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Abstract— The implementation of the Multiple Independent 

Levels of Security (MILS) software architecture on modern 

microprocessor architectures has become technically feasible in 

recent years. This allows MILS-based systems to host 

applications and data of multiple security classifications 

concurrently on a uniprocessor platform at affordable cost. In 

this paper, the potential requirements for the implementation of 

a separation kernel to support MILS systems on multicore 

processor architectures will be considered, and the design 

challenges associated with its potential implementation on the 

NXP (formerly Freescale) QorIQ™ P4080 multicore processor 

will be discussed. Finally, the potential use of a MILS Multicore 

separation kernel in two use cases will be presented - a Cross-

Domain System (CDS) network gateway, and a Multi-Level 

Secure (MLS) Integrated Modular Avionics (IMA) platform.  
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I.  ADOPTION OF MULTIPLE INDEPENDENT LEVELS OF 

SECURITY 

Historically, commercial organizations and governments 
have categorized information at different security 
classifications, based on varying criteria including information 
value, sensitivity, and the impact of disclosure.  

Information at different security classifications was 
traditionally physically isolated in separate domains. The 
methods used to enable authorized information flows between 
security domains have varied, but have often involved manual 
transformation of information which has fundamentally limited 
the speed of analysis of information and decision-making.    

More recently, there has been a drive towards automation 
of the information flow process between different security 
domains. This enables decision-making to be accelerated, in 
order to provide benefits to applications as diverse as 
commercial business and banking operations, through to 
sharing information with coalition forces in theatre operations.   

Initially, these multilevel secure computer systems were 
built using multiple, physically separated computers, networks, 
and displays. This technique, known as “air gap” security, 
required expensive equipment and occupied a large footprint in 
terms of Size, Weight and Power (SWaP). Whilst there have 
been efforts to address the multi-level security requirement 
through the development of monolithic, secure operating 
systems running on a single computing platform, their 
development and security certification would have taken ten or 

more years and at unaffordable cost due to the large size and 
complexity of the trusted computing base (TCB) [1]. 

In 1984, John Rushby proposed an alternative approach for 
secure embedded systems, utilizing a small trusted computing 
base as part of a layered software architecture, providing 
separation between different domains on a single processor [2]. 
This provided the foundation for the Multiple Independent 
Levels of Security (MILS) software architecture which was 
presented by Mark Vanfleet at the Open Group Security Forum 
in 2002.  The MILS architecture provides a means of 
overcoming the development time and certification cost issues 
associated with large monolithic operating systems, through the 
use of a separation kernel (SK) built on four fundamental 
security policies: 

• Information Flow. This defines the permitted 
information flows between partitions. 

• Data Isolation. This ensures that a partition cannot 
access resources in other partitions. 

• Periods Processing. This ensures that applications 
within partitions execute for the specified duration in the 
system schedule. 

• Fault Isolation. This defines that a failure in one 
partition does not impact any other partition within the system. 

 
Fig. 1. Multiple Independent Levels of Security (MILS) architecture 

These four policies create an architecture where the 
separation kernel is Non-Bypassable, Evaluatable, Always 
Invoked and Tamper Proof, which is known as NEAT. This 
means that the size of the trusted computing base implemented 
by the separation kernel, shown as “RTOS Micro Kernel 
(MILS)” in Fig. 1, has the potential to be very small, as all 
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other functionality can be migrated either to middleware or 
applications running in partitions. This layered assurance 
approach means that the amount of code which needs to 
undergo rigorous scrutiny as part of a high assurance security 
evaluation can be very small when compared to a traditional 
monolithic operating system.  

In 1984, the microprocessors available on the commercial 
market did not provide sufficient performance to host multiple 
applications concurrently or the ability to separate them in a 
robust manner. However, recent advances in some commercial 
microprocessors have included hardware virtualization support 
which can be utilized by the implementation of a separation 
kernel using a Type 1 (or native, bare metal) Hypervisor [3]. 
This has enabled the development and deployment of MILS 
systems on uniprocessor architectures [4]. 

