
Partitioning in Safety and Security: Mapping to MILS Core
Partitioning Mechanisms

Holger Blasum
holger.blasum@sysgo.com SYSGO AG

Klein-Winternheim, Germany

ABSTRACT
While safety and security at a high-level are white-board
concepts, once it comes to implementation in a MILS core
(separation kernel + minimal set of additional hardware and
software needed for the separation of partitions), sometimes
the concrete realization depends on what is doable. Several
use cases of partitioning are mapped to partitioning mecha-
nisms implementing the partitioning. The main idea is that
this paper takes “safety” + “something” and calls it “secu-
rity”. The main result is that different use cases of safety and
security can be compared, and one can precisely talk about
differences. If one is aware of differences, one can strive for
and maintain strong notions of safety and security.

1. INTRODUCTION
This paper explains safety and security separation concepts
by mapping them to concrete (functional) partitioning mech-
anisms that can be traced to an implementation.

The logical unit of partitioning is a “partition”. A parti-
tion is a container that separates its contents from all other
partitions. Optionally, a system may maintain additional
measures of separation within a partition (for example that
multiple threads are maintained within a partition). How-
ever, no claim is made with to regards what happens within
a partition in terms of strict separation. For example, when
talking about multiple threads it can be desired that they
are not strictly separated, for example that the threads share
the same address space.

The “MILS core” refers to the minimal set of components
needed for separation of partitions on a MILS platform. The
only goal of the MILS core is to provide separated partitions
with controlled information flow between them. Thus, the
MILS core provides the primary security functionality of a
MILS system. The MILS core (Figure 1) consists of com-
ponents that implement and enforce the separation both in
space and time. [3, Section 3.2.14].

Figure 1: MILS core

The ensuing sections discuss the realization of each safety
and security use case in terms of partitioning mechanisms.
The idea of this paper is that by assigning concrete parti-
tioning mechanisms to separation use cases, one can check
what is needed for partitioning in different security scenar-
ios. In other words, this paper takes “safety” + “something”
and calls it “security”.

From Section 2 to Section 5, the number of partitioning
mechanisms is monotonously increasing. We start out with
general purpose operating systems (Section 2), and, via real-
time safety partitioning kernels (Section 3) go to different
use cases of security by MILS cores (Sections 4 and 5).
Safety is a good way-point, because for example general-
purpose operating systems and the ARINC 653 standard are
well-understood. For the sake of the argument, the implicit
assumption is that, when they are reduced to the partition-
ing mechanisms discussed here, MILS cores can be seen as a
subset of real-time safety partitioning kernels (+ hardware),
and that safety partitioning kernels (+ hardware) can be
seen as a subset of general-purpose operating systems.

2. PARTITIONING MECHANISMS FOR SELF-
PROTECTION OF GENERAL-PURPOSE
OPERATING SYSTEMS

General-purpose operating systems already have some par-
titioning mechanisms, to protect themselves against user ap-
plications.

2.1 Relevant Partitioning Mechanisms

Access control to user space memory (ACU). One re-
source to partition is the user-space memory (memory that is
made available to users for direct access via CPU load/store
instructions), this is usually done by address spaces.



Definition: access control to user space memory is the con-
figuration of the MMU and, if applicable, of the IO/MMU,
to restrict accesses of applications to the user space mem-
ory (addresses the operating system kernel does not reside
in). The MMU is part of hardware, the configuration of the
MMU is part of the operating system kernel.

Address spaces made available to users (partitions) are typ-
ically protected by access control (MMU and I/O MMU).
While implemented in hardware, access control is found in
all commercially available MMUs, because the effort for the
access control (one additional decision more) is small in com-
parison to the effort for the look-up of a memory cell: for a
look-up of one byte in one MB (= 220 bytes) of memory, at
least 20 binary decisions have to be taken.

Access control to management data (ACM). To manage
the user applications, an operating system kernel maintains
certain management data. For example, this management
data may contain identifiers for applications, and an access
control matrix to regulate which objects the applications
may access. For resources on which quotas are enforced,
the management data contains an upper bound for resource
usage, and it may contain data of actual usage: for example,
a decision, whether memory can be granted to an application
requesting it depends on the assigned quota and how much
memory is already used at a given time point. As further
example, other management data is used to describe the
state of threads that are running in the kernel.

