore processors, has led to the convergence
of these two technology trends, resulting in the requirement to
extend the MILS architecture to exploit multicore performance
security-critical systems.

This requirement is now becoming more compelling as the
number of single-core processor shipments continues to decline
as multicore processors become more widespread; in fact,

© Copyright 2016 Wind River. All rights reserved. 3

some semiconductor companies may manufacture single-core
processors as dual-core processors but with the second core
disabled, in order to achieve manufacturing efficiencies.

A. Architectural Challenges

There are some significant challenges in relation to using
multicore processors in MILS systems, in particular, that of
application isolation and core separation. Research into these
areas has been undertaken in recent years in the related
discipline of safety-critical systems, and although the end-goals
of safety certification and high-assurance security are different,
there is some overlap in their requirements.

For example, research undertaken by the FAA [7] has
highlighted issues around suitability of particular multicore
processor architectures for safety-critical avionics applications.
The FAA research highlighted the consequences of
incorporating shared resources in a specific multicore processor
architecture, the NXP (formerly Freescale) PowerPC
MPC8572 dual-core processor. In particular, application
performance and determinism on one core was found to be
significantly adversely affected by the contention for shared
resources by the actions of the other core, resulting in a denial
of service (DOS).

Whilst the impact of this contention can potentially be
mitigated for some safety-related avionics applications through
careful application design and rigorous worst-case execution
time (WCET) analysis [8], the use of shared resources such as
memory controllers and Level 2 (L2) and Level 3 (L3) caches
on multicore architectures presents a greater challenge which is
unique to security, that of covert channels of information
transfer. In single-core processor architectures, it may possible
to limit the bandwidth of a covert channel due to a shared
resource through the design of the MILS separation kernel
partition scheduler. However, on a multicore architecture, as
the applications may be executing simultaneously on individual
cores, the bandwidth of covert channels could potentially
increase dramatically, making them much more dangerous.

Although, the FAA and EUROCAE have not yet published
formal policies on the use of multicore processors in safety-
critical avionics applications, position papers such as CAST-32
[9] and MULCORS [10], published in both US and Europe
respectively, have described new objectives for multicore
safety. In addition, the ARINC653 [11] specification for
integrated modular avionics (IMA) systems was updated in
2015 to support the development of multicore IMA systems.

Consideration must be given to the fact that most multicore
processor architectures are designed to support a wide range of
multicore software configurations (as discussed earlier), rather
than specifically for high-assurance security applications. Some
individual processor variants, however, within a multicore
processor architecture family may provide specific features
which make them more suitable for use in a MILS system. An
example of this is the NXP QorIQ P4080 communications
processor [12], which has eight e500mc cores, each with a
private L2 cache, which eliminates one of the potential covert
storage channels.

The P4080 architecture also employs the CoreNet Fabric to
provide separation between the cores whilst enabling multiple
memory accesses to be performed in parallel, avoiding the
contention issues associated with a traditional bus architecture.
This provides a powerful capability which can be utilized in a
MILS multicore implementation to reduce the bandwidth of a
potential covert channel between specific applications.

However, the P4080 processor only has two memory
controllers and a single L3 cache which is shared by all eight
cores, which means that if more than two cores are executing
(non-cached) code, there is potential for contention for access
to physical memory, thus providing a covert channel. Disabling
the L3 cache can help to reduce the bandwidth of the covert
channel.

Finally, in a MILS multicore environment, there is also a
requirement to be able to boot each of the cores in a secure
manner; and the ability to achieve this may be determined by
the capabilities provided by the underlying processor
architecture.

B. MILS Multicore Design & Implementation Considerations

The potential requirements for a separation kernel to
support MILS on a multicore processor architecture, and a
specific implementation on the NXP QorIQ P4080 processor,
will be considered in the following subsections.

1) MILS Multicore Software Architecture
The primary high-level requirement is to enable high-

assurance security applications to run securely on a multicore
processor architecture. There are a number of potential
software architectures which can be employed, based on the
primary multicore software configurations discussed earlier;
but an approach based on Asymmetric Multiprocessing (AMP)
may provide better security characteristics and enables the
reuse of a MILS separation kernel implementation for a single-
core processor (also referred to as unicore) to the greatest
extent possible.