 

II. ADVENT OF MULTICORE PROCESSORS 

A. Disruptive Technology 

There has been a long-term trend in processor development, 
described by Moore’s Law [5], whereby the transistor count 
that can be placed on an integrated circuit increases at an 
exponential rate, doubling every two years. This trend is 
expected to continue for a number of years yet, although there 
is disagreement about when the limit for miniaturization of 
transistors will be reached. However, this approach has 
approached the limit of viability because as processor clock 
frequencies have climbed, power consumption has soared.  

The result has been a disruptive change to the processor 
evolutionary development trend through the introduction of 
multicore processor devices. Multicore processors combine 
two or more independent processor cores into a single 
integrated circuit (IC) which can each be run at lower clock 
frequencies, resulting in lower overall power consumption 
whilst still achieving increased overall performance.  

B. Multicore Software Paradigms 

The parallelism of different types of applications can vary 
enormously. For example, some numerically-intensive 
applications are inherently sequential, whereas other 
applications such as radar, sonar or image processing are often 
inherently parallel. This variation has led to the development of 
a range of multicore software configurations (Fig. 2). 

Symmetric Multiprocessing (SMP) involves the use of a 
single instance of an operating system running across multiple 
processor cores. This has traditionally involved the operating 
system (OS) running across multiple single-core processors, 
but the advent of multicore processors has resulted in a trend to 
consolidate a systems architecture comprising multiple, single-
core processors into a single, multicore processor-based 
architecture, thereby reducing SWaP footprint. 

Asymmetric Multiprocessing (AMP, or sometimes referred 
to as ASMP) uses a different approach to SMP, by treating 
each core as a separate processing element. This enables 
multiple instances of the same application to be replicated 
across multiple cores and to operate on separate sets of data. In 

addition, it is also possible to run different operating systems 
on different cores if required. A typical, multicore, embedded 
system may run a real-time operating system (RTOS) on one 
core for real-time sensors or control, and a general-purpose 
operating system such as Linux on another core to provide a 
graphical user interface. Multicore AMP systems can be 
extremely complex, especially in consolidated systems where 
multiple operating systems are used. This means that additional 
effort needs to be expended on ensuring that the system 
configuration allocation of hardware resources to individual 
guest operating systems is correct. However, the effectiveness 
of this approach without use of a supervisor is debatable, as it 
is reliant on the co-operation of the individual guest operating 
systems. 

 

 

Fig. 2. Primary multicore software configurations 

Virtualization extends the concept of supervision further, 
through the use of a hypervisor running across the cores. The 
hypervisor is responsible for creating a virtualized environment 
for each core, configuring the memory protection required for 
each OS, and loading and booting the relevant operating 
systems. This provides strong separation between the operating 
environments on each core, and typically could be used to 
enable the consolidation of applications, which previously ran 
on separate processors, onto a multicore architecture; for 
example, this could involve a general purpose OS such as 
Windows or Linux, and an RTOS such as VxWorks. 

These primary multicore software configurations can each 
be applied to different types of computing problems, and are 
becoming widely deployed due to the widespread commercial 
availability of multicore processors. For a technical discussion 
of the respective architectures and challenges for their 
deployment, refer to [6]. 

III. MILS & MULTICORE CONVERGENCE 

The increasing deployment of the MILS-based systems on 
single-core processors, and the increasing commercial 
availability of multicore processors, has led to the convergence 
of these two technology trends, resulting in the requirement to 
extend the MILS architecture to exploit multicore performance 
security-critical systems.  

This requirement is now becoming more compelling as the 
number of single-core processor shipments continues to decline 
as multicore processors become more widespread; in fact, 
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some semiconductor companies may manufacture single-core 
processors as dual-core processors but with the second core 
disabled, in order to achieve manufacturing efficiencies. 

A. Architectural Challenges 

There are some significant challenges in relation to using 
multicore processors in MILS systems, in particular, that of 
application isolation and core separation. Research into these 
areas has been undertaken in recent years in the related 
discipline of safety-critical systems, and although the end-goals 
of safety certification and high-assurance security are different, 
there is some overlap in their requirements.  

For example, research undertaken by the FAA [7] has 
highlighted issues around suitability of particular multicore 
processor architectures for safety-critical avionics applications. 
The FAA research highlighted the consequences of 
incorporating shared resources in a specific multicore processor 
architecture, the NXP (formerly Freescale) PowerPC 
MPC8572 dual-core processor. In particular, application 
performance and determinism on one core was found to be 
significantly adversely affected by the contention for shared 
resources by the actions of the other core, resulting in a denial 
of service (DOS). 