Definition: access control to management data is the config-
uration of the MMU and, if applicable, of the IO/MMU, to
restrict accesses of applications to the kernel memory (ad-
dress space(s) that the operating system kernel resides in).
Again, the MMU is part of hardware, the configuration of
the MMU is part of the operating system kernel.

A common design is to store management data in the address
space of the operating system. Management data includes
the scheduling data, so that a partition cannot influence the
schedule.

CPU reuse (CR). In general-purpose operating systems
the partitioning mechanism for CPU reuse between differ-
ent applications (“context switches”) stores CPU registers to
memory, and loads another set of stored CPU registers from
memory, overwriting the previous ones.

Definition: CPU reuse is the reuse of CPU registers, in-
cluding appropriate initialization and termination, so that
residual information is made unavailable on context switch.
The mechanism of CPU reuse is usually implemented in the
separation kernel. The separation kernel may make use of
hardware-specific instructions for context switches if so pro-
vided by the underlying hardware (CPU).

Note: we use a strong definition here, because at least for
CPU context switches, it is already fulfilled by many safety
or general-purpose operating systems.

2.2 Use of Partitioning Mechanisms

Table 1 gives an overview of partitioning mechanisms fre-
quently found in general purpose operating systems.

Resource Partitioning mecha-
nism(s)

User-space memory ACU (used for control of
writes)

Management data ACM (used for control of
writes)

CPU registers CR

Table 1: Partitioning mechanisms in general pur-
pose operating systems

3. PARTITIONING FOR REAL-TIME SAFETY
Safety has been defined as the absence of catastrophic fail-
ures in a system (e.g. [11]), measured as time to catastrophic
failure.

Software safety can be established amongst others (such as
development process, verification and validation) by parti-
tioning, characterized in the avionics software development
standard DO-178C as technique for providing isolation be-
tween software components to contain or isolate faults, po-
tentially reducing the software verification effort. “A par-
titioned software component should not be allowed to con-
taminate another component’s code, I/O or data storage
areas.” [15, Section 2.4.1]. Real-time partitioning includes
temporal assurance. One of the standards for avionics parti-
tioning systems is ARINC 653 [1]. While the bulk of ARINC
653 focuses on a portable API specification, it [1, Section
2] also summarizes separation requirements, for example it
specifies that the OS shall be able to restrict to individ-
ual partitions memory spaces, processing time and access to
I/O.

Partitioning for real-time safety is implemented by parti-
tioning kernels, which are treated as special case of general-
purpose operating systems in this paper.

3.1 Relevant Partitioning Mechanisms

Quotas for memory (QM). In a general purpose operat-
ing system such as Linux, by default, the user is considered
benevolent with regard memory usage and no further pre-
caution is taken. Thus, it is possible to inadvertently or
maliciously bring down a system (for example by a “fork
bomb”). Moreover, in addition to user-space memory, to
maintain, for example, threads, an operating system needs
additional storage space in the kernel, for example to store
away registers at a context switch. A partitioning kernel
has to make sure that no partition can deplete this storage
space, which can be implemented by assigning quotas to the
kernel storage space.

Definition: Quotas for memory means that quotas for the
amount of user space memory kernel memory used are as-
signed to each partition. Quotas for memory are imple-
mented by the partitioning kernel. Quotas for memory also
can be implemented by completely static assignment of mem-
ory.



Cyclical Schedule (CS). In a reactive system, one step to
guarantee an upper bound for latency is to establish a fixed
cyclical schedule of partitions.

Definition: A cyclical schedule ensures that each partition
gets access to CPU(s) on a cyclic basis (infinite repetition
of a fixed schedule). A cyclical schedule is implemented by
the separation kernel.

