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Abstract: 

Africa represents a vast region where remote sensing technologies have been largely uneven in 

their archaeological applications. With impending climate-related risks such as increased coastal 

erosion and rising sea levels, coupled with rapid urban development, gaps in our knowledge of 

the human history of this continent are in jeopardy of becoming permanent. Spaceborne and 

aerial remote sensing instruments are powerful tools for producing relatively complete records of 

archaeological settlement patterns and human behavior at landscape scales. These sensors allow 

for massive amounts of information to be recorded and analyzed in short spans of time and offer 

an effective means to increase survey areas and the discovery of new cultural deposits. In this 

paper, we review various case studies throughout Africa dealing with aerial and satellite remote 

sensing applications to landscape archaeology in order to highlight recent developments and 

highlight future research avenues. In particular, we argue that (semi)automated remote sensing 

methods stemming from machine learning developments will prove vital to expanding our 

knowledgebase of Africa’s archaeological record. This is especially important for coastal and 

island regions of the continent where climate change threatens the survival of much of the 

archaeological record. 
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Résumé : 

L'Afrique représente une vaste région où les technologies de télédétection ont été largement 

inégales dans leurs applications archéologiques. Avec les risques imminents liés au changement 

climatique, tels que la progression de l'érosion côtière et de la montée du niveau de la mer, ainsi 

que le développement urbain rapide, les lacunes dans nos connaissances sur l'histoire humaine de 

ce continent risquent de devenir permanentes. Les instruments de télédétection spatiaux et 

aériens sont des outils puissants pour produire des relevés relativement complets des 

peuplements archéologiques et du comportement humain à l'échelle du paysage. Ces capteurs 

permettent d'enregistrer et d'analyser d'énormes quantités d'informations en peu de temps et 

offrent un moyen efficace d'élargir les zones de prospection et de découvrir de nouveaux dépôts 

culturels. Dans cet article, nous passons en revue diverses études de cas à travers l'Afrique 

portant sur les applications de la télédétection aérienne et satellitaire à l'archéologie paysagère 

afin de souligner les développements récents et les pistes de recherche futures. En particulier, 

nous soutenons que les méthodes de télédétection (semi-)automatisées issues du développement 

de l'apprentissage automatique s'avéreront vitales pour élargir notre base de connaissances des 

archives archéologiques de l'Afrique. Cela est particulièrement important pour les régions 

côtières et insulaires du continent où les changements climatiques menacent la survie d'une 

grande partie des vestiges archéologiques. 

Mots-clés : télédétection, archéologie paysagère, protection du patrimoine, protection du 

paysage, Afrique 

 

 



 

 

Remote sensing instruments are powerful tools for producing relatively complete records 

of archaeological settlement patterns and human behavior at the landscape scale. Literature on 

aerial and spaceborne technologies (e.g., satellites, LiDAR, aerial photographs, etc.) in 

archaeology has demonstrated that multi- and hyper-spectral satellite sensors and aerial 

platforms such as LiDAR are particularly useful for tackling issues of survey coverage and site 

identification (e.g., Chase et al. 2012; Lasaponara and Masini 2012; Leisz 2013; Luo et al. 

2019;  Osicki and Sjogren 2005; Verhoeven 2017). Coupled with machine-learning algorithms, 

remote sensing offers an effective means to increase survey areas and the discovery of new 

cultural deposits (Bennett et al. 2014; Davis 2019; Davis et al. 2019b; Trier et al. 2019). 

Specifically, the use of such technology allows researchers to: 1) investigate large geographic 

scales in a time efficient (and cost effective) manner; 2) access areas which are difficult to 

physically visit due to geography, lack of infrastructure, and/or political instability; and 3) 

achieve enhanced visibility for archaeological survey in environments with dense vegetation or 

otherwise challenging topography (e.g., LiDAR, SAR). The widespread use of such methods 

would allow Africanist archaeologists to investigate settlement distributional patterns and 

landscape use in multiple temporal contexts at extraordinary speeds, as case studies from other 

areas demonstrate (e.g., Bennett et al., 2014; Davis et al., 2019b; Magnini and Bettineschi 2019). 

In this paper, we review landscape-scale remote sensing archaeological research 

conducted throughout the African continent, focusing primarily on the last two decades (Fig. 1) 

and how these methods can benefit archaeological research in the face of unprecedented climatic 

shifts and threats to cultural heritage. Specifically, we look at approaches utilizing aerial and 

spaceborne remote sensing instruments and avenues of research that are yet to be fully utilized in 

this region. We offer several explanations for why remote sensing has been slow to break into 



 

 

the mainstream of Africanist archaeology. Then, we present examples from Africanist research 

that illustrate why these methods are essential for protecting and recording the archaeological 

record in the face of climate change and human impacts. 