A processor using 32-bit addressing provides a 4 Gbyte
address space. Whilst this may be sufficient for running a
separation kernel on a single processor, and also on a single
core on the P4080, it would not be sufficient if the 4 Gbytes
had to be shared between eight cores (i.e., only 512 Mbytes per
core). This can be solved by migrating a 32-bit separation
kernel implementation to a 64-bit implementation, but this
would add complexity and cost just to provide increased
address space.

Instead, this issue can be overcome by using the P4080, as
its CoreNet interconnect fabric supports 36-bit addressing,
providing the processor with a 64 Gbyte address space, whilst
employing 32-bit addressing per individual core, with the
processor memory management unit (MMU) enforcing
separation between the address spaces of individual cores. This
32-bit compatibility helps to minimize the scope of changes
required to port an existing unicore separation kernel
implementation to the P4080 multicore architecture.

For these reasons, the decision was taken to implement
VxWorks MILS Platform, Multi-core Edition [13] on the
P4080 processor using AMP mode, where each core (and its

© Copyright 2016 Wind River. All rights reserved. 4

associated hardware resources) hosts an independent
instantiation of VxWorks MILS. Thus, a separate unicore
VxWorks MILS system, complete with separation kernel and
applications running in partitions, runs on each core.

2) Core Virtualization
Microprocessors typically provide two privilege levels,

User Mode, for user application context, and Supervisor Mode,
which allows the execution of privileged instructions, which is
usually reserved for use by the operating system kernel. The
introduction of a secure hypervisor running beneath the
partitions containing applications and operating systems results
in a requirement for a third privilege level.

The P4080 implements three privilege levels, including a
Hypervisor Mode, which enables a guest operating system
(GOS) running in a partition to have memory protection from
the applications running on top of it, without relying on the
separation kernel for enforcement, as this is performed by
hardware (Fig. 3). This means that Guest OSes running in
partitions do not require significant paravirtualization, which is
required on processors which do not provide hardware
virtualization support.

Therefore, the full hardware virtualization support of the
P4080 reduced the effort required to implement guest OS
support on VxWorks MILS Platform, Multi-core Edition.

3) Secure Boot
The use of a multicore processor architecture greatly

increases the complexity of the initialization and boot sequence
for the platform. This leads to a requirement to ensure that the
processor is placed into a known state before each core is
booted, in order to ensure that security issues are not
introduced through initialization and boot of multiple cores
being performed in the wrong order.

Fig. 3. MILS Hypervisor Virtualization Model

The exponential growth in complexity of a multicore
system increases the risk that the system architect may
configure the system incorrectly, so automated tool support is
required to provide continuous validation and feedback to
prevent the introduction of system configuration errors which
could lead to security issues.

This capability was implemented in VxWorks MILS
Platform, Multicore Edition using XML configuration files
which are compiled into binary objects and linkable images

using the Wind River XML configuration generation tools,
including XML Configuration Verification (VerCon-X) and
Configuration Vector Generation (CVGEN). These
configuration images are then loaded on the target to be
referenced during system boot. These XML configuration tools
allow developers to make changes to application and system
configuration information without rebuilding and retesting the
entire system.

4) Core Schedule Synchronisation
MILS unicore systems provide the ability to handle

information at multiple security classifications or from multiple
security domains, as the MILS time-slice scheduler enforces
the sequential processing of individual applications or
domains; i.e., an individual time-slice within the MILS system
schedule allows only one partition to execute within that time-
slice duration.

 In a MILS multicore system, each core executes its own
MILS separation kernel independently, which means that it
also can execute its own independent schedule. This provides
the potential for individual cores to be processing information
at different security classifications, or from different domains,
concurrently: i.e., at the same instant in time. This independent
time-sliced scheduling may be permissible for a MILS system
where there are multiple independent applications processing
information at the same security classification or from the same
security domain.

However, for some MILS multicore systems, if the
underlying processor multicore architecture provides any
resources which are shared between cores, these could
potentially be used by one core to monitor or disturb
performance on another core, providing a potentially high-
bandwidth covert storage channel which could be exploited to
perform the unauthorized flow of information between cores.

Although the P4080 provides full separation of cores
through separate memory address ranges, separate L2 caches,
and the CoreNet interconnect fabric (which together provide
better overall separation than some other processor
architectures), the P4080’s cores still share a number of
hardware resources, such as the two memory controllers for use
with the eight P4080 cores.