Worst-case execution time analysis (WCET). The par-
titioning mechanism of worst-case execution time (WCET)
analysis says that each kernel entry has a worst-case execu-
tion time. WCET complements the cyclical schedule: the
latency is bounded by CS + WCET . WCET can be estab-
lished by static analysis of source code and hardware testing.
As the static analysis is usually done over all source code,
usually the effort for static analysis is related to the code size
of the system for which static analysis is done: a small sys-
tem requires less effort, a large system requires more effort.
WCET analysis is not translated into run-time instructions.

Definition: worst-case execution time analysis is the prop-
erty of a system to have been evaluated for an upper bound
of worst-case execution time. WCET is done on the whole
MILS core and its configuration.

3.2 Use of Partitioning Mechanisms
ARINC 653 explicitly stipulates that user-space memory
and user application CPU time are separated; implying also
the management of kernel resources, management data and
CPU registers.

Table 2 gives an overview of partitioning mechanisms that
can be used for ARINC 653 implementations.

Resource Partitioning mecha-
nism(s)

User-space memory ACU (used for control of
writes)

Management data ACM (used for control of
writes)

CPU registers CR
Kernel resources QM
CPU time (latency) CS + WCET

Table 2: Partitioning mechanisms for partitioning
for real-time safety

4. SAFETY + CONFIDENTIALITY BY MMU
Security is usually defined (e.g. [11]) by including some mech-
anism able to prevent unauthorized disclosure (confidential-
ity), that could be exploited by a malicious (human) at-
tacker.

DO-178C states that: “A partitioned software component
should not be allowed to contaminate another component’s
code, I/O or data storage areas.” [15, Section 2.4.1] (empha-
sis ours). The requirement not to contaminate does not im-
ply any requirement not to eavesdrop. Similarly [1, Section
2.3.1] states “Memory partitioning is ensured by prohibiting

memory accesses (at a minimum, write access) outside of a
partition’s defined memory areas.”

However, as access control is in place anyway, it is straight-
forward to specify that it not only shall forbid “writes” but
also “reads”. By this simple measure we enter the realm of
security, because we are addressing intelligent observers: it
has becoming harder for a malicious attacker to observe the
kernel state, and to read out other partitions. Partitioning
for real-time safety + some degree of security is implemented
by separation kernels, which are treated as special case of
partitioning kernels in this paper.

4.1 Additional Relevant Partitioning Mecha-
nisms

The same partitioning mechanisms as for safety are reused
(introduced above in Section 3.1). Therefore, for this sec-
tion, there is no additional partitioning mechanism to be
introduced.

4.2 Use of Partitioning Mechanisms
The only difference to pure safety is that the access to man-
agement data and each partition’s user space memory is con-
figured not only to the effect that other partitions do not
write to it, but also to the effect that other partitions do to
not read from it.

An overview of partitioning mechanisms is given by Table 3
below.

Resource Partitioning mecha-
nism(s)

User-space memory ACU (used for control of
reads and writes)

Management data ACM (used for control of
reads and writes)

CPU registers CR
Kernel resources QM
CPU time (latency) CS + WCET

Table 3: Partitioning mechanisms for safety + con-
fidentiality by MMU

5. CONTROL OF INFORMATION FLOW BE-
TWEEN COLLUDERS

Information flow between colluders that is not authorized is
called a covert channel.

A covert channel often depends on slightly altering the sys-
tem’s behavior. This can even happen to systems that are
robust against manipulations of their integrity: an example
is given for the Fiasco.OC microkernel in [14, Section IV.C]
where it is exploited that in the Fiasco.OC microkernel there
exist global read-only pages and, secondly, that any page of
memory can be mapped at most 2047 times. An information
flow channel is constructed by exploiting that, if partition a1

has mapped such a read-only page 2047 times, then an at-
tempt to map it from partition a2 will fail. If a1 has mapped
such a read-only page less than 2047 times, then an attempt
to map it from partition a2 will succeed.



This section targets attack scenarios that assume that at
least two partitions cooperate (“collude”) on attacks.

5.1 Additional Relevant Partitioning Mecha-
nisms

Access control to kernel resources (ACK). With a stor-
age channel the sending partition alters a particular data
item, and the receiving partition detects and interprets the
value of the altered data to receive information covertly.
With a timing channel the sending partition modulates the
amount of time required for the receiving process to perform
a task or detect a change in an attribute, and the receiving
partition interprets this delay or lack of delay as informa-
tion [9, p. 259].