On the African continent, aerial and spaceborne remote sensing approaches have been 

widely applied, largely utilizing black-and-white aerial photographs to study state formation 

(Denbow 1979; Evers 1975; Gard and Mauney 1961; Jones 1978; Lampl 1968; Maggs 1976; 

Mason 1968; Mille 1970; Saumagne 1952; Seddon 1968; Wright 2007). Such studies illustrate 

the great potential for these approaches to expand our understanding of the archaeological record 

at the landscape scale and a diversity of social, economic and political processes. But again, 

these applications have been uneven. Studies by Jones (1978), Maggs (1976), Evers (1975), 

Mason (1968), and others revolutionized archaeological understanding of Iron Age settlement 

patterns throughout much of southern Africa. Meanwhile, on African islands, like Madagascar, 

aerial remote sensing has been much more limited in its archaeological applications (e.g., 

Fournier 1973; Mille 1970). Since the advent of commercial satellite imagery, only one study 

(Clark et al. 1998) has been applied in this region.  Such insufficient areal coverage of African 

islands have severely limited our understanding of their settlement history.  

Neglecting to make use of aerial and spaceborne technologies makes it more likely that 

African archaeological sites and landscapes will soon be permanently lost. Climate change 

brings with it threats to archaeological deposits, including coastal erosion and sea-level rise 

(IPCC 2018; Ministère de l’Environnement, des Eaux, et des Forêts 2006; USAID 2016). Some 

of the sites most vulnerable to climate change contain the earliest traces of human (and early 

Homo) history (Erlandson 2012), while others represent the center of ancient global trading 

networks and are actively eroding (Radimilahy and Crossland 2015). Many coastal and island 



 

 

sites in Africa are also important for understanding past human adaptation and resilience in the 

face of climate and other pressures (Douglass and Cooper, in press; Thompson and Turck 2011; 

Turck and Thompson 2016). With today’s impending climate crisis, it is imperative to learn all 

that we can from these sites before they are lost.  

Further damage occurs from political instability and conflict (e.g., Casana and Laugier 

2017; Francioni and Lenzerini 2006; Harmanşah 2015; Pollock 2016), and economic inequality 

(e.g., Brodie et al. 2006; Parcak et al. 2016) . To address anthropological questions concerning 

demography, the nature of social and political organization in prehistory, and the ecological 

entanglements of early populations, systematic archaeological investigations are required (e.g., 

Stahl 2005; also see Verhoeven 2017). Remote sensing instruments provide the ability to survey 

large geographic areas much faster than traditional approaches, as has been demonstrated by 

many studies throughout the world (e.g., Beck et al. 2007; Bescoby 2006; Bini et al. 2018; 

Biagetti et al. 2017; Borie et al. 2019; Cerrillo-Cuenca 2017; Casana 2014; Davis et al. 2019b; 

De Laet et al. 2007; Evans et al. 2013; Freeland et al. 2016; Guyot et al. 2018; Harrower et al. 

2013; Jahjah et al. 2007; Johnson and Ouimet 2014; Klehm et al. 2019; Krasinski et al. 2016; 

Lasaponara et al. 2014; Lipo and Hunt 2005; Meyer et al. 2019; Scheutter et al. 2013; Thabeng et 

al. 2019; Zanni and Rosa 2019). This ability is vital in the face of accelerated rates of cultural 

heritage loss, which threatens African communities and livelihoods (Mire 2017). 

 Remote sensing has rapidly advanced over the past several decades, and the application 

of some of the more recent innovations in image processing appear underutilized within African 

contexts. We argue that these latest trends in remote sensing can offer a cost-effective solution 

for addressing the issue of systematic broadscale survey in Africa by reducing the amount of 



 

 

time required to investigate landscapes, thereby improving our overall understanding of 

landscape level phenomena throughout the region’s history. 

[Insert Figure 1] 

Figure 1: Map of remote sensing case studies discussed in the text. It provides the locations of 

many recent studies – and several older ones – that have demonstrated the potential of remote 

sensing research and the benefits of some more recent analysis techniques. 

Limitations of Recent Remote Sensing Archaeology in Africa 

The field of remote sensing and image analysis is constantly expanding, with an 

explosion of new processing techniques emerging over the past few decades. With such advances 

come costs, however, and oftentimes these costs prevent their utilization. For example, sensors 

such as LiDAR permit for the identification of topographic anomalies and have been 

successfully applied to archaeological prospection around the world (e.g., Cerrillo-Cuenca 2017; 

Davis et al. 2019a; Evans et al. 2013; Guyot et al. 2018; Lasaponara and Masini 2013; Trier et al. 

2019). However, such technologies are infrequently used for archaeology in Africa (one 

exception being Sadr 2016a) and elsewhere because the cost of LiDAR ranges from the tens-to-

hundreds-of-thousands of dollars and is not affordable for most researchers. Commercial satellite 

imagery while less expensive (~$20+ per km2), is still out of the financial reach of some research 

teams. Thus, while LiDAR and very-high-resolution satellite imagery have been used for 

archaeological research in other parts of the world, such applications require extensive budgets, 

and funding for African archaeological research is sometimes limited (Clark 1994; Robertshaw 

2012). Other sensors and datasets, however, are available for free (e.g., Landsat, Sentinel-1 and 

2) and provide similar capabilities. 