Whilst the impact of this contention can potentially be 
mitigated for some safety-related avionics applications through 
careful application design and rigorous worst-case execution 
time (WCET) analysis [8], the use of shared resources such as 
memory controllers and Level 2 (L2) and Level 3 (L3) caches 
on multicore architectures presents a greater challenge which is 
unique to security, that of covert channels of information 
transfer. In single-core processor architectures, it may possible 
to limit the bandwidth of a covert channel due to a shared 
resource through the design of the MILS separation kernel 
partition scheduler. However, on a multicore architecture, as 
the applications may be executing simultaneously on individual 
cores, the bandwidth of covert channels could potentially 
increase dramatically, making them much more dangerous.  

Although, the FAA and EUROCAE have not yet published 
formal policies on the use of multicore processors in safety-
critical avionics applications, position papers such as CAST-32 
[9] and MULCORS [10], published in both US and Europe 
respectively, have described new objectives for multicore 
safety. In addition, the ARINC653 [11] specification for 
integrated modular avionics (IMA) systems was updated in 
2015 to support the development of multicore IMA systems. 

Consideration must be given to the fact that most multicore 
processor architectures are designed to support a wide range of 
multicore software configurations (as discussed earlier), rather 
than specifically for high-assurance security applications. Some 
individual processor variants, however, within a multicore 
processor architecture family may provide specific features 
which make them more suitable for use in a MILS system. An 
example of this is the NXP QorIQ P4080 communications 
processor [12], which has eight e500mc cores, each with a 
private L2 cache, which eliminates one of the potential covert 
storage channels.  

The P4080 architecture also employs the CoreNet Fabric to 
provide separation between the cores whilst enabling multiple 
memory accesses to be performed in parallel, avoiding the 
contention issues associated with a traditional bus architecture. 
This provides a powerful capability which can be utilized in a 
MILS multicore implementation to reduce the bandwidth of a 
potential covert channel between specific applications. 

However, the P4080 processor only has two memory 
controllers and a single L3 cache which is shared by all eight 
cores, which means that if more than two cores are executing 
(non-cached) code, there is potential for contention for access 
to physical memory, thus providing a covert channel. Disabling 
the L3 cache can help to reduce the bandwidth of the covert 
channel.  

Finally, in a MILS multicore environment, there is also a 
requirement to be able to boot each of the cores in a secure 
manner; and the ability to achieve this may be determined by 
the capabilities provided by the underlying processor 
architecture. 

B. MILS Multicore Design & Implementation Considerations 

The potential requirements for a separation kernel to 
support MILS on a multicore processor architecture, and a 
specific implementation on the NXP QorIQ P4080 processor, 
will be considered in the following subsections. 

1) MILS Multicore Software Architecture 
The primary high-level requirement is to enable high-

assurance security applications to run securely on a multicore 
processor architecture. There are a number of potential 
software architectures which can be employed, based on the 
primary multicore software configurations discussed earlier; 
but an approach based on Asymmetric Multiprocessing (AMP) 
may provide better security characteristics and enables the 
reuse of a MILS separation kernel implementation for a single-
core processor (also referred to as unicore) to the greatest 
extent possible.  

A processor using 32-bit addressing provides a 4 Gbyte 
address space. Whilst this may be sufficient for running a 
separation kernel on a single processor, and also on a single 
core on the P4080, it would not be sufficient if the 4 Gbytes 
had to be shared between eight cores (i.e., only 512 Mbytes per 
core). This can be solved by migrating a 32-bit separation 
kernel implementation to a 64-bit implementation, but this 
would add complexity and cost just to provide increased 
address space.  

Instead, this issue can be overcome by using the P4080, as 
its CoreNet interconnect fabric supports 36-bit addressing, 
providing the processor with a 64 Gbyte address space, whilst 
employing 32-bit addressing per individual core, with the 
processor memory management unit (MMU) enforcing 
separation between the address spaces of individual cores. This 
32-bit compatibility helps to minimize the scope of changes 
required to port an existing unicore separation kernel 
implementation to the P4080 multicore architecture. 