Therefore, there is a requirement to be able to minimize
these potential covert storage channels to limit their bandwidth
and impact in MILS multicore systems where this would be a
security issue.

This requirement could be implemented through the use of
a synchronized time-sliced scheduling model, which enforces
synchronization of core schedules. This approach would enable
the system architect to control the cores as if they were a single
entity, executing at a single security level. By synchronizing
schedules across cores, the system architect can ensure that at
any instant of time, all data being processed on all cores are all
at the same security level, or from the same domain, to
minimize the impact of any covert channels between partitions
on different cores. The use of Synchronized Time-Sliced
Scheduling does not remove the potential for covert channels,
but does eliminate illicit cross-level information flow. This will
be illustrated through analysis of a use case in a later section.

© Copyright 2016 Wind River. All rights reserved. 5

5) Inter-Core Communications
There is also an important requirement to be able to

communicate between the cores securely, to enable an
application hosted in a partition on one core to communicate
with an application running on another core. This should be
implemented in a manner which is transparent to the
application hosted in the partition. This location transparency
would provide benefits in terms of software portability as it
enables the system architect to modify the design and move
applications to different cores without impacting the
application implementation.

The implementation approach taken in VxWorks MILS
Platform, Multi-core Edition was to extend the secure inter-
partition communication (SIPC) component, previously
implemented in the VxWorks MILS unicore implementation,
in a location transparent manner suitable for use in the
multicore implementation. This also reuses an API designed
around the ARINC 653 APEX queuing and sampling port
interfaces, which provides a programming environment
familiar to ARINC 653 developers, as well as enables ARINC
653 applications to be ported to VxWorks MILS Platform.

6) Independent Core Configuration
A MILS multicore system is extremely complex, and to

enable the successful configuration of the entire platform, an
approach which allows individual cores to be configured
independently is required. This would also enable a MILS
multicore system to be composed incrementally, and would
enable the configuration and composition of the system to be
reordered in a way which fits in with a MILS development
organization and internal processes.

This could be achieved through the use of XML-based
configuration of individual cores as well as the entire MILS
multicore system, using automated tool support to continuously
validate the configuration and provide feedback to the system
architect. This was the approach that was taken for the
implementation of VxWorks MILS Platform, Multicore
Edition, again using the XML configuration and tool
capabilities described in requirement 3) above.

IV. CROSS-DOMAIN SYSTEM USING MILS MULTICORE

In this section, the requirements for a Cross-Domain
System (CDS) network gateway will be considered, and
potential implementation approaches using MILS unicore and
MILS multicore will be discussed.

A. Cross-Domain System Requirements

A typical use case for a Cross-Domain System (CDS)
requiring multiple levels of security is a network gateway
between networks of different security classifications or
security domains. This could be deployed as a secure gateway
in a wide range of difference scenarios, for example between a
corporate enterprise network and the public internet, or
between government or military networks of different security
classifications. In each of these scenarios, the generalized use
case and topology is the same (Fig. 4).

Fig. 4. Cross-Domain System network gateway

The CDS will be connected to two different networks, and
should have applications which receive messages from one
network and pass them to a guard, which determines whether
to forward the messages based on a pre-defined security policy
and examination of the messages’ data contents, or to discard
the messages. A similar configuration with a separate guard
(and potentially a different security policy) will operate in the
reverse direction.

B. Cross-Domain System, MILS unicore implementation

In a MILS unicore implementation, this could potentially
be implemented using a minimum of four partitions:
sender/receiver for Domain A (App1), guard for Domain A,
sender/receiver for Domain B (App2), and guard for Domain B.
The applications would be isolated from each other by the
MILS separation kernel, and only information flows according
to the system security policy would be allowed (Fig. 5).

Fig. 5. Notional MILS-based Cross-Domain System network gateway

The sender/receiver applications, App1 and App2
respectively, which would each have their own instance of a
network stack which would use a separate Ethernet interface
mapped exclusively into each partition’s address space. The
sender/receiver applications would also be responsible for
transformation of data between network interface and the pre-

© Copyright 2016 Wind River. All rights reserved. 6

defined unidirectional SIPC channels to/from the guard
partitions, thus enabling protocol break between networks to
protect against protocol-based attacks.

In a typical system, this would be augmented with
additional partitions which would be used for attestation and
system configuration, respectively.