In addition to new sensors and technologies, there have been advances in image 

processing methods, which have not yet been widely disseminated through the Africanist 



 

 

archaeology community. Specifically, the emergence of object-based image analysis (OBIA) 

over the past 15-20 years (see Blaschke 2010) has seen major improvements in accuracy and 

identification capabilities for archaeological objects (see Davis 2019 for a review; also see 

Magnini and Bettineschi 2019). Such techniques have been successfully applied to 

systematically parse through datasets for archaeological information and produce results with 

higher accuracy than traditional pixel-based approaches (see Sevara et al. 2016). Automated 

methods – especially OBIA – help to save time and money on surveying (e.g., Davis et al. 

2019b), and this is particularly important in regions where sites are deteriorating due to 

anthropogenic and other forces. 

In addition to OBIA, many advanced classification algorithms – such as random forest, 

support vector machine, and neural networks – are only just beginning to be utilized by 

Africanist archaeologists. Such approaches have produced highly accurate results in northern and 

southern Africa (Biagetti et al. 2017; Thabeng et al. 2019). The recent (and otherwise limited) 

introduction of such remote sensing techniques in Africanist archaeology may be partially 

explained by training opportunities for Africanist scholars as well as the abundance of research 

conducted by scholars outside of Africa.  

Archaeological remote sensing training opportunities are offered at a myriad of African 

universities, museums and research institutions, with several courses offered by Nigerian, South 

African, and Ethiopian institutions. For example, Obafemi Awolowo University in Nigeria offers 

a number of training opportunities in remote sensing, and even has a Center for Remote Sensing 

and GIS (RECTAS). Most opportunities for remote sensing training within Africa appear to be 

not directly affiliated with archaeology, however. Exceptions include Addis Ababa University in 

Ethiopia, where the Archaeology and Heritage Management Department offers cartography 



 

 

courses, and the University of the Witwatersrand, which offers remote sensing courses in the 

Department of Geography, Archaeology, and Environmental Studies. The results of several 

workshops and occasional short courses in remote sensing have resulted in training manuals 

(e.g., Wright 2017). Additionally, the African Association of Remote Sensing of the 

Environment (AARSE) holds a biannual pan-African conference at which new remote sensing 

methods are shared amongst a community of remote sensing experts. It would be useful for 

Africanist archaeology organizations to establish linkages with AARSE and encourage 

archaeologists to attend the AARSE conference. 

While limited training within Africa cannot alone explain the dearth of archaeological 

remote sensing studies in the region, it is a limiting factor for Africanist scholars within Africa to 

utilize such methods. Because much of the funding for archaeology in Africa comes from outside 

the continent (Ellison 1996; MacEachern 2010; Robertshaw 2012), and much of the literature 

pertaining to remote sensing is conducted by scholars outside of Africa, a limit in training 

opportunities for local archaeologists is certainly a contributing factor for the low number of 

recent studies when compared to other regions around the world (e.g., Europe). Robertshaw 

(2012: 98) also emphasizes the structural inequality in funding for African archaeology: “while 

the number of indigenous African archaeologists has been increasing across the continent in 

recent years, their access to research funds and logistical support is miniscule compared with that 

of their overseas colleagues” (also see Arazi 2011; MacEachern 2010). 

Another possible reason for a lack of remote sensing stems from the mindset that 

archaeology requires the highest resolution datasets (which are usually costly to acquire). Most 

often, remote sensing research in archaeology is focused on directly identifying archaeological 

deposits in image data, and this requires high spatial resolution (~1m or less) and spectral 



 

 

resolution (i.e., multispectral, hyperspectral capabilities) (Beck et al. 2007). However, there is 

also extensive work on indirect identification of archaeological deposits, usually using medium-

to-course resolution images (e.g., Agapiou et al. 2014; Bennett et al. 2012; Davis et al. 2020; 

Kirk et al. 2016). Direct investigation utilizes high resolution data in which archaeological 

deposits can be visualized and identified. In contrast, indirect investigation – whereby 

archaeological features are not directly visible – relies on proxies to estimate the likelihood of 

sites being present in a given area (e.g., Kirk et al. 2016). 

Where funding and resources are limited, indirect methods are the best option for 

increasing remote sensing studies in a region. Using freely available satellite imagery (e.g., 

Landsat, Sentinel-1, Sentinel-2), researchers can conduct analyses of vegetation patterns to 

identify likely cultural deposits on large (>50km2) geographic scales. Furthermore, the use of 

explicit theory (e.g., human behavioral ecology models [Charnov 1976; Fretwell and Lucas 

1969; MacArthur and Pianka 1966]) can be used in conjunction with remote sensing to improve 

such predictive modeling approaches (Davis et al. 2020; Verhagen and Whitley 2012).  

Given the abundance of freely available remote sensing datasets available with coverage 

for the entirety of the African continent, as well as many open-source softwares that can be used 

to process this imagery (see Table 1), it is via an indirect approach that remote sensing can be 

most easily and cost effectively integrated into archaeological research procedures in this region. 

Table 1: List of open-source/freely available data repositories and software platforms for remote 

sensing analysis. While not an exhaustive list, the table provides some well-known and other less 

known platforms which have strong capabilities and datasets for African regions. 