For these reasons, the decision was taken to implement 
VxWorks MILS Platform, Multi-core Edition [13] on the 
P4080 processor using AMP mode, where each core (and its 
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associated hardware resources) hosts an independent 
instantiation of VxWorks MILS. Thus, a separate unicore 
VxWorks MILS system, complete with separation kernel and 
applications running in partitions, runs on each core. 

2) Core Virtualization 
Microprocessors typically provide two privilege levels, 

User Mode, for user application context, and Supervisor Mode, 
which allows the execution of privileged instructions, which is 
usually reserved for use by the operating system kernel. The 
introduction of a secure hypervisor running beneath the 
partitions containing applications and operating systems results 
in a requirement for a third privilege level. 

The P4080 implements three privilege levels, including a 
Hypervisor Mode, which enables a guest operating system 
(GOS) running in a partition to have memory protection from 
the applications running on top of it, without relying on the 
separation kernel for enforcement, as this is performed by 
hardware (Fig. 3). This means that Guest OSes running in 
partitions do not require significant paravirtualization, which is 
required on processors which do not provide hardware 
virtualization support.  

Therefore, the full hardware virtualization support of the 
P4080 reduced the effort required to implement guest OS 
support on VxWorks MILS Platform, Multi-core Edition. 

3) Secure Boot  
The use of a multicore processor architecture greatly 

increases the complexity of the initialization and boot sequence 
for the platform. This leads to a requirement to ensure that the 
processor is placed into a known state before each core is 
booted, in order to ensure that security issues are not 
introduced through initialization and boot of multiple cores 
being performed in the wrong order.  

 

Fig. 3. MILS Hypervisor Virtualization Model 

The exponential growth in complexity of a multicore 
system increases the risk that the system architect may 
configure the system incorrectly, so automated tool support is 
required to provide continuous validation and feedback to 
prevent the introduction of system configuration errors which 
could lead to security issues. 

This capability was implemented in VxWorks MILS 
Platform, Multicore Edition using XML configuration files 
which are compiled into binary objects and linkable images 

using the Wind River XML configuration generation tools, 
including XML Configuration Verification (VerCon-X) and 
Configuration Vector Generation (CVGEN). These 
configuration images are then loaded on the target to be 
referenced during system boot. These XML configuration tools 
allow developers to make changes to application and system 
configuration information without rebuilding and retesting the 
entire system. 

4) Core Schedule Synchronisation 
MILS unicore systems provide the ability to handle 

information at multiple security classifications or from multiple 
security domains, as the MILS time-slice scheduler enforces 
the sequential processing of individual applications or 
domains; i.e., an individual time-slice within the MILS system 
schedule allows only one partition to execute within that time-
slice duration. 

  In a MILS multicore system, each core executes its own 
MILS separation kernel independently, which means that it 
also can execute its own independent schedule. This provides 
the potential for individual cores to be processing information 
at different security classifications, or from different domains, 
concurrently: i.e., at the same instant in time. This independent 
time-sliced scheduling may be permissible for a MILS system 
where there are multiple independent applications processing 
information at the same security classification or from the same 
security domain. 

However, for some MILS multicore systems, if the 
underlying processor multicore architecture provides any 
resources which are shared between cores, these could 
potentially be used by one core to monitor or disturb 
performance on another core, providing a potentially high-
bandwidth covert storage channel which could be exploited to 
perform the unauthorized flow of information between cores. 

Although the P4080 provides full separation of cores 
through separate memory address ranges, separate L2 caches, 
and the CoreNet interconnect fabric (which together provide 
better overall separation than some other processor 
architectures), the P4080’s cores still share a number of 
hardware resources, such as the two memory controllers for use 
with the eight P4080 cores.  

Therefore, there is a requirement to be able to minimize 
these potential covert storage channels to limit their bandwidth 
and impact in MILS multicore systems where this would be a 
security issue.  