For covert channels, Kemmerer [9, p. 259] identifies the fol-
lowing four preconditions:

1. The sending and receiving processes must have access
to the same attribute of a shared resource.

2. (a) If it is a storage channel, there must be some
means by which the sending process can force the
attribute to change.

(b) If it is a timing channel, then the sender must
be capable of modulating the receiver’s response
time for detecting a change in the shared attribute.

3. If it is a timing channel, the sending and receiving
processes must have access to a time reference such as
a real-time clock.

4. There must be some mechanism for initiating the pro-
cesses and for sequencing the events.

A strong partitioning mechanism that can be verified is ac-
cess control to kernel resources (ACK).

Definition: access control to kernel resources means that
each kernel resource is either completely separated by access
control or, if it is reused, it is always separated by time
windows. ACK is implemented by the separation kernel.

“Separated”here means that for each byte of the kernel state,
the right to modify it is uniquely mapped to at most only
one partition: if one was to “color” the kernel state, then
each byte of memory that can be written via invocations
from subjects from a partition would be uniquely assigned
to one partition for the right to write and/or modulate it.
For example if one has a green partition and a red partition,
then (almost) each byte of the kernel state is either green or
red, or uncolored. An example for the uncolored region is
the schedule used by the cyclic scheduler (no partition can
write to it).

Because the second precondition of Kemmerer is negated
when ACK is reached, then timing channels are ruled out,
as sending and receiving processes never have access to the
same attribute of a shared resource.

For example, in the Fiasco.OS covert channel example given
before, the shared resource where ACK has been violated
would have been the memory cell(s) storing the number of
mappings of a page already assigned, as in the example par-
tition a1 was able to write to it by creating 2047 for sending
a “1” and less than 2047 mappings for sending a “0” and par-
tition a2 was able to read out information from the counter
by attempting a mapping on its own.

Conversely, to give an example where ACK is preserved,
that is also based on a counter, in [16] a counter for events
(a communication mechanism) sent to individual partitions
is uniquely assigned to a partition.

Moreover, to achieve the above-mentioned QM (Section 3.1),
QM can be implemented by one kernel memory manager for
all partitions and a quota for each partition, or by having
one kernel memory manager for each partition. The second
option is easier to review, and, as a beneficial side effect, it
also avoids confidentiality violations via the reuse of memory
for different partitions [2, Section II.A].

Access control to hardware resources (ACH). Shared
hardware resources can potentially bring in information chan-
nels, typically covert channels by modulation of a hardware
resource. For example, a hardware cache protects against
direct attacks against the confidentiality of its content, but
observing the cache’s behavior can reveal information how
other applications have used the cache. For example, imag-
ine that application a1 has used the cache, then gets sched-
uled away, then application a2 uses the same cache. If ap-
plication a2 uses up all the cache it is potentially replacing
some entries that had been previously created by applica-
tion a1. If applications a1 and a2 are in different partitions,
the cache invocations have different address space arguments
and by construction the cache ensures that a1 cannot see
the content of cache entries of a2 and vice-versa. However,
when then application a1 gets scheduled again, its own use
of the cache can detect whether many or few cache entries
have been replaced, that is whether application a2 was very
active or not. For example, x86 systems usually have a sin-
gle memory controller, which can then result in different
latencies when concurrently addressed from more than one
partition. Moreover, on multi-core x86, L2 and L3 caches
are frequently shared between CPUs. Such cache attacks
have been exploited also in virtualization contexts (e.g. [7,
10, 17]).

Definition: access control to hardware resources means that
each hardware resource is either completely separated by
access control or, if it is reused, it is always separated by
time windows. ACH is implemented by the MILS core and
its configuration.

Read-only accesses often do not introduce new channels. For
example if a partition’s application can find out their CPU
affinity, but if the possible CPU affinities are predetermined
by configuration, and it is to be assumed that communica-
tion is allowed between partitions that share the same time
window as they can influence each other by modifying the
data of priority-based scheduling, then being able to find out
one’s CPU affinity is not an additional covert channel.