Resource 

Name 

Operating 

Systems 

Notes/Capabilities Reference 



 

 

QGIS 

(formerly 

known as 

Quantum 

GIS) 

• Windows 

• MacOS 

• Linux  
 

• Has an extensive 

number of plugin 

softwares, some of 

which (e.g., GRASS, 

Orfeo) have significant 

remote sensing 

analysis capabilities, 

including automated 

and OBIA analyses 

QGIS Development Team 

2018 

SAGA • Windows 

• Linux 

• FreeBSD 

• MacOS 

• Contains many 

environmental 

modeling tools and 

visualization 

algorithms. 

Conrad et al. 2015 

Google 

Earth 

Engine 

• Internet 

based. Any 

operating 

system will 

run with 

internet 

connection 

•  Repository of freely 

accessible image datasets 

•  Cloud-based computer 

processing allows for 

extremely fast analysis on 

large datasets 

•  Ability to conduct 

automated analysis 

algorithms 

Gorelick et al. 2017 

R • Windows 

• MacOS 

• Linux 

• Solaris OS 

• Coding platform with 

many remote sensing 

packages (e.g., 

raster[Hijmans 2019], 

RStoolbox [Lautner et 

al. 2019]) 

R Core Team (2018) 

Earth 

Explorer 

• Internet 

based. Any 

operating 

system with 

internet can 

access 

• Remote sensing data 

repository for the 

United States 

Geological Service 

(USGS). Contains 

datasets ranging from 

satellite data to LiDAR 

and aerial imagery 

around the globe. 

https://earthexplorer.usgs.gov/  

Copernicus • Internet 

based. Any 

operating 

system with 

• Remote sensing data 

repository for the 

European Space 

https://scihub.copernicus.eu/  

about:blank
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internet can 

access 

Agency satellites (e.g., 

Sentinel 1 and 2). 

 

While some of these open-source platforms are well known by archaeologists both within 

and outside of Africa (e.g., Google Earth), others are less recognized. For example, Google Earth 

Engine (GEE; Gorelick et al. 2017) is a free platform for educational, research, and nonprofit 

groups. GEE can be used to access remote sensing imagery and analyze these data with complex 

image processing algorithms that otherwise require an extensive coding background or 

potentially costly commercial software. Researchers have demonstrated that Google Earth 

Engine (GEE) is adept for archaeological prospection, specifically for digitizing archaeological 

feature boundaries and automating feature detection (Liss et al. 2017). A recent review of GEE 

indicates that while its use among remote sensing specialists is on the rise, African research has 

not engaged with this platform in a major way (Luo et al. 2018). Considering the capabilities of 

GEE – both as a data repository and platform for simple-to-complex analyses – and the fact that 

it is free to use, there is great potential for Africanist archaeologists to integrate it into their 

toolkits. 

Trends in Remote Sensing Research in African Archaeology 

 Remote sensing has a long history in archaeology (e.g., Capper 1907; Lindbergh 1929), 

but the applications of this technology in Africa are more recent and scarcer than in other areas. 

In a recent special issue of Geosciences published on archaeological remote sensing, Africa was 

only represented by two of 14 articles (Nsanziyera et al. 2018; Oduntan 2019), of which only one 

(Nsanziyera et al. 2018) was a case study while the other (Oduntan 2019) was a discussion of 

legal statutes relating to geospatial research in the region. This example is not an outlier, but 

represents a trend in recent remote sensing archaeology, where many of the latest developments 



 

 

are focused on other regions, primarily in the northern hemisphere (see Davis 2019). Africa 

represents over 30 million km2 and, while numerous studies have employed landscape level 

survey since the start of the 21st century, a vast amount of territory remains incompletely 

investigated (Fig. 1). In Madagascar, for example, the largest African island consisting of 

~500,000 km2, less than 1% of the island has been systematically investigated using remote 

sensing techniques. To ensure at-risk archaeological deposits are recorded in a systematic 

fashion,  the latest advances in image processing and automated analysis methods are 

imperative.  

Beginning in the 1950s, Africanist archaeologists have taken advantage of aerial 

photographs and identified thousands of archaeological sites from various time periods across the 

continent (e.g., Denbow 1979; Evers 1975; Jones 1978; Maggs 1976; Mason 1968; Saumagne 

1952; Seddon 1968). Saumagne (1952) conducted an aerial survey of archaeological sites in 

Tunisia. Almost a decade later, Gard and Mauney (1961) used aerial photographs to identify 

monumental earthen mounds in modern-day Senegal. Following these studies, aerial vantage 

points were utilized by archaeologists to identify a range of different features. 

Denbow (1979), for example, identified hundreds of Iron Age sites in Botswana on the 

basis of vegetative patterns observed in aerial photographs. Denbow’s work led to a better 

understanding of hilltop settlement dynamics and their connection with surrounding landscapes. 

This landscape-level work has also allowed us to test theories about the interactions between 

different communities of foragers, farmers, and herders in the Bosutswe region. Recent remote 

sensing studies continue to build on this earlier work but have begun to pay closer attention to 

subtler and less well-studied components of the archaeological record (e.g., Klehm et al. 2019). 



 

 

Similarly, work conducted by Maggs (1976) was foundational for Iron Age settlement 

studies in southern Africa (e.g., Evers 1975; Jones 1978). The information obtained from these 

aerial surveys allowed for the development of site typologies and the analysis of specific 

environmental and social contexts that affected settlement choice (Huffman 1986). 