This requirement could be implemented through the use of 
a synchronized time-sliced scheduling model, which enforces 
synchronization of core schedules. This approach would enable 
the system architect to control the cores as if they were a single 
entity, executing at a single security level. By synchronizing 
schedules across cores, the system architect can ensure that at 
any instant of time, all data being processed on all cores are all 
at the same security level, or from the same domain, to 
minimize the impact of any covert channels between partitions 
on different cores. The use of Synchronized Time-Sliced 
Scheduling does not remove the potential for covert channels, 
but does eliminate illicit cross-level information flow. This will 
be illustrated through analysis of a use case in a later section. 
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5) Inter-Core Communications 
There is also an important requirement to be able to 

communicate between the cores securely, to enable an 
application hosted in a partition on one core to communicate 
with an application running on another core. This should be 
implemented in a manner which is transparent to the 
application hosted in the partition. This location transparency 
would provide benefits in terms of software portability as it 
enables the system architect to modify the design and move 
applications to different cores without impacting the 
application implementation. 

The implementation approach taken in VxWorks MILS 
Platform, Multi-core Edition was to extend the secure inter-
partition communication (SIPC) component, previously 
implemented in the VxWorks MILS unicore implementation, 
in a location transparent manner suitable for use in the 
multicore implementation. This also reuses an API designed 
around the ARINC 653 APEX queuing and sampling port 
interfaces, which provides a programming environment 
familiar to ARINC 653 developers, as well as enables ARINC 
653 applications to be ported to VxWorks MILS Platform.   

 

6) Independent Core Configuration 
A MILS multicore system is extremely complex, and to 

enable the successful configuration of the entire platform, an 
approach which allows individual cores to be configured 
independently is required. This would also enable a MILS 
multicore system to be composed incrementally, and would 
enable the configuration and composition of the system to be 
reordered in a way which fits in with a MILS development 
organization and internal processes.    

This could be achieved through the use of XML-based 
configuration of individual cores as well as the entire MILS 
multicore system, using automated tool support to continuously 
validate the configuration and provide feedback to the system 
architect. This was the approach that was taken for the 
implementation of VxWorks MILS Platform, Multicore 
Edition, again using the XML configuration and tool 
capabilities described in requirement 3) above. 

IV. CROSS-DOMAIN SYSTEM USING MILS MULTICORE 

In this section, the requirements for a Cross-Domain 
System (CDS) network gateway will be considered, and 
potential implementation approaches using MILS unicore and 
MILS multicore will be discussed. 

A. Cross-Domain System Requirements 

A typical use case for a Cross-Domain System (CDS) 
requiring multiple levels of security is a network gateway 
between networks of different security classifications or 
security domains. This could be deployed as a secure gateway 
in a wide range of difference scenarios, for example between a 
corporate enterprise network and the public internet, or 
between government or military networks of different security 
classifications. In each of these scenarios, the generalized use 
case and topology is the same (Fig. 4).  

 

 

 
Fig. 4. Cross-Domain System network gateway 

The CDS will be connected to two different networks, and 
should have applications which receive messages from one 
network and pass them to a guard, which determines whether 
to forward the messages based on a pre-defined security policy 
and examination of the messages’ data contents, or to discard 
the messages.  A similar configuration with a separate guard 
(and potentially a different security policy) will operate in the 
reverse direction. 

B. Cross-Domain System, MILS unicore implementation 

In a MILS unicore implementation, this could potentially 
be implemented using a minimum of four partitions: 
sender/receiver for Domain A (App1), guard for Domain A, 
sender/receiver for Domain B (App2), and guard for Domain B. 
The applications would be isolated from each other by the 
MILS separation kernel, and only information flows according 
to the system security policy would be allowed (Fig. 5). 

 

Fig. 5. Notional MILS-based Cross-Domain System network gateway 

The sender/receiver applications, App1 and App2 
respectively, which would each have their own instance of a 
network stack which would use a separate Ethernet interface 
mapped exclusively into each partition’s address space. The 
sender/receiver applications would also be responsible for 
transformation of data between network interface and the pre-
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defined unidirectional SIPC channels to/from the guard 
partitions, thus enabling protocol break between networks to 
protect against protocol-based attacks.   

In a typical system, this would be augmented with 
additional partitions which would be used for attestation and 
system configuration, respectively.  

The “Attestation” partition would be used to run some of 
the abstract machine tests (AMT, colloquially, “built-in test” or 
BIT) to validate parts of the SK in relation to the secure state 
requirement. 