Temporal normalization (TN). Reuse of resources is al-
lowed, but the requirements are stricter than for safety: in
safety (Section 3) WCET was established, but it was simply
an upper bound.

In TN, not only a reused object is cleaned, but also the time
that is used by another user, including the cleaning, is always
the same, which is a stricter requirement than WCET.

Definition: TN is the reuse of an object registers, includ-
ing appropriate initialization and termination, so that resid-
ual information is made unavailable on context switch and
that the time for initialization and termination is always the
same. TN is implemented by the separation kernel and its
configuration. TN implies CR and WCET.

For instance, when the delay of a context switch is accounted
to the ensuing partition, one way to make a WCET context
switch (the previous example for CR) to TN could be to
put in between a short empty time window without payload
after a time window with confidential application payload.

5.2 Use of Partitioning Mechanisms
Resource Partitioning mecha-

nism(s)
User-space memory ACU
CPU registers TN
Kernel resources ACK (implies QM and

ACM)
Hardware resource ACH
CPU time (latency) CS + WCET

Table 4: Partitioning mechanisms for control of in-
formation flow between colluders

Table 4 summarizes the partitioning mechanisms discussed
in this section and previous sections, to the extent they are
used for control of information flow between colluders.

6. MULTI-CORE CONSIDERATIONS
6.1 Additional Relevant Partitioning Mecha-

nisms

Drift avoidance (DA). Drift avoidance has to be imple-
mented in order to synchronize the cyclical schedule at more
than one CPU.

Definition: Drift avoidance is a mechanism that ensures that
the drift between partitions running on different CPUs stays
below a fixed bound during run-time of the system. DA is
implemented by the separation kernel + hardware.

For example, on an Intel architecture, drift avoidance can
be based on synchronization via IPI (Inter-Processor Inter-
rupts).

6.2 Use of Partitioning Mechanism
CR DA can be used to go from single-core to multi-core.

For illustration Table 5 gives an overview of partitioning
mechanisms that can be used for multi-core implementations

that are based on the functionalities of ARINC 653 (Sec-
tion 3) or “Safety + confidentiality by MMU” (Section 4).

Resource Partitioning mechanism(s)
User-space memory ACU
CPU registers CR
Kernel resources QM
CPU time (latency) CS + DA + WCET

Table 5: Example of multi-core partitioning mecha-
nisms: multicore safety

Multicore safety and security is a research-intensive area.
Just adding one additional partitioning mechanism (“DA”)
might seem quite simple. However, for multicore also achiev-
ing the other partitioning mechanisms becomes more labor-
intensive (like ACH and ACK), for instance multicore ACH
has to ensure that for example memory controllers are also
partitioned to avoid side-channels via a shared memory con-
troller [10, Section IV].

7. SUMMARY OF SAFETY/SECURITY USE
CASES, CLASSIFICATION ACCORDING
TO SPACE AND TIME

Table 6 summarizes security use cases, and the mechanisms
used to implement them. Moreover, the table contains a
column assigning our mechanisms to “space” and “time”.

Resource partitioning ensures that the partitioned resources
are, at each time point, exclusively allocated to a resource
partition. This can be implemented in the following two
ways [3, Section 3.2.5]:

1. Resources can be used simultaneously, but are kept
in different locations (for example, memory organized
into segments, pages, or address spaces).

2. Resources at the same location are used by different
resource partitions, but resource usage is in different
time slices (for example access to a shared CPU).

ARINC-653 [1, p. 7] assigns the term “space partitioning”
to (1) and “temporal partitioning” to (2). The distinction of
space and time has become widely accepted (e.g. [18]). [8,
Section 2.1] explicitly subsumes memory and I/O resources
under spatial partitioning.

8. PERSPECTIVE FOR MILS SYSTEM USERS
We have already seen that some partitioning mechanisms
are not only established by the separation kernel, but also
by the MILS core (ACH, ACM, ACU, DA, WCET) and the
configuration of the separation kernel (TN). While ACM,
ACU, and DA are fixed after choice of CPU, and TN is de-
fined by configuration of the separation kernel alone, ACH is
not stable under additions to the MILS architecture beyond
the MILS core itself.