On Madagascar, Mille (1970) used aerial photographs to identify and record 

approximately 16,000 fortified sites in an area encompassing 47,000 km2 in the central highlands 

(Fig. 1). These photographs were systematically investigated to create settlement density maps 

which were then statistically tested to classify sites into different settlement types (Fournier 

1973). Mille’s (1970) study transformed archaeologists’ understanding of settlement histories of 

the 15th-19th centuries by unveiling extensive monumental constructions throughout central 

Madagascar which were previously unrecorded. With this new information, Mille (1970) was 

able to calculate settlement densities and find connections between political transformation and 

settlement patterns (Fournier 1973). 

While aerial photographs can provide helpful information, the interpretation of 

(oftentimes) black-and-white images with little-to-no spectral data is inherently limiting. Many 

early studies that relied on aerial photography identified the largest archaeological sites, while 

overlooking or under-evaluating more subtle cultural deposits (see Klehm et al. 2019:69-70 for a 

brief discussion). The identification of cultural deposits via aerial photographs has resulted in the 

identification of many large structures (e.g., Denbow 1979; Maggs 1978; Mill 1970), but very 

little in the way of smaller domestic structures. This stems from a combination of resolution 

issues, lack of multispectral bands, and the limits of human analysts in identifying certain 

patterns and textures in photographs. The prospection of subtle features of the archaeological 



 

 

record has been enhanced by advances in computer learning and improvements in sensor 

resolution. 

Following the explosion of satellite data in the 1980s and 1990s, remote sensing 

applications in African archaeology began integrating multispectral sensors into analysis (e.g., 

Allan and Richards 1983; Clark et al. 1998; Lightfoot and Miller 1996; Richards 1989; Williams 

and Faure 1980). Much of this work has emerged in the last two decades using both medium- 

(e.g., Sentinel 1 and 2, Landsat) and high-resolution (Worldview 2 and 3; Ikonos, etc.) sensors 

(e.g., Clark et al. 1998; Klehm et al. 2019; Merideth-Williams et al. 2014; Nsanziyera et al. 

2018; Nyerges and Green 2000; Reid 2016; Schmid et al. 2008). The application of multispectral 

satellites has permitted archaeologists to use subtle differences in the electromagnetic spectrum 

to identify disturbed landscapes and anthropogenic activities.  

For example, Clark et al. (1998) illustrate the benefits of multispectral and synthetic-

aperture-radar (SAR) data - an active sensor that can detect moisture content and textural 

properties of ground surfaces (Chen et al. 2017) - for understanding Madagascar’s settlement 

history. The researchers focus on several hundred square kilometers of area (Fig. 1) and shed 

light on the development of land-use throughout the region as well as insight into where the 

oldest archaeological contexts are located. For example, there have been many recent 

archaeological discoveries that place cultural contexts in association with ancient megafauna 

species, including elephant birds (ratite genera Aepyornis and Mullerornis) (Douglass 2016; 

Parker Pearson et al. 2010; Radimilahy 2011). In addition, Clark et al. (1998) show how 

archaeological deposits often produce discernable patterns that are distinct from modern day 

landscape boundaries. Thus, identification of temporally older cultural features can be made on 



 

 

the basis of their placement in the modern landscape. By so doing, remote sensing provides 

archaeologists with the capability of monitoring known sites as well as locating new ones. 

These advances are not limited to Africanist research and have a long tradition in remote 

sensing archaeology around the world (Bini et al. 2018; Kirk et al. 2016; Lasaponara et al. 2014; 

Parcak 2009; Traviglia and Cottica 2011; also see Luo et al. 2019; Opitz and Herrmann 2018; 

Verhoeven and Sevara 2016). Multispectral sensors have also been used to develop vegetative 

indices that show the relative health of vegetation and can be used as a proxy of archaeological 

activity (see Bennett et al. 2012; Klehm et al. 2019; Thabeng et al. 2019), and such indices have 

proven useful in the detection of archaeological deposits dating to different periods throughout 

Africa (e.g., Biagetti et al. 2017; Klehm et al. 2019; Reid 2016; Sadr 2016a; Schmid et al. 2008; 

Thabeng et al. 2019). Additionally, they can be used to monitor the impacts of human activities 

on cultural materials (Reid 2016; Rüther 2002).  

Monitoring anthropogenic impacts on cultural heritage represents one major trend of 

remote sensing archaeology in Africa (e.g., Casana and Laugier 2017; Lasaponara and Masini 

2018; Parcak 2007, 2009; Parcak et al. 2016), and is at the forefront of major projects involving 

the continent (e.g., EAMENA, http://eamena.arch.ox.ac.uk/). The Endangered Archaeology in 

the Middle East and North Africa (EAMENA) project (Bewley et al. 2016) has created an open-

access digital database of aerial images and archaeological data with the goal of rapidly 

evaluating the status of cultural heritage preservation throughout the Middle East and North 

African region. The use of these data has resulted in numerous publications on the importance of 

aerial survey for cultural heritage management (e.g., Fradley and Sheldrick 2017; Hobson 2019; 

Rayne et al. 2017; Zerbini et al. 2018). Additionally, programs like UNITAR's Operational 
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Satellite Applications Programme (UNOSAT) have resulted in thorough damage assessments to 

cultural heritage in Syria (UNOSAT 2014). 