The “User Config” partition would enable the system to be 
dynamically configured by a Trusted User for different security 
policies depending on the mode of operation, which would be 
enforced by the guard applications. The integration of the User 
Config partition eliminates the need for an additional, external 
computer for this purpose, and would communicate with the 
guard partitions via SIPC to enable the guards to select 
between pre-defined security policies statically configured 
within the guard partitions. 

The system could execute on a single processor using the 
MILS unicore time-sliced scheduling. This would allow each 
partition (and corresponding application) to execute 
sequentially for a pre-defined duration, before the next partition 
is scheduled. In this configuration, the maximum network 
throughput in both directions is determined by the relationship 
between the time taken to process an individual message and 
the duration of the individual time-slices (minor frames). In 
addition, the latency of transferring a message from one 
network to another is determined by the length of the major 
frame (overall sequence of partition time-slices). The potential 
for covert storage channels may be relatively low (depending 
on the processor architecture), as individual applications will 
run consecutively and never concurrently. The potential for 
covert timing channels may be greater, but these may be 
mitigated by proactive steps to limit their bandwidth. 

C. Cross-Domain System, MILS multicore implementation 

A MILS multicore implementation may provide many more 
potential options for system implementation approaches and 
also the potential for higher system performance throughput 
(when compared to a MILS unicore implementation), due to 
the ability to run applications concurrently on separate 
processor cores. 

However, the system will need to be architected carefully to 
ensure that the potential for covert channels of communication 
is minimized. This could be achieved by allocating the 
applications to different processor cores and using the 
Synchronized Time-Sliced Scheduling approach to limit the 
number of security levels or domains being processed at the 
same time (Fig. 6).  

 

Fig. 6. Non-overlapping synchronised time-sliced schedule 

This means that if a covert channel is exploited, then only 
information at the same security classification or from the same 
domain will be exchanged. The system architect would also 
have the ability to define separate schedules with varying 
overlaps of application times-slices, and provide a trusted 
application with the ability to switch from one pre-defined 
schedule to another pre-defined schedule, depending on the 
system’s mode of operation or current level of threat. 

V. MULTI-LEVEL SECURE IMA SYSTEMS USING 

MILS UNICORE 

In this section, the requirements for Multi-Level Secure 
(MLS) Integrated Modular Avionics (IMA) platforms will be 
considered, and potential implementation approaches will be 
discussed in relation to two use cases: using a MILS unicore 
implementation and using a MILS multicore implementation. 

A. Multi-Level Secure IMA System Requirements 

Many IMA systems have been successfully deployed based 
on the ARINC 653 [11] software architecture. This enables 
multiple applications to run at different levels of safety-
criticality on the same processor. However, ARINC 653 does 
not explicitly address the requirements for supporting multiple 
applications at different security classifications on the same 
processor, known as Multi-Level Secure (MLS).  

An example in civil avionics of consolidating multiple 
safety-critical applications onto the same IMA processor is a 
satellite internet communications system, which would provide 
cockpit voice communications via broadband satellite internet 
connection as a backup to cockpit very high frequency (VHF) 
radio systems. As part of the airworthiness security process 
defined by DO-326 [14], this system would need to ensure that 
a potential external security threat via the satellite 
communication link could not subvert the safety-critical 
functions hosted on the IMA platform. 
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Fig. 7. Multi-Level Secure Civil IMA platform 

Similarly, a semi-autonomous unmanned combat air 
vehicle (UCAV) that takes off in civil airspace before 
requesting a vector into uncontrolled airspace would need to 
communicate with civilian air traffic control (ATC) without 
disclosing classified mission data, and would therefore have an 
MLS requirement when using an IMA platform. 

A simplified representation of the civil avionics use case is 
shown in Fig. 7; the topology for the UCAV use case is 
conceptually similar – in both cases one or more IMA 
applications need to be securely isolated from the avionics 
application connected to an external network. 

For further background discussion on the convergence of 
safety, security and multicore, refer to [6]. 

B. Multi-Level Secure IMA, MILS unicore implementation 

In a MILS unicore implementation, the satellite internet 
communications system could potentially be implemented 
using a minimum of four partitions: flight control application, 
cockpit voice application, guard for data received from the 
satellite communications network, and network gateway 
application.  