The “Attestation” partition would be used to run some of
the abstract machine tests (AMT, colloquially, “built-in test” or
BIT) to validate parts of the SK in relation to the secure state
requirement.

The “User Config” partition would enable the system to be
dynamically configured by a Trusted User for different security
policies depending on the mode of operation, which would be
enforced by the guard applications. The integration of the User
Config partition eliminates the need for an additional, external
computer for this purpose, and would communicate with the
guard partitions via SIPC to enable the guards to select
between pre-defined security policies statically configured
within the guard partitions.

The system could execute on a single processor using the
MILS unicore time-sliced scheduling. This would allow each
partition (and corresponding application) to execute
sequentially for a pre-defined duration, before the next partition
is scheduled. In this configuration, the maximum network
throughput in both directions is determined by the relationship
between the time taken to process an individual message and
the duration of the individual time-slices (minor frames). In
addition, the latency of transferring a message from one
network to another is determined by the length of the major
frame (overall sequence of partition time-slices). The potential
for covert storage channels may be relatively low (depending
on the processor architecture), as individual applications will
run consecutively and never concurrently. The potential for
covert timing channels may be greater, but these may be
mitigated by proactive steps to limit their bandwidth.

C. Cross-Domain System, MILS multicore implementation

A MILS multicore implementation may provide many more
potential options for system implementation approaches and
also the potential for higher system performance throughput
(when compared to a MILS unicore implementation), due to
the ability to run applications concurrently on separate
processor cores.

However, the system will need to be architected carefully to
ensure that the potential for covert channels of communication
is minimized. This could be achieved by allocating the
applications to different processor cores and using the
Synchronized Time-Sliced Scheduling approach to limit the
number of security levels or domains being processed at the
same time (Fig. 6).

Fig. 6. Non-overlapping synchronised time-sliced schedule

This means that if a covert channel is exploited, then only
information at the same security classification or from the same
domain will be exchanged. The system architect would also
have the ability to define separate schedules with varying
overlaps of application times-slices, and provide a trusted
application with the ability to switch from one pre-defined
schedule to another pre-defined schedule, depending on the
system’s mode of operation or current level of threat.

V. MULTI-LEVEL SECURE IMA SYSTEMS USING

MILS UNICORE

In this section, the requirements for Multi-Level Secure
(MLS) Integrated Modular Avionics (IMA) platforms will be
considered, and potential implementation approaches will be
discussed in relation to two use cases: using a MILS unicore
implementation and using a MILS multicore implementation.

A. Multi-Level Secure IMA System Requirements

Many IMA systems have been successfully deployed based
on the ARINC 653 [11] software architecture. This enables
multiple applications to run at different levels of safety-
criticality on the same processor. However, ARINC 653 does
not explicitly address the requirements for supporting multiple
applications at different security classifications on the same
processor, known as Multi-Level Secure (MLS).

An example in civil avionics of consolidating multiple
safety-critical applications onto the same IMA processor is a
satellite internet communications system, which would provide
cockpit voice communications via broadband satellite internet
connection as a backup to cockpit very high frequency (VHF)
radio systems. As part of the airworthiness security process
defined by DO-326 [14], this system would need to ensure that
a potential external security threat via the satellite
communication link could not subvert the safety-critical
functions hosted on the IMA platform.

© Copyright 2016 Wind River. All rights reserved. 7

Fig. 7. Multi-Level Secure Civil IMA platform

Similarly, a semi-autonomous unmanned combat air
vehicle (UCAV) that takes off in civil airspace before
requesting a vector into uncontrolled airspace would need to
communicate with civilian air traffic control (ATC) without
disclosing classified mission data, and would therefore have an
MLS requirement when using an IMA platform.

A simplified representation of the civil avionics use case is
shown in Fig. 7; the topology for the UCAV use case is
conceptually similar – in both cases one or more IMA
applications need to be securely isolated from the avionics
application connected to an external network.

For further background discussion on the convergence of
safety, security and multicore, refer to [6].

B. Multi-Level Secure IMA, MILS unicore implementation

In a MILS unicore implementation, the satellite internet
communications system could potentially be implemented
using a minimum of four partitions: flight control application,
cockpit voice application, guard for data received from the
satellite communications network, and network gateway
application.