A second trend in Africanist archaeological remote sensing is the use of vegetative 

indices for the identification of archaeological materials. For example, Biagetti et al. 2017 

studied early Holocene settlements in the Sahara, Schmid et al. 2008 investigated soil properties 

in anthropogenic environments in Ethiopia, and Reid 2016 investigated settlement patterns in 

Sierra Leone (Fig. 1). In these projects, scholars calculated relative vegetation health and growth 

and matched these trends with areas of known anthropogenic activity. These signatures were 

then used as a basis for understanding the ecological effects of human land-use (e.g., Nyerges 

and Green 2000) and allowed for both the indirect prospection of archaeological materials via 

geochemical signatures and the monitoring of cultural materials at risk of damage or destruction. 

Such approaches are particularly useful because they can provide important information using 

both high- and medium-resolution datasets (Biagetti et al. 2017). In contrast, direct detection of 

sites via spectral or geometric properties requires higher resolution data (see Beck et al. 2007).  

A third trend in African remote sensing archaeology is the focus on mapping 

geomorphological properties of landscapes and their relationship to ancient settlement patterns. 

Such studies have successfully identified both archaeological sites and geomorphological 

features, such as paleolakes in the Sahara (e.g., Biagetti et al. 2017; also see El-Baz 1998) and 

ancient stone quarries in Egypt (e.g., De Laet et al. 2015). This approach is important, especially 

for studying human-environmental relationships, as it reveals interconnections between natural 

resources and human settlement patterns. For example, Clark et al. (1998) illustrate how specific 

environmental features (i.e., paleodunes) can act as markers of archaeological activity. 



 

 

Geomorphological studies in North Africa have also provided insight into where ancient rivers 

were located, which holds potential for identifying archaeological sites (El-Baz 1998).   

Remote sensing datasets are increasingly analyzed via machine learning classification 

procedures, and this represents a fourth emerging trend in remote sensing archaeology in Africa, 

as well as globally. Semi-automated analysis techniques involve the use of statistical classifiers, 

machine learning algorithms, and/or specialized image processing software to aid in analyzing 

remote sensing datasets with greater accuracy and speed. Such methods have been applied 

increasingly during the past few decades (see Bennett et al. 2014; Davis 2019; Lambers 2018; 

Traviglia and Torsello 2017), including in Africa (Klehm et al. 2019; Reid 2016; Schmid et al. 

2008; Thabeng et al. 2019). In the past year, the number of remote sensing studies utilizing 

automated methods in Africa has increased (e.g., Davis et al. 2020; Klehm et al. 2019; Thabeng 

et al. 2019), and this trend applies to global archaeology as well (e.g., Davis et al. 2019a, 2019b; 

Meyer et al. 2019; Trier et al. 2019; Verschoof-van der Vaart et al. 2019). In some instances, 

researchers are using automated methods solely for landscape classification, and the 

identification of cultural deposits remains a manual task for analysts (e.g., Biagetti et al. 2017). 

More recently, however, archaeological studies have utilized machine learning algorithms to 

directly identify archaeological materials. 

Automated analysis methods have been implemented in Africa using high-resolution 

multispectral Worldview-2 imagery. Thabeng et al. (2019) create training data to conduct 

random-forest and support vector machine classifications to distinguish between anthropogenic 

and non-anthropogenic land-types throughout southern Africa since 900 AD. Their random 

forest classification uses an iterative predictive modeling approach to select ideal classes for 

datasets on the basis of popular consensus among the different nodes (Pal 2005). Support vector 



 

 

machine classification then identifies optimal separations between classes and can produce 

highly accurate results, even with small training data sets (Mountrakis et al. 2011). Advanced 

classification algorithms can thus help to automate the prospection of archaeological sites on the 

basis of spectral characteristics with a high rate of accuracy (>95%). There are some issues of 

misclassification, however, which can be resolved using object-based image analysis (OBIA) 

classification methods (Thabeng et al. 2019).  

Another recent application of automated remote sensing is Klehm et al. (2019), who use 

an unsupervised classification algorithm – wherein a computer divides an image into classes 

without the input of a human analyst – to identify spectral signatures associated with cultural 

deposits in Botswana. Klehm and colleagues’ (2019) draw attention to hinterland areas with less 

dominant archaeological features, as the focus of archaeological research in this area was 

historically on clusters of hilltop settlements (e.g., Denbow 1979). They identify and field test 10 

new archaeological sites, of which 8 were confirmed to be Iron Age deposits (Klehm et al. 

2019). Klehm et al. (2019) demonstrate the benefits of automated survey procedures, and the role 

that these methods can play in improving predictive modeling of archaeological site locations in 

areas that suffer from lack of funding and survey capabilities. As such, automated remote sensing 

surveys are vital for increasing our understanding of the archaeological record in areas where 

survey is difficult or otherwise impeded. 