For example for ACH, for (non-embedded) hardware in gen-
eral, the notion of resource can be very broad and may re-
quire more fine-tuning, such as, in of-the-shelf PC worksta-
tions, the temperature of the CPU for which there may be



Safety/security
use case

Section Parti-
tioning
mech-
anisms
imple-
men-
ting
space
sepa-
ration

Parti-
tioning
mech-
anisms
implemen-
ting time
separation

Operating
system pro-
tection

Section
2

ACM
+
ACU

CR

Real-time
safety

Section
3

ACM
+
ACU
+ QM

CR +
WCET

Safety + con-
fidentiality by
MMU

Section
4

ACM
+
ACU
+ QM

CR +
WCET

Control of
information
flow between
colluders

Section
5

ACK
+
ACU

TN

Multi-core Section
6

Same
as
single-
core

Single-
core +
DA

Table 6: Safety/security use cases and how they are
implemented by partitioning mechanism: for exam-
ple, to satisfy “real-time safety” it is necessary to
implement ACM + ACU + CR + QM + WCET.

a readable sensor, or even if the sensor is not readable, the
clock rate of the CPU which may be reduced because of
the temperature, which may be detectable by the receiver.
Another example are audible vibrations emitted by the com-
puter that may be detected by the computer’s own micro-
phone.

9. RESULTS
We have mapped various concepts of partitioning to par-
titioning mechanisms implementing the partitioning in a
MILS core. The main result is that different use cases of
safety and security can be compared, and one can precisely
talk about differences. If one is aware of differences, one can
strive for and maintain strong notions of safety and security.

10. RELATED WORK
The least privilege abstraction specifies in a subject-to-resource
policy in the separation kernel protection profile (SKPP)[6,
12, 13]. If such a least privilege abstraction is applied to all
or all “significant” internal resources within the kernel [12,
Section 5.1], the least privilege abstraction would be equiva-
lent to the ACK partitioning mechanism. However, in SKPP
itself [6, Section 2.3.2] the least privilege abstraction is used
for specifying that subjects in a partition have heterogeneous
requirements for access to exported (user-visible) resources.

Heitmeyer [5] for an unspecified separation kernel in 2008
identifies the following subproperties of separation: tempo-
ral separation, no-exfiltration, no-infiltration, separation of
control, and kernel integrity. Temporal separation would be
fulfilled by CR, separation of control would be fulfilled by
CS. No-exfiltration, no-infiltration and separation of control
would be fulfilled by ACK.

In terms of the Common Criteria for Information Technol-
ogy Security [4], we think that the “real-time safety” use
case which is realized by real-time safety separation kernels
reflects the FDP ACC (for writes), FDP ACF (for writes),
FMT MTD, FRU RSA class SFRs of the EURO-MILS pro-
tection profile draft. We think that “safety + MMU con-
fidentiality”, reflects the FDP ACC (full, including reads,
writes, and executes), FDP ACF (full), FMT MTD, FRU RSA
class SFRs of the EURO-MILS protection profile draft. In
the protection profile draft, management data is called“shapes”.
In both SKPP and the EURO-MILS PP, the control of in-
formation flows is addressed by formulations of FDP IFF.n
where n ≥ 3.

Laprie [11] identifies attributes of dependability (generically,
for any system). From the idea, the decomposition of secu-
rity mechanisms to achieve different use cases of safety and
security (here: from general-purpose operating systems to
MILS cores), is similar to the decomposition of “dependabil-
ity” into different dependability “attributes” [11].

11. ACKNOWLEDGEMENT
The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement number 318353 (http:
//www.euro-mils.eu/). Discussions with EURO-MILS part-
ners have been generally helpful for the ideas in this paper.
Early versions of this paper have been discussed with Sergey
Tverdyshev, Oto Havle, and Andrea Bastoni. The anony-
mous reviewers are thanked for numerous helpful observa-
tions and suggestions.