Fig. 8. Notional Multi-Level Secure IMA platform, MILS unicore

These applications would be isolated from each other by
the MILS separation kernel, and only information flows
according to the system security policy would be allowed. In a
typical system, this would be augmented with additional
partitions, such as for attestation (Fig. 8).

C. Multi-Level Secure IMA, MILS multicore implementation

Alternatively, this use case could be implemented using a
MILS multicore architecture (Fig. 9). This could exploit the
additional cores for increased performance throughput (as in
the case of Cross-Domain System, MILS multicore
implementation discussed earlier), by running the flight control
application on an instance of the MILS separation kernel on a
dedicated core, and the cockpit voice satcom applications on a
separation kernel on a different processor core. Again, the
potential security impact of covert channels could be
minimized through the use of synchronized schedules.

In addition, if the system were implemented on the P4080
processor, the two cores could be mapped to use different
memory controllers, to avoid the potential risks associated with
shared bus contention and resource starvation associated with
some multicore processor architectures.

Fig. 9. Notional Multi-Level Secure IMA platform, MILS multicore

VI. CONSOLIDATION OF IMA DOMAINS USING

MILS MULTICORE

In this section, the requirements for consolidation of
avionics domains will be considered, and a potential Multi-
Level Secure (MLS) implementation approach using MILS
multicore will be discussed.

A. IMA Domains Consolidation System Requirements

The systems architecture of modern civil aircraft consists of
multiple networks (Fig. 10) which are used for a diverse set of
functions, including: (a) flight-safety related control and
navigation systems (Aircraft Control Domain); (b) airline
business and administrative support (Airline Information
Services Domain); Passenger entertainment (Passenger
Information & Entertainment Services Domain); and (d)
Passenger Owned Devices Domain (PODD) [15].

The systems connected to these networks have different
requirements in terms of safety and security. Firewalls or

© Copyright 2016 Wind River. All rights reserved. 8

secure gateways are used between the different aircraft data
networks (ADN) to implement isolation and enforce authorized
information flows. Alternatively, a data diode may be used to
restrict data flows to one-way communication, but this can
increase the complexity of system design, as TCP uses
bidirectional communication, and unidirectional UDP/IP
communication may not be suitable for some types of
applications.

Fig. 10. Aircraft Data Network domains

Increased passenger demand for in-flight internet
connectivity, and competition between aircraft manufacturers
and airlines to provide best-in-class service, are driving the
requirements for increased performance throughput and
reduced latency of communication between to passenger-
owned devices and the Passenger Information & Entertainment
Services Domain systems, whilst maintaining domain security.

As evidenced by the increasing use of composite airframe
materials in lieu of heavier steel and aluminum, there is
increased emphasis on the part of aircraft manufacturers to
reduce both fuel consumption and greenhouse gases emissions
by reducing the weight of aircraft. The physical constraints of
lack of spare cabin space for additional line replaceable units
(LRUs) to support passenger devices will only increase SWaP
pressures even further. This problem could be resolved through
the consolidation of multiple IMA domains using a MILS
multicore system architecture.

B. IMA Domains Consolidation , MILS multicore

implementation

This use case could potentially be implemented using a
MILS multicore architecture, hosting the Airline Information
Services Domain and the Passenger Information &
Entertainment Services Domain on separate P4080 cores
(which is notionally similar to the dual domains in Fig. 10.)
The Passenger Information and Entertainment Services
Domain MILS system could be replicated across multiple cores
in order to segregate passenger cabins if required. Any spare
cores could be reserved to provide additional processing
capacity in case of increase in SATCOM data link bandwidth
in the future.

VII. CONCLUSION

The commercial realization of the Multiple Independent

Levels of Security software architecture in recent years has

enabled the development of high-assurance multi-level secure
systems at affordable cost. The advent of multi-processor
architectures has caused a technology disruption to
programming models. The capability to merge the MILS
software model on a state-of-the-art multicore processor
architecture provides the potential to implement high-assurance
multi-level secure systems with increased performance
throughput (when compared to unicore), though with
additional, potential security threats that need to be addressed.

ACKNOWLEDGMENT

The author wishes to thank the following Wind River
colleagues for their input into this paper: P. Chen, C.
Constantinides and T. Preyssler.

DISCLAIMER

This paper is intended to keep interested parties informed
of the subject matter herein for educational purposes only.
This paper is protected and subject to copyright law. The
author and Wind River Systems, Inc. (“Wind River”) are not
responsible for any errors or omissions in the content of this
paper or for damages of any kind arising from the reliance, use
or performance of any of the contents of this paper under any
circumstances. This paper is provided "AS IS" and without any
warranty of any kind, expressed or implied.