 

Fig. 8. Notional Multi-Level Secure IMA platform, MILS unicore 

These applications would be isolated from each other by 
the MILS separation kernel, and only information flows 
according to the system security policy would be allowed. In a 
typical system, this would be augmented with additional 
partitions, such as for attestation (Fig. 8). 

C. Multi-Level Secure IMA, MILS multicore implementation 

Alternatively, this use case could be implemented using a 
MILS multicore architecture (Fig. 9). This could exploit the 
additional cores for increased performance throughput (as in 
the case of Cross-Domain System, MILS multicore 
implementation discussed earlier), by running the flight control 
application on an instance of the MILS separation kernel on a 
dedicated core, and the cockpit voice satcom applications on a 
separation kernel on a different processor core. Again, the 
potential security impact of covert channels could be 
minimized through the use of synchronized schedules.  

In addition, if the system were implemented on the P4080 
processor, the two cores could be mapped to use different 
memory controllers, to avoid the potential risks associated with 
shared bus contention and resource starvation associated with 
some multicore processor architectures.  

 

Fig. 9. Notional Multi-Level Secure IMA platform, MILS multicore 

VI. CONSOLIDATION OF IMA DOMAINS USING 

MILS MULTICORE 

In this section, the requirements for consolidation of 
avionics domains will be considered, and a potential Multi-
Level Secure (MLS) implementation approach using MILS 
multicore will be discussed.  

A. IMA Domains Consolidation System Requirements 

The systems architecture of modern civil aircraft consists of 
multiple networks (Fig. 10) which are used for a diverse set of 
functions, including: (a) flight-safety related control and 
navigation systems (Aircraft Control Domain); (b) airline 
business and administrative support (Airline Information 
Services Domain); Passenger entertainment (Passenger 
Information & Entertainment Services Domain); and (d) 
Passenger Owned Devices Domain (PODD) [15]. 

The systems connected to these networks have different 
requirements in terms of safety and security. Firewalls or 
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secure gateways are used between the different aircraft data 
networks (ADN) to implement isolation and enforce authorized 
information flows. Alternatively, a data diode may be used to 
restrict data flows to one-way communication, but this can 
increase the complexity of system design, as TCP uses 
bidirectional communication, and unidirectional UDP/IP 
communication may not be suitable for some types of 
applications. 

 

Fig. 10. Aircraft Data Network domains 

Increased passenger demand for in-flight internet 
connectivity, and competition between aircraft manufacturers 
and airlines to provide best-in-class service, are driving the 
requirements for increased performance throughput and 
reduced latency of communication between to passenger-
owned devices and the Passenger Information & Entertainment 
Services Domain systems, whilst maintaining domain security. 

As evidenced by the increasing use of composite airframe 
materials in lieu of heavier steel and aluminum, there is 
increased emphasis on the part of aircraft manufacturers to 
reduce both fuel consumption and greenhouse gases emissions 
by reducing the weight of aircraft. The physical constraints of 
lack of spare cabin space for additional line replaceable units 
(LRUs) to support passenger devices will only increase SWaP 
pressures even further. This problem could be resolved through 
the consolidation of multiple IMA domains using a MILS 
multicore system architecture.  

B. IMA Domains Consolidation , MILS multicore 

implementation 

This use case could potentially be implemented using a 
MILS multicore architecture, hosting the Airline Information 
Services Domain and the Passenger Information & 
Entertainment Services Domain on separate P4080 cores 
(which is notionally similar to the dual domains in Fig. 10.) 
The Passenger Information and Entertainment Services 
Domain MILS system could be replicated across multiple cores 
in order to segregate passenger cabins if required. Any spare 
cores could be reserved to provide additional processing 
capacity in case of increase in SATCOM data link bandwidth 
in the future.  

VII. CONCLUSION 

 
The commercial realization of the Multiple Independent 

Levels of Security software architecture in recent years has 

enabled the development of high-assurance multi-level secure 
systems at affordable cost. The advent of multi-processor 
architectures has caused a technology disruption to 
programming models. The capability to merge the MILS 
software model on a state-of-the-art multicore processor 
architecture provides the potential to implement high-assurance 
multi-level secure systems with increased performance 
throughput (when compared to unicore), though with 
additional, potential security threats that need to be addressed. 
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