(Presented at the International Workshop on MILS: Archi-
tecture and Assurance for Secure Systems, at HiPEAC 2015
Conference, Amsterdam, 20 Jan 2015.)

12. REFERENCES
[1] Airlines Electronic Engineering Committee (ARINC).

Avionics application software standard interface:
ARINC specification 653. Aeronautical Radio, Inc.,
2551 Riva Road, Annapolis, MD 21401, January
1997. http: // www. arinc. com/ .

[2] Christoph Baumann, Thorsten Bormer, Holger
Blasum, and Sergey Tverdyshev. Proving memory
separation in a microkernel by code level verification.
In Object/Component/Service-Oriented Real-Time
Distributed Computing Workshops (ISORCW), 2011
14th IEEE International Symposium on, pages 25–32.
IEEE, 2011. http: // www-wjp. cs. uni-saarland.
de/ publikationen/ Baumann-AMICS2011. pdf .

[3] Holger Blasum, Sergey Tverdyshev, Bruno
Langenstein, Jonas Maebe, Bjorn De Sutter, Bertrand
Leconte, Benôıt Triquet, Kevin Müller, Michael
Paulitsch, Axel Söding Freiherr von Blomberg, and
Axel Tillequin. MILS architecture (euro-mils

http://www.euro-mils.eu/
http://www.euro-mils.eu/
http://www.arinc.com/
http://www-wjp.cs.uni-saarland.de/publikationen/Baumann-AMICS2011.pdf
http://www-wjp.cs.uni-saarland.de/publikationen/Baumann-AMICS2011.pdf


whitepaper), 2014.
http: // www. euromils. eu/ downloads/

2014-EURO-MILS-MILS-Architecture-white-paper.

pdf .

[4] Common Criteria Sponsoring Organizations. Common
criteria for information technology security evaluation.
version 3.1, revision 4, September 2012.
http: // www. commoncriteriaportal. org/ cc/ .

[5] Constance Heitmeyer, Myla Archer, Elizabeth
Leonard, and John McLean. Applying formal methods
to a certifiably secure software system. IEEE Trans.
Softw. Eng., 34(1):82–98, 2008.
http: // chacs. nrl. navy. mil/ publications/

CHACS/ 2008/ 2008heitmeyer-TSE. pdf .

[6] Information Assurance Directorate. U.S. government
protection profile for separation kernels in
environments requiring high robustness. Version 1.03,
June 2007. http: // www. niap-ccevs. org/
cc-scheme/ pp/ pp_ skpp_ hr_ v1. 03/ .

[7] Gorka Irazoqui, Mehmet Sinan Inci, Thomas
Eisenbarth, and Berk Sunar. Wait a minute! a fast,
cross-VM attack on AES. Technical Report 2014/235,
2014. http: // eprint. iacr. org/ .

[8] Robert Kaiser, Stephan Wagner, and Alexander
Züpke. Safe and cooperative coexistence of a SoftPLC
and Linux. In 8th Real-Time Linux Workshop,
Lanzhou, 2007.

[9] Richard A. Kemmerer. Shared resource matrix
methodology: An approach to identifying storage and
timing channels. ACM Transactions on Computer
Systems, 1(3):256–277, 1983.

[10] Don Kuzhiyelil and Sergey Tverdyshev. Timing covert
channel analysis on partitioned systems. In
Proceedings of escar Europe, Hamburg 18-19 Nov
2014, 2014. https: // www. escar. info/ .

[11] Jean-Claude Laprie, editor. Dependability: Basic
Concepts and Terminology. Springer, 1992.

[12] Timothy E. Levin, Cynthia E Irvine, and Thuy D.
Nguyen. A least privilege model for static separation
kernels. Technical Report NPS-CS-05-003, The Center
for Information Systems Security Studies and
Research, Oct 2004. http: // cisr. nps. edu/
downloads/ techpubs/ nps_ cs_ 05_ 003. pdf .