REFERENCES

[1] J. Alves-Foss (University of Idaho), B. Calloni, (Lockheed Martin), M.
Dransfield (NSA/IAD), J. Luke (AFRL), L. MacLaren (Boeing), G.
Uchenick (Objective Interface Systems), WM. Vanfleet (NSA/IAD),
“Enabling the GIG”, PowerPoint presentation, MILS community, 2004-
2005.

[2] J. Rushby, “A Trusted Computing Base for Embedded Systems”.
Proceedings 7th DoD/NBS Computer Security Conference,
Gaithersburg, Maryland,p294-311, 24-26th September 1984.
http://www.csl.sri.com/users/rushby/abstracts/ncsc84-tcb.

[3] G. Popek, R. Goldberg, "Formal Requirements for Virtualizable Third
Generation Architectures". Communications of the ACM 17 (7): 412 –
421, 1974. http://dl.acm.org/citation.cfm?doid=361011.361073

[4] P. Parkinson, A. Baker, “A High Assurance Systems Development using
the MILS Architecture”, Wind River technical white paper, November
2010. http://www.windriver.com/whitepapers/high-assurance-systems-
development-mils-arch/.

[5] G. Moore, “Cramming more components onto integrated circuits”,
Electronics, Volume 38, Number 8, IEEE. 19th April 1965.

[6] P. Parkinson, “Safety, Security and Multicore”, Advances in System
Safety, Proceedings of Nineteenth Safety-Critical Systems Symposium,
Springer, 8-10th February 2011. http://link.springer.com/chapter/
10.1007%2F978-0-85729-133-2_13.

[7] R. Mahapatra, J. Lee, N. Gupta, and R. Manners, “Microprocessor
Evaluations for Safety-Critical, Real-Time Applications: Authority for
Expenditure No. 43 Phase 5 Report”, DOT/FAA/AR-11/5, US Federal
Aviation Administration, May 2011. http://www.faa.gov/aircraft/
air_cert/design_approvals/air_software/media/11-5.pdf.

[8] C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund, C. Maiza
(Burguière), J. Reineke, B. Triquet, R. Wilhelm, “Predictability
Considerations in the Design of Multi-Core Embedded Systems”,
Embedded Real-Time Systems & Software conference, 19-21 May
2010. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.172.
4533.

[9] CAST-32, “Multicore Processors”, position paper, Certification
Authorities Software Team, US Federal Aviation Administration, May

© Copyright 2016 Wind River. All rights reserved. 9

2014. https://www.faa.gov/aircraft/air_cert/design_approvals/
air_software/cast/cast_papers/media/cast-32.pdf

[10] “MULCORS – Use of MULticore proCessORs in airborne systems”,
Research Project EASA.2011/6, European Aviation Safety Agency.
http://easa.europa.eu/system/files/dfu/CCC_12_006898-REV07%20-
%20MULCORS%20Final%20Report.pdf

[11] ARINC Specification 653P0, “Avionics Application Software Standard
Interface, Part 0, Overview of ARINC 653”, ARINC, 3rd August 2015.
http://store.aviation-ia.com/cf/store/catalog_detail.cfm?item_id=2496.

[12] “P4080 QorIQ™ Multicore Communication Processor Reference
Manual”, Rev. 2, NXP (formerly Freescale), May 2014.
http://www.nxp.com/products/microcontrollers-and-processors/power-

architecture-processors/qoriq-power-architecture-processors/qoriq-
p4080-p4040-p4081-multicore-communications-
processors:P4080?fpsp=1&tab=Documentation_Tab.

[13] “VxWorks MILS Platform 3.0, Multi-Core Edition”, product note, Wind
River. http://www.windriver.com/products/product-notes/0739-MILS-
3.0-Multi-core-Edition-Product-Note.

[14] DO-326, “Airworthiness Security Process Specification”, RTCA Inc.,
December 2010. http://www.rtca.org/store_product.asp?prodid=1057.

[15] W. Cecil, “Safely Connecting AIS & PIES Domains – Approaches and
benefits of shareing Aircraft Networked resources”, Aviation Electronics
Europe, 26th March 2015.