While (semi)automated analysis methods have advantages in terms of processing speed 

and identification capabilities, programming automated procedures requires training, trial and 

error, and time, as the processes are often quite complicated and softwares are not always user 

friendly. There are, however, many online forums and tutorials that can aid researchers in 

performing specific kinds of tasks (a simple search in YouTube will lead to hundreds of video 



 

 

tutorials using both commercial and open-source software). It should also be mentioned that 

there are currently no “fully-automated” archaeological remote sensing methods: every remote 

sensing analysis requires validation of results, usually by ground visits or other assessments of 

accuracy. As such, all automated procedures discussed, here and elsewhere, are truly “semi-

automated” procedures.  

OBIA represents a recent advancement in automated detection in archaeology (ca. mid-

2000s; see Davis 2019). Simply, OBIA is an image‐processing technique that segments an image 

into discrete components on the basis of one or more geometric or textural characteristics. It has 

been demonstrated that such methods are more accurate than traditional “pixel-based” image 

analysis methods (see Sevara et al. 2016) and can be used for different scales of analysis ranging 

from microscopic to global-scale imagery (Magnini and Bettineschi 2019). OBIA has since been 

followed by neural network analysis and other machine learning techniques (Verschoof-van der 

Vaart et al. 2019). Despite the improvements in the accuracy and reliability of automated 

detection using OBIA, archaeologists are yet to apply OBIA within African archaeology (Davis 

2019), in part due to limited training opportunities (see above) and costs often associated with 

such processing methods. Use of OBIA can also assist in distinguishing between anthropogenic 

and non-anthropogenic features (Davis et al. 2019b; Lambers et al. 2019; also see Thabeng et al. 

2019). 

While automated methods are gaining popularity, plenty of work is still conducted 

using manual analysis (e.g., Mattingly and Sterry 2013; Rayne et al. 2017; Sadr 2016a, 2016b). 

For many researchers, manual analysis can be particularly useful, especially with open-source 

datasets like Google Earth. The use of manual analysis methods (including ground-testing 

identified results) is always a necessary component of remote sensing analysis, but 



 

 

complementing these with automated approaches helps to reduce biases and inconsistencies in 

purely manual results (Bennett et al. 2014; Davis 2019; Verhoeven 2017; also see for example 

Sadr 2016b). While automated analyses introduce their own sets of assumptions and limitations, 

these biases are explicit and largely reproducible. Manual analysis, however, contain largely 

implicit biases on the part of the analyst and can introduce confounding assumptions in the 

analysis of remote sensing data. Part of the slow introduction of automated methods relates to 

cost, as such software can be exceedingly expensive. Processing capabilities of platforms like 

Google Earth Engine (Gorelick et al. 2017), however, offer free access to a variety of automated 

image processing algorithms, as well as the ability to code specifically designed processes for 

those with coding backgrounds (see Table 1).  

Future Directions for Remote Sensing in African Archaeology 

Increased integration of remote sensing approaches in African archaeology will provide 

many avenues for future exploration and discovery. The first step is to expand remote sensing 

surveys into areas where such methods are largely absent and where cultural heritage is at 

increased risk (e.g., climate change, political instability, etc.). This large-scale effort can be 

accomplished through a combination of direct and indirect investigations. 

 Indirect investigations face challenges, however, and require innovative integrations of 

remote sensing methods with explicit theories and models designed to explain cultural 

phenomena. Such frameworks are central to disciplines such as anthropology, geography, and 

history. Currently, one of the fundamental limitations of most archaeological remote sensing 

studies is their implementation sans anthropological theory – with anthropological referring to 

frameworks mentioned previously (Thompson et al. 2011). In most remote sensing 



 

 

investigations, identification of patterns or objects in datasets is most commonly conducted using 

methods and theories exclusively from geosciences and physics.  

For example, many researchers have used vegetative indices to predict the locations of 

cultural deposits (e.g., Biagetti et al. 2017; Kirk et al. 2016; Lasaponara and Masini 2007; 

Schmid et al. 2008) but most of these studies do not incorporate explicit theoretical models – 

e.g., ethnography, human behavioral ecology, niche construction, etc. – when building indexes of 

archaeological activity. While these approaches are useful for identifying archaeological sites, 

they can be limiting in addressing more complex archaeological questions. For this reason, 

remote sensing archaeology is often published as individual case studies (e.g., Calleja et al. 2018; 

Davis et al. 2019b; Lasaponara and Masini 2007; Traviglia and Cottica 2011) that demonstrate 

the usefulness of specific approaches but are never developed to address questions of broad 

anthropological significance.  

Much of the recent literature employing new analytical methods for remote sensing are 

purely experimental, and thus are interested solely in developing methods that can be more 

widely applied by future work. This is inherently useful, and should be encouraged. Nonetheless, 

some researchers have begun incorporating the results of such remote sensing analyses into 

broader anthropological syntheses, and this should become commonplace in future research (e.g., 

Borie et al. 2019; Cerrillo-Cuenca and Bueno‐Ramírez 2019; Freeland et al. 2016; Inomata et al. 

2018; Rutkiewitcz et al. 2019). 