[13] Timothy E. Levin, Thuy D. Nguyen, Cynthia E.
Irvine, and Michael McEvilley. Separation Kernel
Protection Profile revisited: Choices and rationale. In
Fourth Annual Layered Assurance Workshop (LAW
2010) Austin, TX, USA, 6-7 December 2010. Applied
Computer Security Associates, 2010.
http: // fm. csl. sri. com/ LAW/ 2010/ .

[14] Michael Peter, Jan Nordholz, Matthias Petschick,
Janis Danisevskis, Julian Vetter, and Jean-Pierre
Seifert. Undermining isolation through covert channels
in the Fiasco.OC microkernel. Technical Report
2014/984, 2014.
https: // eprint. iacr. org/ 2014/ 984. pdf .

[15] RTCA SC-205 / EUROCAE WG-71. DO-178C:
Software Considerations in Airborne Systems and
Equipment Certification. Radio Technical Commission
for Aeronautics (RTCA), Inc., 1150 18th NW, Suite
910, Washington, D.C. 20036, December 2011.

[16] Freek Verbeek, Sergey Tverdyshev, Oto Havle, Holger

Blasum, Bruno Langenstein, Werner Stephan, Yakoub
Nemouchi, Abderrahmane Feliachi, Burkhart Wolff,
and Julien Schmaltz. Formal specification of a generic
separation kernel. Archive of Formal Proofs, 2014,
2014. http: // afp. sourceforge. net/ entries/
CISC-Kernel. shtml .

[17] Michael Weiß, Benjamin Weggenmann, Moritz
August, and Georg Sigl. On cache timing attacks
considering multi-core aspects in virtualized embedded
systems. In 6th International Conference on
Trustworthy Systems, Beijing, 2014.

[18] Yongwang Zhao, Dianfu Ma, and Zhibin Yang. A
survey on formal specification and verification of
separation kernels. Front. Comput. Sci., 2014.
http: // act. buaa. edu. cn/ zhaoyw/ research/

survey2014. pdf .

http://www.euromils.eu/downloads/2014-EURO-MILS-MILS-Architecture-white-paper.pdf
http://www.euromils.eu/downloads/2014-EURO-MILS-MILS-Architecture-white-paper.pdf
http://www.euromils.eu/downloads/2014-EURO-MILS-MILS-Architecture-white-paper.pdf
http://www.commoncriteriaportal.org/cc/
http://chacs.nrl.navy.mil/publications/CHACS/2008/2008heitmeyer-TSE.pdf
http://chacs.nrl.navy.mil/publications/CHACS/2008/2008heitmeyer-TSE.pdf
http://www.niap-ccevs.org/cc-scheme/pp/pp_skpp_hr_v1.03/
http://www.niap-ccevs.org/cc-scheme/pp/pp_skpp_hr_v1.03/
http://eprint.iacr.org/
https://www.escar.info/
http://cisr.nps.edu/downloads/techpubs/nps_cs_05_003.pdf
http://cisr.nps.edu/downloads/techpubs/nps_cs_05_003.pdf
http://fm.csl.sri.com/LAW/2010/
https://eprint.iacr.org/2014/984.pdf
http://afp.sourceforge.net/entries/CISC-Kernel.shtml
http://afp.sourceforge.net/entries/CISC-Kernel.shtml
http://act.buaa.edu.cn/zhaoyw/research/survey2014.pdf
http://act.buaa.edu.cn/zhaoyw/research/survey2014.pdf

	Introduction
	Partitioning Mechanisms for Self-Protection of General-Purpose Operating Systems
	Relevant Partitioning Mechanisms
	Use of Partitioning Mechanisms

	Partitioning for Real-time Safety
	Relevant Partitioning Mechanisms
	Use of Partitioning Mechanisms

	Safety + Confidentiality by MMU
	Additional Relevant Partitioning Mechanisms
	Use of Partitioning Mechanisms

	Control of Information Flow between Colluders
	Additional Relevant Partitioning Mechanisms
	Use of Partitioning Mechanisms

	Multi-Core Considerations
	Additional Relevant Partitioning Mechanisms
	Use of Partitioning Mechanism

	Summary of Safety/Security Use Cases, Classification According to Space and Time
	Perspective for MILS System Users
	Results
	Related Work
	Acknowledgement
	References