Because of the disconnect between remote sensing applications and anthropological 

theory, coarser-resolution imagery is often ignored or avoided by archaeologists because they 

cannot directly identify deposits, save those that are extraordinarily large (such as fortifications, 

walls, and roadways) (Beck et al. 2007; Zanni and Rosa 2019). However, there is an abundance 



 

 

of freely downloadable data that is available for nearly every inch of the globe, and despite its 

lower resolution (~10-30m or greater), such datasets can be extremely beneficial for 

archaeological analyses (e.g., Agapiou et al. 2014; Borie et al. 2019; Breeze et al. 2015; Kirk et 

al. 2016; Zanni and Rosa 2019).  

A recent study by Nsanziyera et al. (2018) makes use of anthropological variables in 

conjunction with geoscience frameworks and freely available remote sensing datasets to predict 

the locations of archaeological sites in a 1000 km2 area in Morocco (Fig. 1). By incorporating 

anthropological, as well as environmental variables into their model, the authors achieve ~93% 

accuracy, thereby demonstrating the utility of theoretically-driven analyses and freely available 

datasets. Another recent study by Davis and colleagues (2020) developed a predictive remote 

sensing algorithm using freely available Sentinel-2 imagery predicated on theoretical insights 

from human behavioral ecology. The method successfully predicted the location of both known 

and previously unrecorded deposits with an accuracy of over 95%. Africanist archaeologists are 

well-positioned to lead the way on the integration of anthropological models and theories into 

applications of remote sensing, given the long tradition of theorizing population movements, the 

emergence of complex social, political and economic forms, regional interaction and other 

landscape-scale behaviors (e.g., Anquandah 1987; Ashley et al. 2016; Breunig et al. 1996; 

Harlan and Stemler 1976; Stahl 1985; Wynne-Jones and Fleisher 2015).  

With the acquisition of remote sensing datasets at higher spatial and spectral resolutions, 

it is possible to directly identify archaeological deposits, rather than assign general probabilities 

of where these features are most likely to be located (Calleja et al. 2018; Davis et al. 2019a; De 

Laet et al. 2007; Klehm et al. 2019; LaRoque et al. 2019; Lasaponara and Masini 2007; Thabeng 

et al. 2019; Traviglia and Torsello 2017; Trier et al. 2009). While future work should attempt to 



 

 

acquire and analyze high-resolution imagery (e.g., IKONOS, SPOT, Worldview, etc.), the 

immediate priority should be to develop robust theoretical models that can be tested using freely 

available imagery. This will allow the greatest number of archaeologists – regardless of financial 

capabilities – to begin utilizing remote sensing technologies.  

In addition, future work should seek to analyze satellite imagery using a mix of 

automated and manual procedures. This will permit researchers to: a) eliminate observer biases 

that are often abundant in purely manual evaluations of remote sensing data; and b) 

systematically investigate entire regions in short spans of time. Automated methods, such as 

OBIA, can also improve our understanding of site dynamics, as these approaches can classify 

feature shape, size, and other morphometric properties (Davis et al. 2019a).  

Conclusions 

This paper has reviewed the application of aerial and spaceborne remote sensing methods 

for landscape analysis in African archaeology. These techniques offer great potential to increase 

our knowledge of the human past and help to record and protect cultural heritage that is at risk 

from anthropogenic and natural forces. While Africanist archaeology has a long history of aerial 

surveys, the most recent advances in aerial and spaceborne technology have been slow to break 

into research practices in the region. With an increasingly threatened archaeological record, 

methods to quickly and accurately record this information are essential.  

Climate-related risks are increasing rapidly (IPCC 2018) and much of the African coast is 

in danger of sea level rise and erosion. Equally problematic for archaeology in other regions of 

Africa are anthropogenic forces such as urban development and looting activity. In the case of 

looting, in particular, researchers have demonstrated the power of remote sensing technologies to 



 

 

identify cultural materials under threat (e.g., Casana and Laugier 2017; Lasaponara and Masini 

2018; Lauricella et al. 2017; Parcak et al. 2016; UNOSAT 2014; Xiao et al. 2018). It is therefore 

necessary to increase the rate at which researchers document the archaeological record, as many 

African archaeological deposits are rapidly disappearing (Erlandson 2012; Parker Pearson et al. 

2010).  

Remote sensing can also aid in creating more robust archaeological datasets which can 

form the basis of large-scale landscape level studies (e.g., Davis et al. 2019b; Freeland et al. 

2016; Inomata et al. 2018; Menze et al. 2012) and improve the speed and accuracy of mapping 

archaeological deposits (Hesse 2010). The speed and accuracy attainable through remote sensing 

survey methods are essential for future archaeological research, as datasets continue to expand.  

Ultimately, the integration of remote sensing into the mainstream of Africanist 

archaeology is underway, and as knowledge of cost-effective datasets and processing software 

increases among Africanists, research using these methods should increase substantially. We 

emphasize many such platforms above and hope that this article assists researchers in accessing 

useful analytical tools. However, it is also essential that training in remote sensing techniques 

become a featured component of archaeology programs throughout Africa and Africanist 

departments more broadly. Rigorous training is especially critical for the use of techniques 

involving machine learning and automated analysis. 

Scholars in Africa have long made important contributions to the study of landscape 

change, settlement histories, and spatial analysis. By incorporating remote sensing datasets into 

future studies, Africanist contributions will be enhanced with more complete datasets and greater 

geographic coverage of the diversity of Africa’s human past. 
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